Title
AN INTERFERENCE WIGGLER FOR PRECISE DIAGNOSTICS OF ELECTRON BEAM ENERGY

Permalink
https://escholarship.org/uc/item/6900h70z

Author
Kim, K.J.

Publication Date
1987-03-01
AN INTERFERENCE WIGGLER FOR PRECISE DIAGNOSTICS OF ELECTRON BEAM ENERGY

K.-J. Kim

March 1987
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Summary

Relativistic electrons passing through two identical magnetic sections generate synchrotron radiation whose spectrum is strongly modulated as the photon energy varies. The modulation is caused by the interference of radiation from each section, and has been observed [1] in the spectrum of spontaneous radiation from transverse optical klystron which utilizes two undulators. In this paper, we analyze and apply another device based on two simple wigglers. The device, which will be called the interference wiggler, can be used for precise diagnostics of electron beam energy; by analyzing the modulated spectrum with a monochromator, the electron energy can be determined up to an accuracy of 10^{-3} or 10^{-4}. In this paper we develop general design criteria for interference wigglers. We also give several example designs to measure the electron energy to an accuracy 10^{-4} for the planned electron beam facility at CEBAF [2], and to an accuracy 10^{-3} for the 1–2 GeV Light Source at Berkeley [3].

Spectrum of Interference Wigglers

The electron trajectory in an interference wiggler is shown in Fig. 1. The trajectory will be assumed to lie on the horizontal plane. In wiggler approximation [4], the radiation in the direction (ϕ, ψ), where ϕ and ψ are respectively the horizontal and vertical angles, comes mainly from small segments of electron trajectory about the points where the slope is parallel to ϕ. For the trajectory in Fig. 1, there are in general four such points labelled 1, 2, 3 and 4. Among these, we will consider only 1 and 2, assuming that either that 3 and 4 are sufficiently separated transversely from 1 and 2 so that they can be considered separately, or that the radiation intensity from 3 and 4 is much weaker due to weaker magnetic field. Computing the electric field from 1 and 2 and squaring it one obtains the angular density of flux. The result, when the effect of the electron beam angular divergence is taken into account, is as follows:

$$\frac{d^2 \varphi}{d\phi d\psi} = 2 \frac{d^2 \varphi}{d\phi d\psi} (1 + f_3 f_4 \cos \alpha),$$

where

$$f_3 = \exp[-\epsilon_3 KL(1 + g)/\gamma_3^2],$$

$$f_4 = (1 + \delta_4^2)^{-1/4} \exp[-k_0 \lambda_0^2/2(1 + \delta_4^2)],$$

$$\delta_3 = \sqrt{\gamma_3 \sigma_3},$$

$$\delta_4 = \sqrt{\gamma_4 \sigma_3},$$

$$\alpha = \frac{KL}{2} \left(\frac{1 + g}{\gamma_3^2} - \frac{\delta_3^2}{1 + \delta_3^2} + \frac{\gamma_3^2}{1 + \delta_4^2} \right) + \frac{1}{2} \left(\tan^{-1} k_3^2 + \tan^{-1} k_4^2 \right),$$

and $k = 2\pi/\lambda$, λ = radiation wavelength, σ = electrons' relative energy spread (rms), L = the distance between two wigglers (see Fig. 1). γ_3, γ_4 = the average electron energy in unit of rest energy, g is defined so that $L(1 + g/2\gamma_3^2) = \text{arc length of electron trajectory between the two crests in Fig. 1}$, σ_3 and σ_4 are respectively the horizontal and vertical angular spread of electron beam (rms).

In Eq. (1), $d^2 \varphi/d\phi d\psi$ is the angular density of flux from point 1 or 2 alone, which is a smooth function of photon energy represented by the dotted curve in Fig. 2. The term proportional to $\cos \phi$ is due to interference and causes the modulation of the spectrum represented schematically as the solid curve in Fig. 2. An equation similar to Eq. (1) was first derived by Ellaume [1] in the analysis of the spontaneous radiation from transverse optical klystron which is a second undulator system.

For a complete characterization of source, it is necessary to calculate the flux density in phase space known as the brightness by using the method discussed in Ref. 5. The results are in accord with the expectation that the sources at 1 and 3, for example, appear to be separated transversely. In forward direction, the source separation is given by the maximum excursion amplitude a of electron trajectory (see Fig. 1).

Method of Determining γ_0 and σ

The modulated spectrum has peaks when $\alpha = 2\pi n$, n being an integer. In this paper, we consider only the forward direction $\phi = \psi = 0$. Using Eq. (5), and neglecting for the moment the last two terms, the location of nth peak k_n is found to be

$$k_n = \frac{\gamma_0^2(4\pi/L(1 + g))}{n}.$$

From this, it follows for any pairs of integers (n, m) that

$$n = m k_0/(k_{n+m} - k_n).$$

The location of peaks k_n and k_{n+m} can be determined by analyzing the spectrum with a monochromator. The integer m can be determined by counting the number of peaks between k_n and k_{n+m}. We can thus determine the integer n associated with k_n. The electron energy γ_0 is then determined from Eq. (6).

To discuss the measurement accuracy, let Δ indicate the error in the measurement. We obtain from Eqs. (7) and (6) that

$$\frac{\Delta n}{n} = \frac{\Delta k_n}{k_n} + \frac{\Delta(k_{n+m} - k_n)}{k_{n+m} - k_n},$$

$$\frac{\Delta \gamma_0}{\gamma_0} = \frac{1}{2} \left(\frac{\Delta k_0}{k_0} + \frac{\Delta L(1 + g)}{L(1 + g)} \right).$$

For an unambiguous determination of n it follows from Eq. (8) that the monochromator bandwidth $\Delta k_0/k_0$ needs to be smaller than $1/n$ and that the spectrum needs to be observed over a wide range of k so that $k_{n+m} - k_n$ is of order k_n. From Eq. (9), it follows that both the monochromator bandwidth and the errors in the magnet parameters should be about the
We also require the following so that the design at critical energy requires monochromators based on grazing incident gratings, which is cumbersome. We shall instead set the wavelength range to be between \(\lambda = 500\,\text{Å} \) and \(1000\,\text{Å} \), for which normal incidence monochromators with resolution well beyond the required 10^{-3} are readily available. Using Eq. (14), we obtain \(B_1(T)\approx 3.74/\sqrt{L(m)} \). A possible magnet parameters are \(d = 20\,\text{cm}, L = 70\,\text{cm} \) and \(B_1 = 0.223\,\text{T} \). With these, \(\eta \approx 0.9 \) is expected (\(\eta \) is optical efficiency). Accurate diagnostics of electron beam energy should be useful for the machine physics study.

Acknowledgements

Discussions with K. Halbach, H. Hogrefe, E. Hoyer and R. Perera are gratefully acknowledged.

This work was done with support from the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

References

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720