Title
Anisotropic x-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4

Permalink
https://escholarship.org/uc/item/68r89337

Authors
Arenholz, Elke
van der Laan, Gerrit
Chopdekar, Rajesh V.
et al.

Publication Date
2006-04-30

Peer reviewed
Anisotropic x-ray magnetic linear dichroism at the Fe $L_{2,3}$ edges in Fe$_3$O$_4$

Elke Arenholz*
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Gerrit van der Laan†
Magnetic Spectroscopy Group, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Rajesh V. Chopdekar‡ and Yuri Suzuki‡
Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720
(Dated: April 28, 2006)

X-ray magnetic linear dichroism at the Fe $L_{2,3}$ edges of the ferrimagnet Fe$_3$O$_4$ was found to exhibit a strong dependence on the relative orientation of external magnetic field, x-ray polarization, and crystalline axes. Spectral shape and magnitude of the effect were determined for Fe$_3$O$_4$(011) and Fe$_3$O$_4$(001) thin films varying the in-plane orientation of field and polarization. All dichroism spectra can be described as a linear combination of three fundamental spectra which in turn give a good agreement with calculated spectra using atomic multiplet theory. The angular dependence of the magnetic dichroism reflects the crystal field symmetry. It can be used to estimate the crystal field splitting and allows determining the spin quantization axis.

PACS numbers: 75.50.Gg, 75.70.Ak, 78.20.Bh, 78.70.Dm

I. INTRODUCTION

Absorption spectroscopies utilizing synchrotron radiation have developed into important tools for the study of magnetic solids since the prediction and first observation of strong x-ray magnetic dichroism (XMD) at the 3d $(M_{4,5})$ edges of rare earth materials [1, 2]. X-ray magnetic circular dichroism (XMCD) measures the difference in absorption of x-rays with helicity vector parallel and antiparallel to the magnetization direction. It is proportional to the average value $\langle M \rangle$ of the local magnetic moment, so that ferromagnetic and ferrimagnetic order but not antiferromagnetic order can be probed. Its linear counterpart x-ray magnetic linear dichroism (XMLD) is the difference in absorption of linearly polarized x rays with polarization parallel and perpendicular to the magnetization direction. XMLD is assumed to be proportional to the square of the magnetic moment M^2 and consequently, both ferromagnetically and antiferromagnetically ordered moments contribute to the XMLD signal. XMLD is unique in its intrinsic element specificity [3] and chemical-site sensitivity [4] that allows separating the contributions of multiple magnetic species in alloys or layered systems [5]. Most importantly, theoretically derived sum rules link XMCD intensities to spin and orbital magnetic moments [6–8] and XMLD signals to the anisotropic spin-orbit moment which is directly proportional to magnetocrystalline anisotropy energy [9, 10]. Sum rules enable the use of polarized x rays for quantitative magnetometry. Strong anisotropy in the XMLD has been reported both theoretically and experimentally [11–14]. Although magnetic spectroscopy techniques have found widespread use for the study of magnetic systems, the dependence of the XMLD signal on the relative orientation of external magnetic field, x-ray polarization, and crystalline axes has not been studied systematically to date. Together with the fact that in itinerant metallic ferromagnets the XMLD signal is much smaller than the XMCD effect, this might have hampered the development of XMLD to become an equally powerful probe as its circular counterpart.

In this paper, we present a systematic study of the Fe $L_{2,3}$ XMLD in ferrimagnetic Fe$_3$O$_4$. Due to the localized nature of the magnetic moments in Fe$_3$O$_4$ the XMLD effects are much larger than in metallic ferromagnets. The Fe $L_{2,3}$ XMLD is found to exhibit a strong dependence on the relative orientation of external magnetic field, x-ray polarization, and crystal lattice, which can be used as a sensitive probe for the electronic and magnetic structure. We show that all XMLD spectra can be described as a linear combination of three fundamental spectra and that the angular dependence can be derived from atomic calculations based on the crystal field symmetry.

II. EXPERIMENTAL

40 nm thick Fe$_3$O$_4$ films were prepared on polished SrTiO$_3$(011) and (001) substrates using pulsed laser deposition (PLD). The substrate was held at 725 K during sample preparation in an atmosphere of 10^{-6} Torr, leading to single crystalline films of proper stoichiometry. Exposure to air during sample transfer causes a slight change in surface stoichiometry which was quantified using XMCD and taken into account for the subsequent
data analysis. Magneto-optical Kerr effect measurements showed that Fe$_3$O$_4$ films in compression on SrTiO$_3$(011) exhibit an in-plane uniaxial anisotropy with easy magnetization axis along the [100] axis of the SrTiO$_3$ substrate and the Fe$_3$O$_4$ film. Grown on SrTiO$_3$(001), the Fe$_3$O$_4$ films show a weak fourfold anisotropy with easy magnetization axes parallel to the [100] and [010] axes. At $T = 298$ K, both films can be saturated along any in-plane direction by external magnetic fields of 0.5 T. The XMLD experiments were performed at beamline 4.0.2 at the Advanced Light Source [15] providing linearly polarized x rays with polarization direction continuously tunable through a 90° range and a degree of polarization of (99±1)%.

The eight pole resistive magnet employed for these experiments allows applying magnetic fields up to 0.8 T in any direction [16]. All spectra were obtained by monitoring the sample drain current, i.e. in electron yield mode, in normal incidence at $T = 298$ K in the presence of an external fields of 0.5 T. The XMLD in three different geometries was measured by varying the orientation of external field, x-ray polarization, and sample orientation, respectively. To increase the electron yield signal, the magnetic field was turned slightly out of the sample surface plane. Since this is a hard magnetic axis for the Fe$_3$O$_4$ samples studied here, the orientation of the magnetic moments is barely influenced by it. Varying the out-of-plane angle between 5° and 30° has no appreciable effect on the spectral shape and magnitude of the XMLD signal.

III. SYMMETRY CONSIDERATIONS

The geometrical properties of XMLD require more consideration than those for XMCD. The XMLD can be measured in a number of different ways, which calls for a transparent and concise notation. The XMLD is the difference between two x-ray absorption (XA) spectra measured with different orientations of \mathbf{H} and \mathbf{E} relative to the crystalline axes, where \mathbf{E} is the linear polarization direction of the x-rays and \mathbf{H} the direction of the applied field. Usually, either \mathbf{H} or \mathbf{E} is rotated by 90° between the two successive XA measurements. We will choose the case that \mathbf{H} and \mathbf{E} are always in the plane of the surface, as this is the most practical experimental geometry.

To obtain the angular dependence of the XMLD, we rotate either \mathbf{E}, \mathbf{H} or the sample by an angle $\phi_{\mathbf{E}}$, $\phi_{\mathbf{H}}$, or ϕ_{S}, respectively, with respect to the [100] direction from 0° to 90° in the plane of the surface. This gives the XMLD signal in ϕ what we will denote as $\phi_{\mathbf{E}}$, $\phi_{\mathbf{H}}$, or ϕ_{S}, respectively, defined as

$$I_{\text{XMLD}}(\phi_{\mathbf{E}}) = I(\mathbf{H}_{0\mathbf{E}}, \mathbf{E}_{0\mathbf{E}}) - I(\mathbf{H}_{0\mathbf{E}}, \mathbf{E}_{0\mathbf{E}}),$$

$$I_{\text{XMLD}}(\phi_{\mathbf{H}}) = I(\mathbf{H}_{0\mathbf{H}}, \mathbf{E}_{0\mathbf{H}}) - I(\mathbf{H}_{0\mathbf{H}}, \mathbf{E}_{0\mathbf{H}}),$$

$$I_{\text{XMLD}}(\phi_{S}) = I(\mathbf{H}_{0\mathbf{S}}, \mathbf{E}_{0\mathbf{S}}) - I(\mathbf{H}_{0\mathbf{S}}, \mathbf{E}_{0\mathbf{S}}),$$

where the subscripts of \mathbf{E} and \mathbf{H} indicate the angle of these vectors with respect to the [100] axis.

In geometry 1 (see insert to Fig. 1(a)) the two perpendicularly chosen \mathbf{H} directions are fixed with respect to the sample. The XMLD is obtained as the difference of the XA spectra with \mathbf{H} parallel and perpendicular to the [100] axis. The angular dependence of the XMLD is obtained by varying the angle $\phi_{\mathbf{E}}$ between [100] and \mathbf{E}.

In geometry 2 (see inset to Fig. 1(b)) \mathbf{E} is fixed along the [100] axis of the sample. The XMLD is the difference of the XA spectra with \mathbf{H} at angles ϕ_{H} and $\phi_{H}+90\degree$ with the [100] axis.

In geometry 3 (see insert to Fig. 1(c)) the sample is rotated about the surface normal, and the [100] axis is oriented at an angle ϕ_{S} relative to \mathbf{H}. The XMLD is the difference of the XA spectra measured with horizontal and vertical linear polarization, i.e., with \mathbf{E} parallel and perpendicular to \mathbf{H}, respectively.

We studied two different surfaces, namely the (001) and (011) plane. The (001) surface has D$_4$ symmetry, which has a 4-fold rotation axis and mirror planes at $\phi = 0\degree$, 45°, and 90° normal to the surface. The (011) surface has D$_2$ symmetry, which has a 2-fold rotation axis and mirror planes at $\phi = 0\degree$ and 90° normal to the surface. Furthermore, \mathbf{H} and \mathbf{E} can be considered as even vectors in XMLD, which have D$_2$ symmetry, in an orientation rotated about angles given by the subscripts in Eqs. (1-3). The angular dependence of the XMLD is subject to these symmetry properties. It will be useful to determine whether or not the angular dependence for each geometry is symmetric or antisymmetric with respect to $\phi = 45\degree$. It is relative easy to verify that the symmetry properties lead to the following relations, given in Eqs. (4-6).

In geometry 1, for a surface with D$_4$ symmetry, a reflection of \mathbf{E} with respect to $\phi_{\mathbf{E}} = 45\degree$ exchanges the two terms in Eq. (1), so that

$$I_{\text{XMLD}}^{\text{Geo.1}}(90\degree - \phi_{\mathbf{E}}) = -I_{\text{XMLD}}^{\text{Geo.1}}(\phi_{\mathbf{E}}).$$

However, this does not hold for D$_2$ symmetry.

In geometry 2 for surfaces both of D$_4$ and D$_2$ symmetry, a reflection of \mathbf{H} with respect to $\phi_{\mathbf{H}} = 45\degree$ exchanges the two terms in Eq. (2), so that

$$I_{\text{XMLD}}^{\text{Geo.2}}(90\degree - \phi_{\mathbf{H}}) = -I_{\text{XMLD}}^{\text{Geo.2}}(\phi_{\mathbf{H}}).$$

In geometry 3 for a surface of D$_4$ symmetry, a reflection of both \mathbf{H} and \mathbf{E} with respect to $\phi_{S} = 45\degree$ leaves each of the two terms in Eq. (3) invariant, so that

$$I_{\text{XMLD}}^{\text{Geo.3}}(90\degree - \phi_{S}) = I_{\text{XMLD}}^{\text{Geo.3}}(\phi_{S}).$$

This does not hold for a D$_2$ symmetry.

Thus for the (001) plane in geometry 1 and 2 and for the (011) plane in geometry 2 the angular dependence is antisymmetric with respect to $\phi = 45\degree$, and the XMLD spectra for ϕ and $90\degree - \phi$ have opposite signs, consequently the signal must vanish at $\phi = 45\degree$. This behavior requires an angular dependence of the form $\cos 2\theta$.

For the (001) plane in geometry 3 the angular dependence is symmetric with respect to $\phi_{S} = 45\degree$, and the
XMLD for ϕ_S and $90^\circ - \phi_S$ have the same sign and hence does not vanish at $\phi_S = 45^\circ$ (unless accidental). This behavior requires a $\cos 4\phi_S$ term in the angular dependence.

The angular dependence of the XMLD can be written in terms of -- what we will call -- the fundamental spectra I_0, I_{45}, and I_{90}, which are the XMLD spectra for $\phi = 0^\circ$, 45°, and 90° in the given geometry. The expressions can be derived from the symmetry properties given in Eqs. (4-6), considering the following principles. In all cases the angular dependence is symmetric with respect to $\phi = 0^\circ$ and 90°, thus it must consist of terms $\cos 2n\phi$, where n is an integer. The term $\cos 2\phi$ gives an angular dependence that is antisymmetric with respect to $\phi = 45^\circ$. The term $\cos 4\phi$ gives an angular dependence that is symmetric with respect to $\phi = 45^\circ$. Higher-order terms are ignored. The coefficient of the $\cos 2n\phi$ term is determined by the difference between the spectra at angles where the cosine is ± 1. Furthermore, there is a constant term present, if the average over the different angles does not cancel.

In geometry 1, according to Eq. (4) the angular dependence is asymmetric with respect to $\phi = 45^\circ$ for D_1 symmetry. This means that in the case of the broken symmetry (i.e., D_2 symmetry) of the (011) plane there is a constant term equal to $\frac{I_0}{2}(I_0 + I_{90})$ in addition to the angular dependent $\cos 2\phi$ term with coefficient $\frac{1}{2}(I_0 - I_{90})$, so that

$$I_{XMLD(011)}^{Geo.1}(\phi_E) = \frac{1}{2}(I_0 + I_{90}) + \frac{1}{2}(I_0 - I_{90}) \cos 2\phi_E = I_0 \cos^2 \phi_E + I_{90} \sin^2 \phi_E.$$

(7)

For the (001) plane in geometry 1, the angular dependence in Eq. (7) simplifies by substitution of $I_{90} = -I_0$, resulting in

$$I_{XMLD(001)}^{Geo.1}(\phi_E) = I_0 \cos 2\phi_E = I_0 (\cos^2 \phi_E - \sin^2 \phi_E).$$

(8)

where as anticipated the constant term drops out.

In geometry 2, according to Eq. (5) the angular dependence is antisymmetric with respect to $\phi = 45^\circ$ for both the (011) and (001) plane and we have $I_{90} = -I_0$, so that

$$I_{XMLD(011)}^{Geo.2}(\phi_H) = I_0 \cos 2\phi_H = I_0 (\cos^2 \phi_H - \sin^2 \phi_H).$$

(9)

In geometry 3, for the (011) plane the angular dependence of the XMLD is given as

$$I_{XMLD(011)}^{Geo.3}(\phi_S) = \frac{1}{4}(I_0 + 2I_{45} + I_{90}) + \frac{1}{2}(I_0 - I_{90}) \cos 2\phi_S + \frac{1}{4}(I_0 - 2I_{45} + I_{90}) \cos 4\phi_S = I_0 (\cos^4 \phi_S - \cos^2 \phi_S \sin^2 \phi_S) + 4I_{45} \cos^2 \phi_S \sin^2 \phi_S + I_{90} (\sin^4 \phi_S - \cos^2 \phi_S \sin^2 \phi_S).$$

(10)

For the (001) plane in geometry 3, the angular dependence simplifies with $I_{90} = I_0$, resulting in

$$I_{XMLD(001)}^{Geo.3}(\phi_S) = \frac{1}{4}(I_0 + I_{45}) + \frac{1}{2}(I_0 - I_{45}) \cos 4\phi_S = I_0 (\cos^2 \phi_S - \sin^2 \phi_S)^2 + 4I_{45} \cos^2 \phi_S \sin^2 \phi_S.$$

(11)

For convenience we have also included in Eqs. (7-11) the expressions in terms of $\cos^2 \phi$ and $\sin^2 \phi$, which can sometimes provide a better visualization of the angular dependence.

IV. RESULTS

XMLD spectra obtained in geometry 1, 2, and 3 for Fe$_3$O$_4$/SrTiO$_3$(011) and Fe$_3$O$_4$/SrTiO$_3$(001) are plotted in the left, center, and right panels of Fig. 1, respectively. The top panels (a), (b), and (c) show the spectra obtained by averaging over all azimuthal angles measured in each geometry. The center panels (d), (e), and (f) show XMLD spectra obtained from Fe$_3$O$_4$/SrTiO$_3$(011) and the bottom panels (g), (h), and (i) show results for Fe$_3$O$_4$/SrTiO$_3$(001).

For all three geometries, the experimental XMLD spectra for Fe$_3$O$_4$/SrTiO$_3$(011) and Fe$_3$O$_4$/SrTiO$_3$(001) show pronounced variations in the XMLD spectral shape and magnitude with ϕ, but differences between the two samples clearly exist. So the XMLD spectra for $\phi_E = 0^\circ$ and $\phi_E = 90^\circ$ show significant differences in case of Fe$_3$O$_4$/SrTiO$_3$(011) (cf. Fig. 1(d)) whereas for Fe$_3$O$_4$/SrTiO$_3$(001) (cf. Fig. 1(g)) they only differ in their sign.

To test the validity of the predicted angular dependence of the XMLD signal, XMLD spectra were modelled employing Eqs. (7-11) using experimental data for the spectra I_0, I_{45}, and I_{90}, i.e., XMLD spectra measured for $\phi = 0^\circ$, 45°, and 90°. The red lines in Fig. 1 indicate the results of this approach. The agreement with the experimental data is good for both samples.

V. CALCULATIONS

The XMLD spectra are compared with atomic multiplet calculations. We recall that Fe$_3$O$_4$ has an inverse spinel-type structure [17]. Half of the Fe$^{3+}$ ions are tetrahedrally coordinated (T$_d$) whereas the remaining Fe$^{2+}$ ions as well as the Fe$^{2+}$ ions occupy octahedrally coordinated sites (O$_h$). The magnetic moments on T$_d$ and O$_h$ sites are coupled antiferromagnetically.

Figure 2 shows the calculated XMLD spectra for the three different sites Fe$^{2+}$ d^8 O$_h$, Fe$^{3+}$ d^6 T$_d$, and Fe$^{3+}$ d^6 O$_h$. The calculational method follows that of Ref. 18. The $L_{2,3}$ XA spectra with H and E along specified directions were obtained from the electric-dipole allowed transitions between the ground state 3d^0 and the final state 2p_1 3d^{n+1} configuration. The wave functions of ground and final states were calculated at a temperature $T=0$ in intermediate coupling using Cowan’s Hartree-Fock code with relativistic correction [19]. The Slater and spin-orbit parameters are as tabulated in Ref. 20. Interatomic screening and mixing was taken into account by reducing the d-d and p-d Slater integrals with scaling factors of 0.7 and 0.8, respectively. For the octahedral site a crystal
field of $10Dq = 1.2$ eV and exchange field of $g_{\mu B}H = 0.01$ eV were used. For the tetrahedral site a crystal field of $10Dq = -0.6$ eV and exchange field of $g_{\mu B}H = -0.01$ eV was used. The calculated results were broadened by a Lorentzian of $\Gamma = 0.3$ (0.5) eV for the L_3 (L_2) edge to account for intrinsic linewidth broadening and a Gaussian of $\sigma = 0.25$ eV for the instrumental broadening. The relative energy positions of the spectra for the three different Fe sites were taken as obtained previously for the XMCD of Fe$_2$O$_4$ [21]. Figure 2 shows also the sum spectra with the stoichiometric ratio 1:1:1 for the different Fe sites. It will be clear that due to the spectral complexity of the individual XMCD spectra, a small shift in the relative energy positions for the three different sites can give a large change in the sum spectrum.

VI. COMPARISON TO EXPERIMENT

Magnetite samples can be notoriously non-stoichiometric. Sample exposure to atmosphere during sample transfer from the preparation chamber to the magnet chamber can change the sample stoichiometry near the surface region. A sensitive method to determine the stoichiometry of the sample is offered by the XMCD that can be measured in combination with the XMLD. We determined the relative concentrations of the three Fe sites by fitting the three peaks in the measured L_3 XMCD. This is a well-established method that has been tested on a wide variety of spinel ferrites [21].

The relative peak intensities can be calibrated to those for the stoichiometric ratio as reported by Morrall et al. [22] and Chen et al. [23] for a thin film of magnetite on MgO(001).

The Fe$_2$O$_4$ XA spectrum is plotted in Fig. 3(a) and the measured XMCD averaged over all angles is shown in Fig. 3(b). We find only a very small angular dependence in the XMCD, which is in agreement with previous findings by Edmonds et al. [24] for Mn d^5 in (Ga,Mn)As. From the XMCD measurement we obtain an Fe$^{2+}$ ϕ : Fe$^{3+}$ ψ ratio of 0.8:1:1.2. We use these weighting factors to correct the calculated XMLD. The result is shown in Fig. 3(c) and compared to the experimental I_0 spectrum ($\phi = 0^\circ$ from Fig. 1(d-i)) and I_{15} spectrum ($\phi = 45^\circ$ from Fig. 1(f) and (i)). Comparing the I_0 and the I_{15} spectrum to each other, one observes roughly a tendency for the signal to reverse sign, however the detailed multiplet structure is much more complicated and is not following a simple pattern.

We observe a good agreement between the experimental and calculated spectra in Fig. 3(c). However, that is not to say that there would not be any room for improvement. The valence on the octahedral sites is on average 2.5+ and full charge separation would mean equal amounts of sites being 2+ and 3+. Recent diffraction experiments [25] have suggested that the charge difference might be much smaller than one electron, probably 0.2–0.3 electron. Although multiplet structures can be calculated for non-integer valence charges, it allows for additional fitting parameters, which makes the results less clear cut than for integer valence charges. Non-integer charges on each site can be included by taking charge-transfer into account, where the local ground state at each site is a mixture of different configurations d^n and d^{n+1}, with the underscore denoting a hole on a ligand oxygen site [26]. The ground and final states now depend on the d-L charge transfer energy, the d-d on-site Coulomb interaction and the d-L mixing (hybridization). Since the core hole in the XA process is well screened by the electron excited into the d band, the change in hybridization upon core hole creation will be small, which results in only weak charge-transfer satellite structure in the XA spectra that can be present at the high energy tail above each edge. A second effect of the charge-transfer is a reduction in overall width of the multiplet structure, which can approximately be taken into account by a reduction of the Slater integrals [26]. Hence for the XA spectra reasonable agreement can often be obtained by describing the measured spectra using configurations with integer charges. However, it would be interesting to see how sensitive the spectral shape would be in the case of XMLD. In first instance one might expect that the spectral shapes for Fe$^{2+}$ d^6 ψ and Fe$^{3+}$ d^5 ψ would become more similar if there is significant hybridization between the two octahedral sites. As a consequence the large negative peak in the I_0 spectrum in Fig. 2(a) would reduce in magnitude.

Sum rules give the relation between the integrated intensities $A_{2,3}$ of the $L_{2,3}$ XMCD spectra and the expectation values of ground state operators. The integrals A_3+A_2 and A_3-2A_2 are proportional to the charge quadrupole moment and the anisotropic spin-orbit interaction, respectively [27]. In second-order perturbation theory, the latter is related to the magnetocystalline anisotropy energy (MAE) [27]. The integral A_3-2A_2 is usually small compared to the intensities of the individual peaks in the XMLD, and therefore difficult to measure unless the MAE is large [10, 28]. For high spin Fe d^5 in cubic symmetry, with its half-filled shell, the charge quadrupole and the MAE are essentially zero, however as seen in Fig. 2 the anisotropy in the XMLD for d^5 is as strong as for d^6, if not stronger. Therefore, the large angular dependence of the XMLD can not be ascribed to a large MAE.

In fact, the origin of the anisotropic XMCD has a more complicated reason. It stems from the electric-dipole selection rules restricting the set of final states that can be reached from the ground state. This can be seen, e.g., in geometry 1 by substituting Eq. (1) into Eq. (7), which gives

$$I_{\text{XMLD}}(\phi_E) = [I_{\text{XA}}(H_0, E_0) - I_{\text{XA}}(H_{90}, E_0)] \cos^2 \phi_E$$
$$+ [I_{\text{AX}}(H_0, E_{90}) - I_{\text{AX}}(H_{90}, E_{90})] \sin^2 \phi_E.$$

(12)

Here, $I_{\text{XA}}(H_0, E_0)$ and $I_{\text{AX}}(H_{90}, E_{90})$ are the XA spectra for transitions $\Delta m=0$ with the quantization axis
along $\phi=0^\circ$ and 90°, respectively. $I_{\text{XAS}}(H_{90}, E_{90})$ and $I_{\text{XAS}}(H_{90}, E_{90})$ are the XA spectra for transitions $\Delta m = \pm 1$ with the quantization axis along $\phi=90^\circ$ and 0°, respectively. This gives different transition probabilities from the exchange-split core levels to the t_2 and e crystal-field-split empty d states. Therefore, the strong angular dependence is a property of the cubic wavefunctions for the d states with respect to the spin quantization axis. Hence, the angular dependence disappears when the crystal field splitting goes to zero. The angular dependent XMLD allows determining the spin quantization axis. Hence, the angular dependence disappears when the crystal field splitting goes to zero. The angular dependent XMLD allows determining the spin quantization axis. Hence, the angular dependence disappears when the crystal field splitting goes to zero. The angular dependence is a property of the cubic wavefunctions for the d states with respect to the spin quantization axis. Hence, the angular dependence disappears when the crystal field splitting goes to zero. The angular dependence is a property of the cubic wavefunctions for the d states with respect to the spin quantization axis. Hence, the angular dependence disappears when the crystal field splitting goes to zero.

VII. CONCLUSIONS

We have performed a comprehensive XMLD study in three different geometries for two separate crystal planes in Fe$_3$O$_4$. The results evidence the presence of a strong angular dependence in the XMLD across the Fe $L_{2,3}$ edges. The angular dependence can be understood from the cubic symmetry of the crystal structure, where the symmetry properties allow condensing the spectral information into three fundamental spectra.

Even in the case of the half-filled shell of the high spin Fe d^5 configuration in cubic symmetry, where the charge quadrupole moment and anisotropic spin-orbit interaction are zero, the XMLD shows a large angular dependence. Therefore, this angular dependence can not be ascribed to the MAE. Instead, the angular dependence is a property of the cubic wave functions for the d valence states with respect to the spin quantization axis. The anisotropic XMLD can be used to estimate the crystal field splitting and allows determining the spin quantization axis with respect to the crystalline axes. The usefulness of the latter has already been demonstrated in the case of photoelectron emission microscopy (PEEM) studies with linearly polarized light [13]. Interesting applications might emerge in cases where the spin axis rotates, such as in domain switching, hysteresis curve and magnetostriction measurements, as well as in systems with non-collinear or canted spins in e.g., magnetic thin films and surfaces.

Our study shows that the anisotropy of the dichroism should be taken into account in all XMLD studies. This should not only be done in measurements on single crystals but also for randomly oriented samples, since the XMLD spectrum is determined by the orientation of \mathbf{H} and \mathbf{E} with respect to the crystalline axes. It should also be clear that one has to be careful using XMLD as a magnetometer to measure $\langle \mathbf{M}^2 \rangle$. Such measurements are possible but require fixed geometry and crystal orientation. There are even certain orientations, such as in geometries 1 and 2 along [110] in the (001) plane, where the XMLD completely disappears, whereas it does not disappear along the same [110] direction in the (011) plane. We have given simple symmetry rules to predict orientations where the XMLD vanishes.

The observed anisotropy in the XMLD is in good agreement with atomic multiplet calculations in cubic crystal field. The spectral structure is very rich and quite sensitive to small changes in the chemical shift and hybridization of the different Fe sites. Therefore, combined with model calculations, XMLD has the potential to become an important tool to monitor small changes in the electronic and magnetic structure of magnetic materials. The case of Fe$_3$O$_4$, for which the charge and spin density on the different sites is still a matter of debate, is in this respect a rather complicated example, which requires further theoretical study.

Acknowledgments

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

FIG. 1: (Color online) Angular dependence of the Fe $L_{2,3}$ XMLD in Fe$_3$O$_4$/SrTiO$_3$(011) and Fe$_3$O$_4$/SrTiO$_3$(001). Experimental XMLD spectra obtained for three geometries 1, 2 and 3, varying the relative orientation of external field, x-ray polarization, and sample orientation, respectively, are shown in the left, center, and right panels, respectively. Top panels (a), (b), and (c) show XA spectra averaged over all azimuthal angles measured in one geometry. The insets in panels (a), (b), and (c) depict the experimental geometries (cf. Eqs. (1-3)) with black arrows indicating the orientation of the external magnetic fields, white arrows the polarization of the linearly polarized x rays, and dashed arrows the [100] easy magnetization axis. The center panels (d), (e), and (f) show XMLD spectra obtained from Fe$_3$O$_4$/SrTiO$_3$(011), whereas (g), (h), and (i) show results for Fe$_3$O$_4$/SrTiO$_3$(001) at $T = 298$ K. Experimental data is represented by solid symbols and results of the modelled angular dependence by red lines.
FIG. 2: The calculated XMLD spectra for the three different sites $\text{Fe}^{2+} \text{O}_h$, $\text{Fe}^{3+} \text{T}_d$ and $\text{Fe}^{3+} \text{O}_h$ together with the summed spectrum for the stoichiometric 1:1:1 ratio. (a) I_0 and (b) I_{45}.
FIG. 3: (Color online) (a) Fe $L_{2,3}$ XA spectrum from Fe_3O_4. (b) The corresponding XMCD spectrum obtained in normal incidence. (c) The experimental XMLD spectra I_0 and I_{45} (dots) compared to the calculated spectra (green line) at $\phi = 0^\circ$ from Fig. 1(d-i) and $\phi_S = 45^\circ$ in Fig. 1(f) and (i). In the calculation an $\text{Fe}^{2+} : \text{Fe}^{3+} : \text{Ta} : \text{Fe}^{3+} : \text{Oh}$ ratio of 0.8:1:1.2 is assumed, as obtained from the XMLD spectrum (see text).