Title
Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications

Permalink
https://escholarship.org/uc/item/68t7m97b

Journal
Polymer (United Kingdom), 100

ISSN
0032-3861

Authors
Olson, KR
Wong, DHC
Chintapalli, M
et al.

Publication Date
2016-09-25

DOI
10.1016/j.polymer.2016.08.020

Peer reviewed
Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications

Kevin R. Olson, Dominica H.C. Wong, Mahati Chintapalli, Ksenia Timachova, Rima Janusziewicz, William F.M. Daniel, Sue Mecham, Sergei Sheiko, Nitash P. Balsara, Joseph M. DeSimone

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
Materials Science and Engineering Department, University of California, Berkeley, CA 94720, United States
Department of Chemical Engineering, University of California, Berkeley, CA 94720, United States
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States

Abstract

We prepared nonflammable liquid polymer electrolytes for lithium-ion batteries by mixing ethoxylated perfluoropolyethers (PFPEs) with LiN(SO2CF3)2 salt. Interestingly, we identified the presence of chain coupling in the PFPE polymers and their functionalized derivatives, resulting in a mixture of PFPEs with varying molecular weights. The distribution of molecular weights, along with PFPE's multiple functionalities, allows systematic manipulation of structure to enhance electrochemical and physical properties. Furthermore, the electrolytes exhibited a wide thermal stability window (5% degradation temperature > 180 °C). Despite substantial increases in viscosity upon loading the PFPEs with lithium salt, the conductivity (σ = 5 × 10⁻² S cm⁻¹ at 28 °C) of the novel electrolytes was about an order of magnitude higher than that of our previously reported PFPE electrolytes. Ethoxylated derivatives of PFPE electrolytes exhibit elevated conductivity compared to non-ethoxylated derivatives, demonstrating our capability to enhance the conductive properties of the PFPE platform by attaching various functional groups to the polymer backbone.

1. Introduction

Rechargeable batteries are crucial for accommodating growing energy needs in our society [1,2]. State-of-the-art lithium-ion (Li-ion) batteries are not only incorporated into portable consumer electronic devices and zero-emission vehicles, but also are of interest for electricity storage in smart grid applications [3]. Large-scale use of these batteries has been hindered by the flammability of the electrolyte, which consists of small molecule alkyl carbonates mixed with a lithium salt [4]. Numerous efforts have been made to address this safety concern, including the implementation of cooling systems, external circuitry for disconnecting the battery at high potentials caused by overcharging, and “redox shuttle” molecules for dissipating charge and eliminating thermal runaway [5,6]. However, continual reports of catastrophic battery failures highlight the need for an intrinsically nonflammable Li-ion battery.

Perfluorinated small molecules have been investigated as nonflammable electrolyte alternatives to enhance the safety of Li-ion batteries for potential large-scale applications, but they often exhibit low ionic conductivities due to low lithium salt solubility in the solvent [7]. Therefore, similar to phosphate-based additives, fluorinated small molecules have commonly been explored as flame-retardant additives for conventional alkyl carbonate solvents rather than as neat electrolyte solvents [8]. Although safety...
characteristics are enhanced with these additives, the fluorinated solvent often must be the major component in order to observe nonflammability [9,10]. Furthermore, electrolyte-electrode interfacial performance is sacrificed in some cases [11].

Polymer electrolytes have also been investigated as nonflammable electrolytes for Li-ion batteries. Poly(ethylene oxide) (PEO) is by far the most studied polymer electrolyte due to its ability to solvate lithium salts via coordination of ether oxygens to the lithium cation [12–14]. PEO is nonflammable and exhibits high ionic conductivity at elevated temperatures, but it is crystalline at room temperature (melting temperature ≈ 60 °C) [15]. Ion transport occurs via a hopping mechanism in polymer electrolytes, which is closely coupled to segmental motions of the polymer chain. Thus, PEO exhibits room-temperature ionic conductivities that are far below the levels necessary for practical use [15]. In addition, PEO exhibits poor oxidative stability and low Li-ion mobility due to the cation’s coordination to backbone oxygens [16,17].

We recently reported that perfluoropolyether (PFPE), a perfluorinated analog of PEO, dissolves the commonly studied solid lithium bis(trifluoromethane)sulfonimide (LiTFSI) and enables the transport of lithium ions [18]. PFPEs are a unique class of fluoropolymers that remain liquids over a wide temperature range [glass transition temperature (Tg) < −80 °C], are nonflammable, and can be chemically tailored to enhance lithium salt solubility.

In addition to the safety enhancement provided by polymer electrolytes and fluorinated solvents, we have proposed that the highly fluorinated PFPE backbone solvates the fluorinated anion of lithium salts, a feature that is distinctive from other polymer and small molecule electrolytes that primarily interact with the lithium cation [8,19–21]. Perfluoroalkyl chains tend to segregate in order to minimize energetically unfavorable interactions between highly nonpolarizable fluorine atoms and other elements [22]. This “fluorous effect” is a powerful tool for molecular adsorption and aggregation in applications such as fluorous solid phase extraction [23], immobilization of biomolecules on microarrays [24], and peptide self-association [25,26], among others. We propose that this fluorous effect causes the PFPE backbone and the highly fluorinated anion of lithium salts to interact significantly.

High transference numbers are achievable in electrolytes that solvate the fluorinated anion of lithium salts, hindering its mobility (rather than that of the Li-ion). Indeed, we previously measured near-unity transference numbers in PFPE/LiTFSI electrolytes, providing evidence that the PFPE backbone solvates the fluorinated anion [18]. However, the conductivity (σ) of the electrolyte—approximately 2.5 × 10⁻⁶ S cm⁻¹ at 30 °C—must be improved for practical applications, and efforts to accomplish this require establishing the underpinnings of ion transport in the PFPE electrolyte system.

Quantifying the factors that govern ion transport in liquid mixtures is challenging due to the interplay of many factors such as ion solvation, electrostatic coupling, local dynamics in the vicinity of ions, and the glass transition temperature [27–29]. Herein, we report on the synthesis and characterization of a new series of ethoxylated PFPE electrolytes. We elucidate the effect of molecular structure, viscosity, and glass transition temperature on ionic conductivity within the PFPE electrolyte platform.

2. Experimental section

2.1. Materials and sample preparation

Perfluoropolyether Fluorolink E10 was obtained from Solvay-Solexis. Lithium bis(trifluoromethane)sulfonimide (LiTFSI), triethylamine, and methyl chloroformate were obtained from Sigma-Aldrich. 1,1,3,3-pentafluorobutane was obtained from MicroCare Corporation. PFPE and LiTFSI were dried at 90 °C under vacuum for at least 24 h prior to use. PFPE and LiTFSI were mixed together and stirred at room temperature for at least 24 h. Salt solubility limits were determined as the point at which the solution visibly changed from transparent to translucent, which has been shown to agree with quantitative measurements (inductively coupled plasma mass spectrometry) for these systems [18].

2.2. Synthesis of DMC-terminated PFPE

Fluorolink E10 (30 g, 0.025 mol) and triethylamine (7 mL, 0.05 mol) were dissolved in 300 mL 1,1,1,3,3-pentafluorobutane at 0 °C under stirring conditions and nitrogen atmosphere. Methyl chloroformate (3.9 mL, 0.05 mol) was added dropwise over 3 min, after which the mixture was heated to 20 °C and stirred for 18 h. The resulting mixture was gravity filtered, washed with water 3 ×, and washed with brine once. The organic layer was isolated, dried using magnesium sulfate, gravity filtered, and evaporated under reduced pressure. The product was filtered again using a 0.45 micron syringe filter, yielding the final PFPE/E10-DMC product as a faint yellow, transparent liquid. Yield: 85%. 1H NMR (600 MHz, 25 °C, (CD3)2CO): 3.54–4.31 ppm (m, 22H). IR (neat): 2885 (C=O), 1751 (C=O), 1183 (C−H), 1067 cm⁻¹ (C−O).

2.3. Polymer characterization

Gel permeation chromatography (GPC) measurements were performed on an Agilent Technologies 1260 Infinity LC system equipped with a DAWN HELEOS II multi-angled static light-scattering detector and OptiLab T-rEX refractometer from Wyatt Technologies. The sample (~30 mg/mL in tetrahydrofuran) was eluted through a 3 micron MIXED-E PLgel column (300 mm × 7.5 mm) at 1 mL/min for 60 min. A monodisperse 18 kDa polystyrene sample and monodisperse poly(ethylene glycol) samples of varying molecular weight were used as standards.

A 600 MHz Ultra-Shield Bruker NMR instrument was used for NMR analysis. Quantitative 13C NMRs were obtained by increasing the d1 relaxation delay time until the relative intensity of all peaks remained constant, indicating full relaxation of all carbons. The 13C (1H, 19F) NMR was obtained at a frequency of 150.9028 MHz with relaxation delay D1 = 50 s, 512 scans, 1H decoupling offset = −4 ppm, and 19F decoupling offset = −86 ppm.

2.4. Electrolyte physical properties characterization

Differential scanning calorimetry (DSC) thermograms were recorded using a TA Instruments DSC Q200 on samples that were prepared in air with a temperature range from −150 °C to 100 °C using a heat/cool/heat method at a heating rate of 10 °C/min and cooling rate of 5 °C/min. Glass transition temperatures (Tg) were determined using the average from the midpoint method on the cooling cycle and second heating cycle thermogram. Thermogavimetric analysis (TGA) was run using a Perkin Elmer Pyris 1 TGA apparatus under nitrogen from 25 °C to 550 °C with a heating rate of 10 °C/min.

An ARES-G2 Rheometer (TA Instruments), equipped with a cone plate (50 mm diameter; 0.0202 radian cone angle), was used to measure viscosity at 25 °C as a function of shear rate, which was ramped from 5 × 10⁻⁵ to 50 s⁻¹. The viscosity was modeled using Bingham analysis, which is commonly used to describe viscoplastic materials that exhibit a nonzero shear stress at zero shear rate [30].
2.5. Characterization of ion transport

Electrolyte conductivity was measured in a stainless steel liquid cell using AC impedance spectroscopy. Impedance measurements were performed using a Bio-Logic VMP3 potentiostat, with 20 mV as the input signal amplitude, and 1–10^6 Hz as the frequency range. The minimum in a Nyquist plot of the impedance was used to determine the bulk resistance of the electrolyte, and the geometric factor of the liquid cell, described elsewhere, was used to calculate the conductivity [31]. The temperature of the electrolyte was controlled using a home-built heating chamber. All conductivity measurements were performed in an argon glove box, as the liquid cell was not hermetically sealed.

3. Results and discussion

PFPE is a random copolymer of tetrafluoroethylene oxide and difluoromethylene oxide. Dihydroxyl-terminated Fluorolink D10 (herein, “PFPEE_{10}-Diol”), and its ethoxylated Fluorolink E10 analog (herein “PFPEE_{10}-Diol”) are shown in Fig. 1. Here, 2q is the total number of EO repeat units in a single PFPEE_{10} chain, m is the number of tetrafluoroethylene oxide repeat units, and n is the number of difluoromethylene oxide repeat units.

Mass spectrometry indicates that on average, the number of repeat units in a single PFPEE_{10} chain are q = 2, m = 5, and n = 4 (see Fig. S1 in Supporting Information), whereas m and n were previously reported as 7 and 3, respectively, for PFPED_{10} [18]. We attribute the difference between the m and n values of PFPEE_{10} and PFPED_{10} to batch-to-batch variation in the industrial synthesis rather than a systematic change between the two analogs.

To our knowledge, there is no precedent for studying a material with perfluoroether, ethylene oxide (EO), and methyl carbonate moieties covalently bound in a single polymer chain. Incorporating all of these functionalities into a pure electrolyte is appealing because EO and methyl carbonate contribute to lithium salt solvation and enhance conductivity [32], while perfluoroether provides thermal stability and high transference of Li-ions [18]. As shown in Scheme 1, PFPEE_{10}-Diol (Structure 1) was functionalized with methyl carbonate endgroups to form DMC-terminated PFPE (herein, “PFPEE_{10}-DMC”, Structure 2) in order to enhance electrode-electrolyte compatibility and lithium salt solubility in the polymer. This reaction is analogous to our previously reported functionalization of PFPED_{10} with DMC endgroups [18].

Chain coupling was unexpectedly observed during the synthesis of PFPEE_{10}-DMC from PFPEE_{10}-Diol that was not seen with the analogous PFPED_{10} system. Fig. 2 shows the molecular weight distribution of the PFPE samples, measured using gel permeation chromatography (GPC) in tetrahydrofuran (THF). Each subsequent peak’s number-average molecular weight (M_n) was measured to be slightly less than a multiple of the M_n of the first peak, which is consistent with the expected loss of ends during chain coupling (peaks at elution time t = 13.3, 13.6, 14.2, and 15.2 min corresponding to M_n = 5.10, 3.80, 2.60, and 1.46 kDa, respectively, for PFPEE_{10}-DMC). Coupling in PFPEE_{10}-Diol itself was observed to a lesser extent, while no coupling was observed in PFPED_{10}-Diol and PFPED_{10}-DMC. Therefore, a small degree of coupling occurs during the industrial synthesis of PFPEE_{10}-Diol. To our knowledge, this coupling phenomenon in the PFPE Fluorolink E10 has not previously been reported in the literature.

During the addition of DMC endgroups to PFPEE_{10}-Diol, we hypothesize that chain coupling increases significantly through the formation of carbonate linkages, as in structures 2–5 of Fig. 3. To reject the possibility that ether linkages are formed under our reaction conditions, triethylamine was added to the PFPEE_{10}-Diol in the absence of methyl chloroformate. No chain coupling was observed, providing support for the proposed carbonate linkages.

To further support this hypothesis, we used the relative abundance—determined by GPC—of products 2–5 and the corresponding number of carbons in each coupled product (assuming carbonate linkages) to calculate the theoretical number of carbons in an average polymer chain (see Table 1 and Fig. S2 in Supporting Information). We then used quantitative ^{13}C NMR spectroscopy and integration methods to determine the relative ratios of terminal methoxy (OCH_3) to carbonyl (C==O) carbons in an average PFPEE_{10}-DMC chain. This ratio, as shown in Fig. 4, was determined by NMR.

![Fig. 1. Structure of PFPEE_{10}-Diol compared to its ethoxylated PFPEE_{10}-Diol analog. The slash between the perfluoroether repeat units denotes that it is a random copolymer.](image-url)

![Scheme 1. Synthesis of DMC-terminated PFPEE_{10}.](image-url)
than a single MW or a blend of two MWs. Very low MWs of poly(ethylene oxide) (PEO) resulted in higher conductivity because the presence of lithium salt did not systematically affect the degradation temperature of the PFPE materials.

Increased intermolecular interactions through hydrogen bonding cause PFPEE10-Diol to exhibit a higher \(T_g \) than PFPEE10-DMC. Interestingly, there is little difference in the \(T_g \) of PFPEE10-DMC and PFPEE10-Diol. Chain coupling in the PFPEE10-DMC product, resulting in higher average molecular weight, likely has a competing effect with the reduction in hydrogen bonding on the \(T_g \) [37]. The polymers exhibit a similar trend in viscosity (Fig. 5A): in the absence of salt (\(r = 0 \)), hydrogen bonding in PFPEE10-Diol leads to higher viscosity than PFPEE10-DMC, while chain coupling negates this effect in the PFPEE10 polymers.

LiTFSI salt was dissolved in the PFPE polymers to form an electrolyte. The maximum lithium salt-loading in the PFPEE10 polymers, as shown in Table 2, was significantly higher than in the PFPEE10-Diol polymers (note: \(r \) is herein defined as \([\text{Li}^+]/([m + n + q])\). This enhanced solubility indicates strong contributions from the EO portions of the backbone to lithium salt solvation, as expected [32,38]. Accordingly, the addition of methyl carbonate endgroups only marginally enhanced lithium salt solubility in the polymer.

Electrolytes consisting of a mixture of distinct molecular weight (MW) polymer chains are rare in the literature, despite Pre-echatiwong’s and Schultz’s previous findings that blends of three MWs of poly(ethylene oxide) (PEO) resulted in higher conductivity than a single MW or a blend of two MWs [33]. Very low MW polymer chains remain unentangled and have low viscosities, which enhances conductivity. However, they are too short to behave as random coils and generate significant free volume, which is necessary for ion transport from site to site in amorphous polymer electrolytes [34]. Relatively higher MW polymers (\(\geq 5000 \) g/mol) not only create free volume but also have been proposed by many to allow conducting tunnels to form in PEO [35,36]. Although many polymer electrolytes in the literature are polydisperse, few meet the criterion of containing MWs both above and below the threshold for entanglements, which can potentially provide diverse benefits in an electrolyte. For this reason, we were interested in further investigating our electrolyte composed of a variety of distinct MW PFPE chains.

The physical properties of the PFPE oligomers are compared in Table 2. Thermogravimetric analysis was used to analyze the decomposition temperature of the polymers, represented by the temperature at which 5 wt% of the sample decomposed \((T_{d(5\%)} \)). \(T_g \) of the polymers were determined using differential scanning calorimetry (DSC). The PFPEE10 polymers are thermally stable \((T_{d(5\%)} > 180^\circ C) \) amorphous liquids over a broad temperature range \((T_g < -90^\circ C) \). In addition, we found that the presence of lithium salt did not systematically affect the degradation temperature of the PFPE materials.

The lithium salt solubility in PFPE was lower than in PEO, which dissolves approximately 81 wt% LiTFSI [32], but comparable to the salt concentrations in commercial alkyl carbonate electrolytes, which are typically near 1.0 M [39]. It should be noted that the concentration of dissolved lithium salt in PFPE electrolytes is not directly equivalent to the concentration of charge carriers. Ion pairing occurs in weak, concentrated electrolytes, including polymer electrolytes, and is likely prevalent in this system as well [40]. Ion pair formation results in the presence of uncharged species, reducing the effective concentration of charge carriers contributing to ionic conductivity.

Fig. 5A, B shows the viscosity (\(\eta \)) and \(T_g \) of the electrolytes at various salt concentrations. Addition of LiTFSI significantly increased the viscosity and \(T_g \) of the PFPEE10 electrolytes. This is unsurprising, as complexation with lithium ions forms transient ionic crosslinks, which reduces chain mobility and thus raises viscosity and \(T_g \) [41]. It follows that the PFPEE10 system experienced only moderate increases in viscosity and \(T_g \) because the electron-withdrawing fluorine groups reduce the strength of physical crosslinks between Li-ions and oxygen atoms in the polymer backbone.

In contrast to viscosity and \(T_g \), conductivity at 28 °C in the PFPEE10 electrolytes was a non-monotonic function of lithium salt concentration, reaching a maximum at \(r = 0.03 \), as shown in Fig. 5C. Previous studies have reported the LiTFSI concentration at which PEO electrolytes reach a maximum in conductivity at \(r = 0.085 \) [32]. In the dilute regime of polymer electrolytes, it is well known that...
conductivity increases upon addition of lithium salt due to elevations in the number of available charge carriers. At higher salt concentrations, addition of lithium salt causes conductivity to decrease because any increase in the number of charge carriers is more than offset by elevations in \(T_g \) and viscosity induced by transient ionic crosslinks, which reduce ion mobility [42]. The behavior of PFPEE\(_{10}\) electrolytes spanned both of these regimes. In contrast, conductivity in the PFPED\(_{10}\) electrolytes increased monotonically with salt concentration. We propose that LiTFSI reaches its solubility limit in the PFPED\(_{10}\) polymers before entering the second regime in which elevations in viscosity and \(T_g \) overtake the greater number of available charge carriers.

Conductivity was about an order of magnitude higher in the PFPEE\(_{10}\) electrolyte than in its PFPED\(_{10}\) analog at 9.1 wt% LiTFSI \((\sigma \approx 5 \times 10^{-5} \text{ S cm}^{-1} \text{ and } \sigma \approx 5 \times 10^{-6} \text{ S cm}^{-1}, \text{ respectively}) \), despite the elevated viscosity in the former. This observation was unexpected. Considering that transport of ionic species in polymer electrolytes is generally accepted to be closely coupled to segmental motions of polymer chains [43], conductivity typically decreases with increasing viscosity. To further analyze this observation, Fig. 6 shows temperature-dependent conductivity measurements of the PFPE systems at 9.1 wt% LiTFSI.

Fig. 4. Quantitative \(^{13}\)C NMR of PFPEE\(_{10}\)-DMC with corresponding integrations. Inset: carbonyl \((\delta = 155 \text{ ppm})\) and terminal methoxy \((\delta = 54 \text{ ppm})\) regions.

Table 2

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>(T_{\text{cis}}) (°C)</th>
<th>(T_g) (°C)</th>
<th>Maximum [LiTFSI] (wt%)</th>
<th>(\sigma) (mol L(^{-1}))</th>
<th>(\eta) (Pa s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFPE(_{10})-Diol</td>
<td>210</td>
<td>−89</td>
<td>11%</td>
<td>0.76</td>
<td>0.04</td>
</tr>
<tr>
<td>PFPE(_{10})-DMC</td>
<td>212</td>
<td>−95</td>
<td>19%</td>
<td>1.45</td>
<td>0.09</td>
</tr>
<tr>
<td>PFPEE(_{10})-Diol</td>
<td>181</td>
<td>−93</td>
<td>30%</td>
<td>2.57</td>
<td>0.14</td>
</tr>
<tr>
<td>PFPEE(_{10})-DMC</td>
<td>194</td>
<td>−92</td>
<td>31%</td>
<td>2.70</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Fig. 5. Effect of LiTFSI salt-loading on A) viscosity at 28 °C, B) glass transition temperature, and C) conductivity at 28 °C.
PFPE (without ethylene oxide moieties) ranges between 2.0 and 2.9, while PEO exhibits a dielectric constant approximately double that ($\varepsilon \approx 5$) [49,50]. The presence of hydrogenated ethers likely modestly increases the dielectric constant of PFPE$_{10}$ compared to PFPE$_{10}$ and contributes to ion dissociation, although we believe the factors discussed previously—ion solvation and segmental mobility—are primarily responsible for the observed results.

Comparisons between the behavior of PFPE$_{10}$ and PFPE$_{10}$/PEG blends demonstrate that unique properties are introduced into the electrolytes by covalently attaching EO to PFPE rather than physically blending the two together. Covalently bonding EO to PFPE eliminates the complex phase interactions between PFPE and PEG in the presence of LiTFSI [48]. It should be noted that the EO content (33 mol% for PFPE/PEG blends and 30 mol% for PFPE$_{10}$) and lithium salt concentration ($r = 0.026$ for PFPE/PEG and $r = 0.032$ for PFPE$_{10}$) of both of the investigated electrolytes was comparable.

As we have previously shown [18], the endgroup of the PFPE$_{10}$ electrolytes did not significantly affect conductivity at a given salt concentration. In contrast, the conductivity of the PFPE$_{10}$/PEG was appreciably lower than that of PFPE$_{10}$-Diol. We attribute this to chain coupling in the former, which causes increases in molecular weight along with viscosity and T_g. However, coupling of PFPE chains links EO blocks together, which may introduce a competing effect with viscosity by allowing these salt-loaded blocks to segregate and create conductive channels as has previously been reported for PEO block copolymer-based electrolytes [36].

In short, high charge carrier concentrations in PFPE$_{10}$ electrolytes overcome the effects of higher glass transition temperatures (compared to PFPE$_{10}$ electrolytes) on ionic conductivity. Fulfillment of the electrolyte system is non-trivial, as many-body ion interactions may be present [51]. Further investigation of ion pairing, including quantitative determination of charge carrier concentrations in PFPE electrolytes, is currently underway. We thoroughly discuss the complex connection between continuum transport properties (e.g., conductivity and transference number) and microscopic transport properties (e.g., ion dissociation and self-diffusivity) in PFPE electrolytes elsewhere [52].

4. Conclusion

We have prepared novel liquid perfluoropolyether polymer electrolytes with EO and methyl carbonate functionalities. We discovered unexpected chain coupling in the commercial PFPE$_{10}$ material that was augmented by our subsequent functionalization of the chains with methyl carbonate endgroups, resulting in carbonate linkages. PFPE electrolytes are thermally stable and exist as liquids at a broad range of temperatures, affording a wide temperature window of operation. Despite significant increases in T_g and viscosity upon salt-loading, the PFPE$_{10}$ electrolytes exhibit ionic conductivities that are an order of magnitude higher than that of their lower viscosity PFPE$_{10}$-based analogs at 9.1 wt% LiTFSI.

Commercial alkyl carbonate electrolytes exhibit $\sigma \approx 10^{-2}$ S/cm at room temperature [53]. Although the lower conductivity of this class of PFPE electrolytes (5×10^{-3} S/cm at room temperature) compared to commercial electrolytes is a disadvantage, the improved safety properties and highly unique anion solvation make them worthy of further investigation. We have established a set of structure-property relationships that we will continue to systematically manipulate to further enhance ion transport in this unique electrolyte platform.

Table 3

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>A (S cm$^{-1}$ K$^{1/2}$)</th>
<th>B (kJ mol$^{-1}$)</th>
<th>T_0 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFPE$_{10}$-Diol</td>
<td>$5.3 \times 10^{-3} \pm 1.7 \times 10^{-3}$</td>
<td>6.0 ± 0.5</td>
<td>134</td>
</tr>
<tr>
<td>PFPE$_{10}$-DMC</td>
<td>$3.7 \times 10^{-3} \pm 1.3 \times 10^{-3}$</td>
<td>5.2 ± 0.1</td>
<td>132</td>
</tr>
<tr>
<td>PFPE$_{10}$-Diol</td>
<td>1.5 ± 0.9</td>
<td>10.0 ± 0.6</td>
<td>135</td>
</tr>
<tr>
<td>PFPE$_{10}$-DMC</td>
<td>$1.2 \times 10^{-3} \pm 0.6 \times 10^{-3}$</td>
<td>7.4 ± 0.3</td>
<td>140</td>
</tr>
</tbody>
</table>

The authors declare no competing financial interest.

