Lawrence Berkeley National Laboratory
Recent Work

Title
Pore-scale capillary pressure analysis using multi-scale X-ray micromotography

Permalink
https://escholarship.org/uc/item/6944n94f

Journal
Advances in Water Resources, 104

ISSN
0309-1708

Authors
Garing, C
de Chalendar, JA
Voltolini, M
et al.

Publication Date
2017-06-01

DOI
10.1016/j.advwatres.2017.04.006

Peer reviewed
Pore-scale capillary pressure analysis using multi-scale X-ray micromotography

Charlotte Garing* a, Jacques A. de Chalendar a, Marco Voltolini b, Jonathan B. Ajo-Franklin b, Sally M. Benson a

a Stanford University, Energy Resources Engineering, Green Earth Sciences Bldg. Bm 50, 367 Panama Street, Stanford, CA 94305, United States
b Lawrence Berkeley National Laboratory, Earth and Environmental Sciences, 1 Cyclotron Road, MS74R316C, Berkeley, CA 94720, United States

Abstract

A multi-scale synchrotron-based X-ray micromotographic dataset of residually trapped air after gravity-driven brine imbibition was acquired for three samples with differing pore topologies and morphologies; image volumes were reconstructed with voxel sizes from 4.44 μm down to 0.64 μm. Capillary pressure distributions among the population of trapped ganglia were investigated by calculating interfacial curvature in order to assess the potential for remobilization of residually-trapped non-wetting ganglia due to differences in capillary pressure presented by neighbor ganglia. For each sample, sintered glass beads, Boise sandstone and Fontainebleau sandstone, sub-volumes with different voxel sizes were analyzed to quantify air/brine interfaces and interfacial curvatures and investigate the effect of image resolution on both fluid phase identification and curvature estimates. Results show that the method developed in interfacial curvature estimation leads to reliable capillary pressure estimates for gas ganglia. Higher resolution images increase confidence in curvature calculations, especially for the sandstone samples that display smaller gas-brine interfaces which are then represented by a higher number of voxels when imaged with a micron or sub-micron voxels size. The analysis of sub-volumes from the Boise and Fontainebleau dataset highlights the presence of a residually-trapped gas phase consisting of ganglia located in one or few pores and presenting significantly different capillary pressures, especially in the case of Fontainebleau sandstone. As a result, Ostwald ripening could occur, leading to gas transfer from ganglia with higher capillary pressure to surrounding ganglia with lower capillary pressures. More generally, at the pore-scale, most gas ganglia do present similar capillary pressures and Ostwald ripening would then not represent a major mechanism for residually-trapped gas transfer and remobilization.

1. Introduction

A critical aspect of geological carbon sequestration is the estimation of CO2 plume mobility and extent after injection has ceased. This estimation is particularly important in the context of open storage systems or systems in close proximity to possible migration pathways e.g. permeable faults. After an initial drainage phase during injection, models typically posit that sub-stantial scCO2 volumes are trapped as the plume moves under buoyant forces during brine imbibition (Kumar et al., 2005; Juances et al., 2006; Hesse et al., 2008; Celia and Nordhotten, 2009). Conventional multi-phase flow models assume that residually trapped portions of the plume do not remobilize and remain stationary until they dissolve into the brine phase (Goodman et al., 2011), as under reservoir flow conditions, viscous forces are usually not sufficient for mobilization. However, multiple physicochemical mechanisms exist which could potentially invalidate this assumption including scCO2-induced transitions in wetting behavior (Kim et al., 2012; Wan et al., 2014; Wang et al., 2016), dissolution-induced ganglia size reduction (DePaolo and Cole, 2013), and inter-ganglia gas transfer via Ostwald ripening (Epstein and Plesset, 1950). In addition, recent findings from fast synchrotron-based X-ray computed microtomography (Armstrong et al., 2014; Rücker et al., 2015, Armstrong et al., 2016) and micromodel studies (Armstrong and Berg, 2013) show that non-local cooperative displacement processes due toing water flooding have a large impact on pore scale fluid distribu- tions and ganglion dynamics and could potentially affect the stability of a trapped non-wetting phase.

In this study, we seek to develop experimental methods for improving the understanding of one of these mechanisms, the potential for Ostwald ripening of the residually trapped CO2 phase in porous media. Ostwald Ripening of gas bubbles in aqueous solutions has been extensively studied in homogeneous bulk media

http://dx.doi.org/10.1016/j.advwatres.2017.04.006
where dispersed particles of a second phase exist in a saturated solution, and where the bigger bubbles tend to grow at the expense of the smaller ones (Epstein and Plessat, 1950; Greenwood, 1956; Lifshitz and Slyozov, 1961; Voorhees, 1985; Schmelzer and Schweitzer, 1987; Möller et al., 1998).

In porous media, the presence of pores changes the process significantly, mainly because capillary pressure, the driver for ripening, is no longer a function of the particle radius but also of pore topology and size. Few attempts have been made to extend the study of Ostwald ripening to porous media. Most often, the process is either neglected (Andrew et al., 2014a), studied in a context where other mechanisms like a constant pressure decline in the liquid play a disproportionate role (Li and Yortsos, 1991; 1995, Dominguez et al., 2000), or studied in a context where cluster growth stops or is strongly inhibited once there is significant interaction with the porous matrix walls, for viscous polymers and crystals growing in a solid matrix for instance (Schmelzer et al., 1995; Möller et al., 1998).Goldobin and Brilliantov (2011) investigated the diffusion of gas in porous media using mean thermodynamic properties, but did not account for pore-scale effects.

Ostwald ripening will be driven by differences in capillary pressure between gas ganglia, and subsequent diffusion of dissolved gas through the aqueous phase. Capillary pressure, which denotes the difference in pressure between a non-wetting and a wetting fluid (respectively CO2 and brine in the case of interest), is expressed by the Young-Laplace equation \(P_r = P_w - P_c = 2 \sigma / r \), where \(\sigma \) is the interfacial tension and \(r \) is the mean curvature of the interface between the two fluids. In a bulk liquid medium, a bubble of gas is typically spherical and its curvature is therefore directly linked to the bubble size. Porous media, however, exhibit a variety of complex geometries for which no simple analytical solution exists to describe the interface between two immiscible fluids. As capillary pressures inside individual non-wetting phase ganglia strongly depend on pore geometry and topology (Bear, 1972), pore-scale investigations are required in order to understand and measure the distribution of capillary pressure in disconnected trapped ganglia of non-wetting phase, which is a critical question to assess Ostwald ripening mechanism.

Due to significant improvements over the last decades and its non-destructive characteristic, X-ray microtomography has become the foremost imaging technique for the visualization and quantification of pore-scale structures and processes as well as providing input to pore-scale modeling (Blunt et al., 2013; Cuadra and Boone, 2013; Wildenschild and Sheppard, 2013; Schlüter et al., 2014). Previous authors investigated residual trapping at the pore-scale using X-ray microtomography (Prodanovic et al., 2007; Kumar et al., 2010; Iglauer et al., 2011; Tanino and Blunt, 2012; Georgiadis et al., 2013; Chaudhary et al., 2013; Andrew et al., 2014a; Rücker et al., 2015; Herring et al., 2016; Schlüter et al., 2016). In particular, all of these studies show that the residually-trapped non-wetting phase takes the form of ganglia with various sizes and complicated irregular shapes, highlighting the complexity of the non-wetting and wetting phase interface geometry, as well as of the angle both fluids form with the solid surface.

Armstrong et al. (2012a) proposed a first method to calculate interfacial curvature using synchrotron-based X-ray microtomography images of water and oil in a glass beads packed column with a voxel size of 13 \(\mu \)m. They compared macro-scale capillary pressures measured via pressure transducer to micro-scale capillary pressures measured via interfacial curvature calculations on the images using Avizo Software. They concluded, in particular, that higher im-age resolution was required as significant curvature errors were resulting from inadequate segmentation of small features. Following this work, Armstrong et al. (2012b) evaluated the limitations and advantages of measuring interfacial curvatures from X-ray microtomography data by comparing two approaches applied to idea spheres: the first approach measures curvature on triangular faces generated at interfacial regions, as described in Armstrong et al. (2012a), the second approach measures curvature directly from an image intensity gradient. The results showed that there is an optimal amount of smoothing with either approach and, in general, the surface-based approach gave the best results. Andrew et al. (2014b) then applied the method described by Armstrong et al. (2012a) to calculate interfacial curvature of water and supercritical CO2 (scCO2) (50 °C and 10 MPa) in a Ketton limestone sample using lab-based microtomography images with a pixel size of 3.5 \(\mu \)m. The authors reported that curvature distributions for a single ganglion present a single well-defined peak, representing a single-ganglion capillary pressure across the entire CO2-brine interface. They also related capillary pressure measurements to local pore space topography and showed that capillary pressure was inversely proportional to the radius of the largest restriction surrounding the ganglion. In a recent publication aimed at identifying individual dynamic drainage events at the pore-scale using fast synchrotron-based microtomography images of scCO2/brine in the same Ketton limestone with a voxel size of 3.64 \(\mu \)m, Andrew et al. (2015) extended the pore-scale curvature measurement technique in order to be able to measure the smaller curvatures resulting from higher drainage capillary pressures. In particular, they presented a method to select terminal menisci from the entire CO2 ganglia interfaces using curvature anisotropy and compute the interfacial curvature using only these selected regions.

The Ostwald ripening process is driven by differences in capillary pressure, and consequently interfacial curvature, between ganglia. The study of the potential for Ostwald Ripening therefore requires accurate methods for measuring the interfacial curvature of an individual ganglia and its associated uncertainty in a variety of relevant rock types. The aim of the present study is to develop reliable methods for estimating the pore-scale capillary pressure of residually-trapped gas ganglia for different rock types, especially sandstones, and using higher resolution images, comparing to the previous studies by Armstrong et al. (2012a, 2012b) and Andrew et al. (2014b, 2015). Measurements were made on air ganglia trapped during gravitationally induced imbibition. Particular attention is given to the effect of image resolution on the precision of interfacial curvature calculations. A multi-scale synchrotron-based X-ray microtomography dataset of residually-trapped gas was therefore acquired in sintered glass beads and two sandstone samples (Boise and Fontainebleau) with voxel sizes varying from 0.64 to 4.44 \(\mu \)m. A method to estimate the interfacial curvature was developed based on this dataset and is presented, together with a sensitivity analysis of the method to parameters such as the degree of smoothing or the number of neighbor voxels used for the calculation. For each acquired image the non-wetting (air) and wetting (brine) phases were identified, as well as the interfaces they share both with each other and with the solid surface, and the connectivity and size of the trapped gas were quantified. The curvature method was then applied to different sub-volumes chosen for analysis. The distribution of curvature values, the mean value, and associated uncertainty is presented for each disconnected air ganglion. Sub-volumes of the rock were then analyzed to determine the distribution of capillary pressures among the trapped ganglia; in particular, whether there is a statistically significant difference in the capillary pressures of the ganglia trapped in the sub-volume. A detailed analysis of the impact of image resolution and interface identification on curvature estimates is also reported.

The key point to assess the potential for Ostwald ripening in the investigated pore structures is to determine if neighbor gas ganglia have significantly different capillary pressures or not. Therefore a part of this work also consists in investigating the accuracy of the
method proposed in the following to calculate capillary pressure using microtomographic images.

2. Materials and methods

2.1. Rock samples

The experiments were conducted on cylindrical cores of about 6 mm diameter from three different types of samples: sintered glass-beads, Boise sandstone and Fontainebleau sandstone. The sandstones samples were cored from larger blocks while the glass bead sample was sintered in a graphite mold. The samples were selected for their significant differences in porosity and pore network morphology, as can be seen in Fig. 1. All of the samples are assumed to be strongly water-wet. The glass beads sample is composed of soda lime beads of diameters ranging from 250 to 400 μm and presents the highest porosity and pore size. Although the focus of our study is on estimating capillary pressure distribution in sandstones, the glass beads sample was chosen to develop the curvature calculation method as large interfaces between the two fluids are expected. The Boise and Fontainebleau samples are quarry sandstones from Idaho (USA) and the Paris Basin (France) respectively. Fontainebleau sandstone is composed of well-sorted quartz grains only (Bourbie and Zinszner, 1985) whereas Boise sandstone contains a significant fraction of feldspar, mica, and clay materials (Zimmerman, 1984). Helium pycnometry porosity measurements, \(\phi_{\text{Hg}} \), were conducted on samples extracted from the same blocks in which the samples used in the experiments were cored. The respective values of porosity measured for the glass-beads, Boise and Fontainebleau samples are 0.40, 0.28 and 0.10. Mercury injection capillary pressure analysis (MICP) was also performed and the pore-throat diameter distributions are shown in Fig. 1. The corresponding mean diameters \(d_{\text{th}} \) are 101 μm, 31 μm and 14 μm for the Glass beads, Boise and Fontainebleau samples, respectively.

Gravity-driven imbibition of water into an air-filled rock sample was used to create a residually trapped air phase. The samples were wrapped in a heat-shrink PTFE tube and mounted vertically on the rotating stage in the beamline hutch, as displayed in Fig. 2. The inlet and outlet, both wrapped together with the sample to assure fluid flow through the core, were connected to flexible tubing allowing rotation during scanning. Two valves were placed at the inlet and the outlet side in order to isolate the sample. The inlet tubing was also connected to a small reservoir located at an upper height so that gravity-driven imbibition could be performed: a solution of deionized water and 0.7 mol/L potassium iodide, serving as a contrast agent, was poured in the reservoir and could then flow at room pressure and temperature through the dry sample by gravity leaving behind a fraction of trapped air. Both valves were closed after brine came out of the outlet valve and the system was left immobile 30 min to reach equilibrium before scanning.

2.3. Data acquisition

The dataset was acquired at the beamline (BL) 8.3.2. of the Advanced Light Source (Lawrence Berkeley National Laboratory). Cross-sections through each imaged volume are displayed in Fig. 3. In each case, a baseline scan of the dry sample was first acquired, then multiple scans at different resolutions were taken after the imbibition process. The entire dataset was acquired using two different optics configuration, leading to slightly different resulting voxel sizes for the Glass beads and Fontainebleau sandstone samples and for the Boise sandstone sample, as detailed below. The raw data are available on The Digital Rocks Portal (Garing et al., 2017, Prodanovic et al., 2015).

2.3.1. Glass beads and Fontainebleau sandstone

For both samples, a set of 2049 projections was acquired using a PCO.Edge camera with an Optique Peter system; 2X (3.28 μm), 4X (1.62 μm) and 10X (0.64 μm) objectives were used as well as a multilayer monochromator set to 25 keV. The following exposure times were selected: 450 ms, 1200 ms and 1500 ms for the Glass beads 2X, 4X and 10X scans respectively; 475 ms and 1500 ms for the Fontainebleau 2X and 4X-10X scans respectively.
2.3.2. Boise sandstone

A set of 1441 projections was acquired using a PCO.4000 camera with normal optics 2X (4.44 μm voxel size) and 5X (1.80 μm voxel size) at an energy of 32 keV. Exposure times of 800 ms and 1000 ms were selected for the 2X and 5X scans respectively.
The reconstruction of the volumes was performed using two different procedures, depending on the contrast needed in the datasets: i) a standard filtered back-projection, using a Shepp–Logan filter (Kak and Slaney, 1987) applied to the flat-field corrected projections, ii) a single-distance phase retrieval algorithm on the projections which improves the contrast among the different phases and reduces phase contrast artifacts. The algorithm presented by Paganin et al. (2002) and implemented in the ANKAphase software package (Weitkamp et al., 2011) was chosen for phase retrieval. The reconstruction was then performed using a conventional filtered back-projection algorithm with the Octopus software (Dierick et al., 2004).

The voxels are coded in terms of grey levels depending on the X-ray beam attenuation. The solid matrix appears in light grey, the brine in medium grey and the air in dark grey (Fig. 3).

2.4. Image analysis

Once the 3D volume is reconstructed, a sequence of post-processing steps is required in order to quantify the fluid phase distribution, connectivity, cluster size, pore diameter or interfacial curvature. The successive steps are detailed below and illustrated in Fig. 4 on a cropped volume of Boise sandstone BS-5X (voxel size of 1.80 μm). The image processing was conducted using Fiji, Avizo Fire 9 and MATLAB programs.

2.4.1. Segmentation, connectivity and size

All segmentations were performed on the raw reconstructed scans directly due to the good quality of the imaging process, except for BS-2X data (Boise sandstone, voxel size of 4.44 μm) for which an edge-preserving noise reduction filter such as bilateral filter (Tomasi and Manduchi, 1998) was first applied first in order to reduce the noise. The segmentation of the three different phases, solid, brine, and gas, was carried out via visual inspection of the datasets and gray level histogram using Fiji package. The brine segment was cleaned via a conventional procedure including median filtering and/or binary morphological operators, combined with masking (i.e. a Boolean AND operator) with the original segmented dataset. This procedure allows recovering the finer details of the objects erased by the structuring element shape and size used in the noise-reducing procedures. This approach is especially useful when dealing with binary datasets, where any filtering can significantly affect the morphology of the objects, and in our specific case it allowed more precise borders, as if segmented directly from the original unfiltered dataset, and especially correct solid-gas interfaces. Examples of 2D raw and segmented images are presented for the glass beads (Fig. 4.1 and 2), the Fontainebleau sandstone (Fig. 4.3 and 4) and the Boise sandstone (Fig. 4.a and b) samples. The entire image processing workflow is displayed for the latter sub-volume (Fig. 4.a-h). Each sub-volume investigated was re-segmented using the same method than for the larger volumes for more accurate results. The number of voxels belonging to the pore phase \(V_p \) and belonging to the air phase \(V_{air} \) are computed and since the entire number of voxels composing the analyzed rock volume \(V_{vol} \) is also known, the total porosity \(\phi_{MCT} \) and air saturation \(S_{air} \) can be calculated as \(V_p/V_{vol} \) and \(V_{air}/V_{vol} \) respectively. The connectivity of both fluid phases, air and brine, is then quantified by analyzing the data in 3D (Fig. 4.c and d). Each disconnected cluster is identified and re-labeled and its volume is computed. In addition, the equivalent diameter distribution of the air phase, brine phase and pore space (air and brine grouped as a unique phase) was computed by generating distance maps and recording the diameter of maximum inscribed spheres. Both connectivity and equivalent diameter analysis were conducted using Avizo Fire 9 Software.

2.4.3. Interfacial curvature

This subsection describes the workflow for the method developed to compute interfacial curvature of gas clusters using the segmented micro-CT images, where voxels belong to one of the three identified phases (rock, brine or gas). The main steps consist of finding and meshing the surface of the gas phase; restricting it to the interface shared with the brine phase; smoothing the resulting mesh; and calculating the corresponding curvature, as detailed below. All steps are performed by a in-house MATLAB code specifically developed for this study.

2.4.3.1. Meshing the interface. The surfaces of the gas and brine phases are identified by using the MATLAB (MathWorks) function isosurface, an implementation of the Marching Cubes algorithm, leading to a trigonal mesh representing the surface of the gas phase.
together with a list of vertices that belongs to both gas and brine surfaces, which describe the interface under consideration (Fig. 4.e). In order to deal with potential edge effects at the line of contact where there is a discontinuity in curvature, the in-house code developed by the authors deletes the vertices that belong to the rock/gas interfaces from the mesh before applying smoothing and computing the curvature. This in contrast with previous studies where a commercial software is used and the user must wait for the end result to heuristically prune unrealistic curvature values (Andrew et al., 2015).

2.4.3.2. Smoothing the surface. The mesh resulting from the previous steps is smoothed using an implicit fairing method of the type described in Desbrun et al. (1999). This smoothing method attenuates noise in the mesh through a diffusion process: a linear approximation of the mesh Laplacian is computed and used (via implicit integration in time of a heat diffusion type equation) to disperse small disturbances and smooth high frequencies while keeping the main shape intact. Specifically, we consider a mesh X with m vertices x_i, $i = 1 \cdots m$ and integrate the following equation over time:

$$\frac{\partial X}{\partial t} = \lambda L(X)$$
where $L(X)$ is the mesh Laplacian and λ is a parameter (taken to be 1 in our application).

More details on Laplacian mesh processing can be found in Sorkine (2006). An explicit Euler scheme is used to integrate Eq. (1):

$$X_{n+1} = (I + \lambda \delta t)X_n$$

We call T_{max} the time for which the mesh is smoothed. It means that Eq. (2) will be used $\lceil T_{\text{max}}/\delta t \rceil$ times. Fig. 5 shows an example of the impact of smoothing, T_{max} ranging from 0 (raw mesh) to 6 (18 iterations of the heat diffusion procedure with a time step $\delta t = 0.3$), for a single air ganglia isolated from (a) the glass beads sample imaged with a voxel size of 0.64 μm and (b) the Boise sandstone sample imaged with a voxel size of 1.8 μm. The curvature estimates rapidly converge once a small amount of smoothing is applied, as previously reported by Andrew et al. (2014a). We chose a value of $T_{\text{max}} = 5$ and $\delta t = 0.3$ for the following.

2.4.3.3. Estimating the curvature of a mesh. For any point P on a surface, we can define the unit normal vector $n(P)$. The derivative of n at P defines the shape operator whose eigenvectors and eigenvalues are the principal directions and principal curvatures (Federer, 1959). If $K_1(P)$ and $K_2(P)$ denote the principal curvatures at point P, the mean curvature is $K(P) = (K_1(P) + K_2(P))/2$ and the Gaussian curvature is $\kappa(P) = K_1(P) \cdot K_2(P)$. In this paper the term curvature is generically used to denote the mean curvature $K(P)$ at point P. A classic approach to compute the curvature of a mesh is to locally approximate it using quadric surfaces, whose curvature can be calculated analytically. Another approach described in Cohen-Steiner and Morvan (2003) consists of redefining curvature in the context of normal cycle theory so that the definition now holds for polygonal surfaces. This work builds on the observation that the curvature measures of a smooth surface can be obtained from an object associated to the surface called the normal cycle of the surface and that the definition of the normal cycle of a surface has a unique natural extension to the case of a polyhedral surface (a mesh). G. Peyre implemented an algorithm in MATLAB as well as other useful graph theory utilities that are used in this work for curvature calculations (Peyre, 2007). In the end, a mean curvature estimate is obtained for each vertex of the air/brine interface (Fig. 4d).

The method involves a parameter corresponding to the number of neighbors, $N_{\text{neighbors}}$, over which the curvature tensor is averaged when it is calculated at each vertex. Fig. 5 shows the impact of averaging related to the number of neighbors chosen, $N_{\text{neighbors}}$, rang-
Fig. 5. Sensitivity analysis performed on a single air ganglia isolated from (a) the glass beads sample imaged with a voxel size of 0.64 μm and (b) from the Boise sample images with a voxel size of 1.8 μm: effect of smoothing (T_{max}) and averaging ($N_{\text{neighbors}}$) on the mean curvature calculated using the normal cycle method.

For several isolated ganglia we also performed curvature calculations using an implementation of the quadric fitting algorithm in MATLAB (Kroon, 2011) and using the corresponding implementation in the Avizo Fire package (FEI). The three calculations lead to similar mean curvature values, especially once some smoothing was applied to the mesh. We decided to use our own developed code for more flexibility and we chose to use the normal cycle algorithm due to the fact that the quadric fitting method may be prone to instability, as the algorithm requires inverting matrices that can be ill-conditioned.

2.4.3.4. Estimating capillary pressures. The curvature estimates obtained for the entire air/brine interface can be investigated for each disconnected gas ganglion. Curvature distributions for each ganglion are plotted as probability distribution functions (Fig. 4g) and an average mean curvature κ is calculated for each ganglion.

2.4.3.6. Statistics. Confidence intervals were calculated using the classic expression for the Standard Error of the mean $SE = SD/\sqrt{n}$, where SD is the sample standard deviation and n is the number of samples. Assuming normal distributions, the true mean of the distribution we are sampling from has a 95% probability to be within $1.96 \cdot SE$ away from the mean. When applied to a single ganglion, these confidence intervals give a measure of how well the capillary pressure of an individual disconnected ganglion can be estimated. For a single ganglion the following nomenclature is used: the mean curvature, which is the average of all curvature values calculated for each point of the interface, is noted κ and the standard deviation and error for the ganglion are respectively noted SD_g and SE_g. Average values for the entire population of ganglia are indicated by the general mean $\bar{\kappa}$ and the standard deviation $SD_{\bar{\kappa}}$ and standard error $SE_{\bar{\kappa}}$.

2.4.3.5. Fontainebleau sandstone. A slightly different procedure was applied to the Fontainebleau sandstone dataset where, due to the high resolution of the images and nature of the pore-space, brine films are detected between the ganglia and rock surface. In these regions, the ganglia are supported by the rock, not the interfacial tension between the gas and the liquid and therefore these flat interfaces should be removed for curvature calculations. Identifying the vertices that belong to the thin films is however not trivial. We first handled this issue by deleting the connected components of the mesh that have negative curvature values and represent a large number of voxels.

Average values for the entire population of ganglia are indicated by $\bar{\kappa}$, where $X(N_{\text{ganglia}})$ is the average ganglion standard for the unsupported interface of the gas ganglia and using an interfacial tension σ for air and water of 72 mN m$^{-1}$ (Vargaftik et al., 1983).
The corresponding average mean capillary pressure P_c is then estimated assuming that Laplace’s law, $P_c = 2 \cdot \sigma \cdot \kappa$ (Fig. 4, h), is valid for the unsupported interface of the gas ganglia and using an interfacial tension σ for air and water of 72 mN.m$^{-1}$ (Vargaftik et al., 1983). Standard deviation and error for the population of ganglia are therefore noted SD_g and respectively, and k and P_c refer to the average mean curvature and capillary pressure for a given sample. Finally the standard deviations of the ganglia mean curvature and ganglia capillary pressure for the entire ganglia population of a sample are noted SD_K and SD_{Pc} respectively.
Table 1

<table>
<thead>
<tr>
<th>Rock</th>
<th>Sample</th>
<th>μCT Images</th>
<th>Voxel size (μm)</th>
<th>Volume (mm³)</th>
<th>ρ<sub>μCT</sub></th>
<th>Sinw (%)</th>
<th>N<sub>not</sub> ganglia</th>
<th>N<sub>avg</sub> ganglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass beads</td>
<td>GB-2X*</td>
<td>3.28</td>
<td>8.3</td>
<td>0.36</td>
<td>0.19</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Boise</td>
<td>BS-2X*</td>
<td>1.62</td>
<td>1</td>
<td>0.37</td>
<td>0.81</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fontainebleau</td>
<td>FS-4X*</td>
<td>1.62</td>
<td>1</td>
<td>0.07</td>
<td>0.72</td>
<td>157</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FS-10X*</td>
<td>0.64</td>
<td>0.05</td>
<td>0.06</td>
<td>0.75</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

3. Results

The first part of this section presents the results for the analysis of fluid phase distribution and morphology for the three investigated rock samples, with a presentation of the air and brine distribution, connectivity and equivalent diameter, and air ganglia size. This first subsection aims at characterizing the three different pore structures and their corresponding fluid phase distribution and morphology in relation with the image resolution in order to determine the appropriate resolution and volume required for each rock type for an accurate identification of representative air/brine interfaces.

The second part of this section first presents curvature calculations results for single ganglia, with a focus on the impact of image resolution and interface identification on how well the capillary pressure in one ganglia can be estimated. The curvature and capillary pressure calculations for the population of ganglia presented by all the sub-samples analyzed are then presented for each rock type.

3.1. Fluid phase distribution and morphology

For each dataset available the results are presented for all the sub-samples on which the detailed analysis were performed (Table 1). Porosity ρ_{μCT} and air saturation Sinw were also computed on larger volumes to assess the representative character of the sub-volumes. The results are available in supplementary material Table S1.

3.1.1. Air and brine distribution and connectivity

For each rock type the fluid phase distribution was investigated by analyzing a same sub-volumes of 1 mm³ imaged with comparable voxel size (1.62 μm for the Glass beads and Fontainebleau sub-samples, respectively GB-4X* and FS-4X*; and 1.80 μm for the Boise sub-sample BS-5X*). The results are displayed in Fig. 6. For each rock type, the results were compared with sub-samples imaged with lower and/or higher resolution.

The glass beads sub-sample has the highest porosity (0.37) and air saturation (0.81) and presents the largest interfaces between the two fluid phases (Fig. 6a). The residual air phase forms a large connected cluster representing 98% of the air phase (Fig. 6b) and the brine phase is also well connected with some locally disconnected brine identified as pendular rings between beads (Fig. 6c). The analysis of larger sub-volume of the glass beads sample imaged with a lower resolution shows that the sub-sample displays a similar porosity (Table 1) and a much lower air saturation, which however corresponds to the value computed on the large volume with the same resolution (Table S1). The characteristics of the fluid phases are very similar between the two sub-samples, with one large well-connected cluster spanning the whole volume (Fig. 8a) and large interfaces with a well-connected brine phase (Fig. 9b). Considering the fluid configuration, the image acquired with the highest resolution (GB-10X) implying a much smaller volume sampled, was not analyzed for curvature calculation purpose.

The sandstone samples have very different pore space size distributions and topologies in comparison to the glass beads sample, and have distinct fluid phase distributions and morphologies. Looking first at the 1 mm³-cubes, the results show that although the two sub-samples exhibit different values of porosity (0.25 for Boise and 0.07 for Fontainebleau) and air saturation (0.40 for Boise and 0.72 for Fontainebleau), they both present a residual air phase that consists of a large number of disconnected air ganglia with a high fraction of small size ganglia and few larger ones, as displayed in Fig. 6d and Fig. 6f for Boise and Fontainebleau respectively. In the case of the Boise sub-sample, the air phase presents a no-ticeably large fraction of interfaces with the brine phase (Fig. 6b) and the brine phase forms a large well-connected cluster spanning throughout the sub-volume, with few small-size disconnected clusters (Fig. 6h). Fig. 6e shows that there are fewer interfaces between the air and brine phases for the Fontainebleau 1 mm³-cube and that they consist of much smaller features. One should note the high air saturation for this sample. With a voxel size of 1.62 μm, the brine phase appears as very poorly connected, as it consists of a high number of small size disconnected clusters of brine (Fig. 6i).

The analysis of a larger and a smaller sub-volume the Boise sample imaged with the same voxels size of 1.80 μm (BS-5X* and BS-5X respectively) that there is a noticeable discrepancy between computed porosity and air saturation for each sub-volume, with porosity values ranging from 0.18 to 0.25 and air saturation values ranging from 0.40 to 0.66 (Table 1). However, the three sub-samples present very similar fluid phase distribution, with a high number of disconnected air ganglia (Fig. 10e, i and m) and well-identified interfaces with the brine phase (Fig. 10f, j and n). A comparison with the lower resolution was also conducted by analyzing the exact same sub-volume of 1.3 mm³ imaged with a voxel size of 1.8 μm (BS-5X*) and a voxel size of 4.44 μm (BS-2X*). The computed porosity values are very close and the air saturation computed on BS-2X* is lower than for BS-5X*, as listed in Table 1. In general the large to medium size air clusters are identified for both sub-samples but smaller air ganglia are not identified for BS-2X* (Fig. 10a and e). The most difference comes from the identification of the air/brine interfaces. Although they appear localized at the same parts of the air ganglia, the interfaces are much smaller for BS-2X* (Fig. 10b and f).

Finally, a smaller sub-volume of the Fontainebleau sample imaged with the highest resolution was also analyzed (FS-10X*). The
porosity and air saturation computed on this sub-sample are similar to the ones computed on the 1 mm3-cube imaged with the intermediate resolution (Table 1). As for the Boise samples, the fluid phase distribution is very similar between the two sub-samples with an air phase consisting in many disconnected angular-shaped air ganglia (Fig. 11 a and e) presenting thin interfaces with the brine phase (Fig. 11 b and f). One can note that a high portion of the air/brine interfaces consist in thin films between the air ganglia and the solid matrix. Due to the small features presented by the brine phase and the interfaces with the trapped gas, the image acquired with the lower resolution (FS-2X) was not used for curvature calculations.

3.1.2. Air and brine equivalent diameter

The mean equivalent diameter presented by the air and brine phase, as well as by the entire pore-structure saturated with air and brine, were analyzed for the 1 mm3-cubes presented in the previous sub-section. The mean values are listed in Table 2 and the distributions are displayed in Fig. 7.

Fig. 6. 3D rendering of fluid phase distribution and connectivity in 1 mm3 sub-volumes of the three rock samples imaged with similar resolution and named GB-4X*, BS-5X* and FS-4X* for the Glass beads, Boise sandstone and Fontainebleau sandstone sample, respectively. a), b) and c): air (dark grey) and brine (blue) phase distribution in the pore space. d), e) and f): disconnected air ganglia represented with different colors. g), h) and i) clusters formed by the brine phase. As for the air ganglia different clusters are displayed with different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Equivalent diameter distribution of the pores (dashed lines), air (solid lines) and brine (dashed-dotted lines) phase expressed as fitted probability density function pdf for the Glass beads sub-sample GB-4X* (blue lines), Boise sandstone sub-sample BS-5X* (grey lines) and Fontainebleau sub-sample FS-4X* (pink lines) of 1 mm3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The results show that both the air and brine phase of the glass beads sample presents large geometries and that the mean equivalent diameter of the air phase is similar as the one of the pore space. For the Boise sample, the mean equivalent diameter of the phase presenting the smallest features, the brine phase, is slightly higher than the mean pore-throat diameter estimated with MICP (31 μm) and corresponds to about 20 voxels. In contrary, the mean diameter of the brine phase for the Fontainebleau sample is smaller than the mean pore-throat diameter (14 μm) and the distribution plot confirms that a significant fraction of the brine phase is of a size smaller than the image resolution of the 4X dataset.

3.1.3. Residual air ganglia size

For all the sandstone sub-samples, the air ganglia size (volume) and their distribution were analyzed. The results are displayed in Fig. 8 and additional details are provided in supplementary Table S2. The 1 mm\(^3\)-cube from the Boise sample (BS-5X\(^+\)) contains 114 air ganglia (Table 1) with a mean volume of 1.8E-4 mm\(^3\), equivalent to the volume of a sphere of about 70 μm diameter. The largest ganglion represents 17.2% of the total air phase and the seven largest ganglia accounts for 94% of the air phase. As expected, for a same resolution, the number of identified disconnected clusters depends on the volume of the sub-sample analyzed (Table 1). However, the mean air ganglia volume is almost identical for the three sub-volumes BS-5X\(^+\), BS-5X\(^-\), and BS-5X\(^+\) (Table S2) as is the air ganglia volume distribution (Fig. 8). When comparing an identical volume imaged with two different resolution (BS-2X\(^+\) and BS-5X\(^+\)), the results show that although fewer disconnected air ganglia are identified with the lower resolution, the mean air ganglia volume is in the same order of magnitude (Table S2) and the air ganglia volume distribution is almost identical (Fig. 8).

The 1 mm\(^3\)-cube from the Fontainebleau sample (FS-4X\(^+\)) has a larger number of air ganglia than the Boise sub-sample of same volume (Table 1): the air phase consists of 157 disconnected ganglia. The mean volume of these ganglia is 6.6E-5 mm\(^3\), which would be equivalent to a sphere of 50 μm diameter, and is 2.7 times smaller than for BS-5X\(^+\). The largest ganglion represents a smaller fraction of the total air phase (12.9%) and also more ganglia are required to account for 90% of the air phase (Table S2, Fig. 8). When comparing with the highest resolution, less and one or, der of magnitude smaller size air ganglia are identified for FS-10X\(^+\) than for FS-4X\(^+\) but it should be noted that in that case the total volume analyzed is also much smaller for FS-10X\(^+\) (0.05 mm\(^3\)) than for FS-4X\(^+\) (1 mm\(^3\)).

3.2. Interfacial curvature

3.2.1. Calculation of the capillary pressure in an individual ganglion

Before investigating the capillary pressure of all the ganglia identified for each sub-volume presented in the previous section, a first analysis of the impact of image resolution and interface identification on curvature calculations, hence capillary pressure estimates, was conducted on single isolated ganglia.

The effect of image resolution on the calculation of interfacial curvature was investigated by analyzing the same air ganglion that could be identified on two images of the same sample acquired with different image resolutions. The analysis was conducted on an isolated air ganglion for the glass beads sample imaged with a voxel size of 1.62 μm and 0.64 μm, GB-4X and GB-10X respectively (Fig. 9a), the Boise sample imaged with a voxel size of 4.44 μm and 1.80 μm, BS-2X and BS-5X respectively (Fig. 9b) and the Fontainebleau sample imaged with a voxel size of 1.62 μm and 0.64 μm, FS-4X and FS-10X respectively (Fig. 9c). Details regarding the curvature calculations are given in Table 3a. For the glass beads sample the isolated air bubble present similar characteristics with both resolutions: the shape and volume of the bubble remain similar and the bubble properties are estimated with a mean air ganglia volume of 1.95E-4 mm\(^3\) and 1.84E-4 mm\(^3\) and the equivalent diameter of the air phase is similar as the one of the pore space. For the Boise sample, the mean equivalent diameter of the phase presenting the smallest features, the brine phase, is slightly higher than the mean pore-throat diameter estimated with MICP (31 μm) and corresponds to about 20 voxels. In contrary, the mean diameter of the brine phase for the Fontainebleau sample is smaller than the mean pore-throat diameter (14 μm) and the distribution plot confirms that a significant fraction of the brine phase is of a size smaller than the image resolution of the 4X dataset.
is almost identical as is the interface with the brine phase and its curvature. The mean value κ is $0.0219 \, \mu m^{-1}$ for GB-4X and $0.0226 \, \mu m^{-1}$ for GB-10X, leading to similar mean capillary pressure P, of 3148 Pa and 3260 Pa for GB-4X and GB-10X respectively. The standard errors are low and lead to 95% confidence intervals of $\pm 24 \, Pa$ and $\pm 12 \, Pa$ for the GB-4X and GB-10X bubble respectively.

The results differ in the case of the sandstone samples. For both the Boise and Fontainebleau samples, the air ganglia identified present some discrepancy although the general shape is preserved and total volume is in the same order of magnitude. For all cases one can note that the volume is lower with higher resolution. Fig 9 b and c also shows that the portion of the air surfaces that is shared with the brine phase is roughly located on the same parts of the air ganglia. However, due to a very different number of points representing the identified interfaces with the different image resolution (lower with bigger voxel sizes), the interface that remains after the image processing for the curvature calculation highly differs. For the Boise sample, the final mean value κ is $0.0309 \, \mu m^{-1}$ for BS-2X and $0.0483 \, \mu m^{-1}$ for BS-5X, leading to capillary pressure P, of 4450 Pa and 6955 Pa for BS-2X and BS-5X ganglia respectively. The standards errors are higher than for the Glass beads ganglion. The corresponding 95% confidence intervals in terms of capillary pressure are $\pm 240 \, Pa$ and $\pm 201 \, Pa$ for BS-2X and BS-5X respectively. For the Fontainebleau sample, there are not enough voxels left after processing to estimate the curvature of the FS-4X ganglion. The mean curvature calculated on the FS-10X ganglion is $0.124 \, \mu m^{-1}$, which corresponds to a capillary pressure of 17,903 Pa. For this ganglion the 95% confidence interval on the capillary calculation is $\pm 453 \, Pa$.

The local variation of the curvature estimation on the interface was also investigated in order to assess the impact of interface
Fig. 9. Effect of image resolution on curvature estimation analyzed for the same air ganglion isolated from:

a) the glass bead sample imaged with a voxel size of $1.62 \, \mu m$ (GB-4X) and $0.64 \, \mu m$ (GB-10X),
b) the Boise sample imaged with a voxel size of $4.44 \, \mu m$ (BS-2X) and $1.8 \, \mu m$ (BS-5X), and
c) the Fontainebleau sample imaged with a voxel size of $1.62 \, \mu m$ (FS-4X) and $0.64 \, \mu m$ (FS-10X).

In each case, the Figure shows from top to bottom for both resolution: a 2D raw image, the 3D segmented air ganglion (with its volume in voxels and mm3), the visualization of the interface in red (with its surface in pixels and mm2), and the visualization of the mean curvature values presented by the interface. The details are provided in Table 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Identification on the curvature calculation, as the air/brine interface presented by a single air ganglion may change depending on the image acquisition, resolution and image processing. This analysis was conducted on the well-defined air ganglia isolated from the glass beads sample imaged with a voxel size of $0.64 \, \mu m$ (GB-10X) and from the Boise sample imaged with a voxel size of $1.8 \, \mu m$ (BS-5X) that have been used for the sensitivity analysis presented in Section 2.4.3. For each isolated air ganglion, regions were selected randomly on the interface and the curvature was computed for the selected portions of the total interface, as displayed in Fig. 10, and detailed in Table 3. The calculation using the entire interface is the first raw, marked in bold. The results show that the seven selected portions of interface of the isolated ganglia extracted from GB-10X dataset present similar interfacial curvature distributions (Fig. 10.a) and curvature values κ, ranging from $0.016 \, \mu m^{-1}$ to $0.023 \, \mu m^{-1}$, with an average of $0.021 \, \mu m^{-1}$ and a standard deviation from one κ calculation to another of $0.002 \, \mu m^{-1}$. On average, the values calculated on the selected interfaces differ from the one calculated using the entire identified interface by a bit less than 10%. There is no discrepancy in the curvature values between the different interfaces selected from the BS-5X ganglion (Fig. 10.b). The curvature values for the different portions of the interface range from $0.027 \, \mu m^{-1}$ to $0.043 \, \mu m^{-1}$, with an average of $0.034 \, \mu m^{-1}$ and a standard deviation of $0.007 \, \mu m^{-1}$ and differ from the one calculated using the entire interface by 17%. In general, one can also note that the standard error of the mean curvature and capillary pressure is lower when the entire identified interface is used for calculation since it involves a higher number of points where the mean curvature is computed when averaging for the ganglion.

3.2.2. Curvature analysis for the different rock types

This sub-section presents the results of interfacial curvature calculations and capillary pressures the different sub-volumes analyzed for each rock type. The results of the curvature analysis are displayed in Fig. 11-13 for the sub-volumes of the Glass beads, Boise and Fontainebleau sample respectively. Each figure displays the results similarly: the results for a sub-volume are organized in column, where the first image is a visualization of the disconnected air ganglia, the second is a visualization of the air/brine interfaces, the third image is a visualization of all the mean curvature values displayed by the interfaces taken into account for the mean calculation, and the last image is a graph of the pdfs for the curvature values for each air ganglion. The average curvature of each ganglion is then plotted as a function of its total volume in Fig. 14. The results are also presented in terms of capillary
Table 3
(a) Effect of image resolution: interfacial curvature analysis conducted on the same air ganglion isolated from images acquired with different voxel sizes for the glass bead (GB-4X, GB-10X), Boise (BS-2X, BS-5X) and Fontainebleau (FS-4X, FS-10X) samples, displayed in Fig. 9. b) Location on the mesh: interfacial curvature analysis conducted on selected portions of the entire interface of air ganglia isolated from the glass bead (GB-10X) and Boise (BS-5X) samples, displayed in Fig. 10. The calculation performed on the entire interface is highlighted in bold. For both a) and b) the Table lists the voxel size, the number of points on the interface used for the calculation, mean curvature K for the ganglion, standard deviation SDg and standard error SEg of curvature values calculated for each point of the interface, mean ganglion capillary pressure Pc, and standard error of capillary pressure values for the ganglion.

<table>
<thead>
<tr>
<th>μCT images</th>
<th>Voxel size (μm)</th>
<th>N points interface</th>
<th>K (μm$^{-1}$)</th>
<th>SDg (μm$^{-1}$)</th>
<th>SEg (μm$^{-1}$)</th>
<th>Pc (Pa)</th>
<th>SE Pc (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) GB-4X</td>
<td>1.62</td>
<td>13,545</td>
<td>0.0219</td>
<td>0.0099</td>
<td>8.51E-05</td>
<td>3148</td>
<td>12</td>
</tr>
<tr>
<td>GB-10X</td>
<td>0.64</td>
<td>83,137</td>
<td>0.0226</td>
<td>0.0126</td>
<td>4.36E-05</td>
<td>3260</td>
<td>6</td>
</tr>
<tr>
<td>BS-2X</td>
<td>4.44</td>
<td>1227</td>
<td>0.0309</td>
<td>0.0298</td>
<td>8.52E-04</td>
<td>4450</td>
<td>123</td>
</tr>
<tr>
<td>BS-5X</td>
<td>2.8</td>
<td>6568</td>
<td>0.0483</td>
<td>0.0577</td>
<td>7.12E-04</td>
<td>6955</td>
<td>103</td>
</tr>
<tr>
<td>FS-4X</td>
<td>1.62</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-10X</td>
<td>0.64</td>
<td>6328</td>
<td>0.1243</td>
<td>0.1276</td>
<td>1.60E-03</td>
<td>17,903</td>
<td>231</td>
</tr>
</tbody>
</table>

b) 0.64

2025 0.0222 0.0207 4.59E-04 3191 66

1631 0.0220 0.0219 5.42E-04 3174 78

2041 0.0213 0.0222 4.92E-04 3060 71

1604 0.0232 0.0240 6.00E-04 3347 86

3975 0.0200 0.0214 3.40E-04 2875 49

3343 0.0201 0.0226 3.90E-04 2887 56

1347 0.0157 0.0203 5.54E-04 2254 80

1.80

4628 0.0371 0.0216 3.17E-04 5347 46

293 0.0431 0.0207 1.21E-03 6210 174

262 0.0271 0.0189 1.17E-03 3908 168

466 0.0388 0.0219 1.01E-03 5594 146

988 0.0301 0.0271 8.61E-04 4336 124

Fig. 10. Local variation of the curvature estimation on the interface analyzed for a single air ganglia isolated from a) the glass beads sample imaged with a voxel size of 0.64 μm (GB-10X) and b) the Boise sample imaged with a voxel size of 1.8 μm (BS-5X). In each case, the Figure shows from left to right: a visualization of the selected portions of the interface (red), a visualization of the mean curvature values presented by the selected interfaces, and a plot of the corresponding curvature histograms. The details are provided in Table 3b. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
pressure distributions for both sandstone samples in Fig. 15. These results are also summarized in Table 4 where the average standard deviation and standard error of the mean for the curvature values presented by the interface of a single ganglion, SD_k and SE_k respectively, are first listed, followed by the average mean curvature value presented by all the ganglia, k, and the standard deviation of the ganglia average curvature values SD_{k} as well as the corresponding average capillary pressure P_{c} and SD_{Pc} (cf last paragraph of Section 2.4.2).

Glass beads subsamples (GB-2X*, GB-4X*)

Fig. 11c and g highlight the similarity of curvature values presented by the interfaces considered for the calculation. For both sub-volumes, the distributions of curvature values for each isolated air ganglia (Fig. 11d and h) show that the interfaces of all identified ganglia present similar local values of mean curvature that are close to the average mean value for the ganglia. For a single air cluster, the average standard errors of the mean for the two sub-volumes are low and corresponds to 95% confidence interval of ± 33 and ± 65 Pa, in terms of capillary pressure, for GB-2X* and GB-4X* respectively. The distributions graphs also show that the curvature values for each isolated air ganglia are similar one to another, as also clearly represented in Fig. 14a. The average curvature k is 0.008 μm$^{-1}$ and 0.015 μm$^{-1}$ for GB-2X* and GB-4X* respectively, corresponding to mean capillary pressures P_c of 1107 Pa and 2139 Pa for GB-2X* and GB-4X* respectively. It should be reminded that the two sub-volumes do not sample the same volume within the Glass-Beads sample.

Boise subsamples (BS-2X*, BS-5X*, BS-5X*, BS-5X*)

Fig. 12c, g, k and o display visualizations of the curvature values presented by the interfaces considered for the calculation for BS-2X*, BS-5X*, BS-5X* and BS-5X* respectively. The corresponding curvature distribution histograms per air ganglia are shown in Fig. 12d, h, l and p. The results are detailed for the three sub-volumes of the sample imaged with a voxel size of 1.8 μm, and then for the sub-volume of the sample imaged with a voxel size of 4.44 μm (BS-2X*), which represents the exact same volume as BS-5X*.

For the three sub-volumes imaged with a voxel size of 1.8 μm, Fig. 12h, l and p show that the interfaces of all disconnected air ganglia present more broadly distributed local values of mean curvature around the average mean value for the ganglia than for the glass beads sub-volumes presented above. On average, the standard error of the mean for a single ganglia SE_k is similar for all three sub-samples and is low, corresponding to 95% confidence intervals in terms of capillary pressure around ± 490 Pa. When compared with BS-5X+, the air ganglia for BS-2X+ presents a higher standard error for a single ganglion, leading to more than three times higher 95% confidence interval (± 2287 Pa).

There is a significant discrepancy in the average ganglia curvature values k between the three different sub-volume images with the same resolution (Table 4) leading to mean capillary pressure estimates of 5782, 7803 and 4617 for BS-5X*, BS-5X* and BS- 5X* respectively. However, one can note that the average mean curvature for the sub-volume images with the lower resolution (BS-2X*) is very close to the value calculated for BS-5X*. The standard deviation of the mean curvature presented by the different air ganglia is 0.020 μm$^{-1}$ for both BS-5X* and BS-5X* and is a bit higher for BS-5X* with a value of 0.033 μm$^{-1}$ (Table 2, Fig. 14b). In addition, the figure highlights that the air ganglia
presenting a mean curvature value that differs the most from the average are usually within the smallest ganglia, in terms of volume. It also shows that sub-volume BS-2X presents a higher fraction of air ganglia with interfacial curvature values that are scattered further from the average value for the entire sub-volume. The standard deviation for that sub-volume is 0.042 μm⁻¹. However, in that case, it is not particularly correlated with the air ganglia volume.

3.2.5. Fontainebleau subsamples (FS-4X*, FS-10X*)

Although Fig. 13.c and g show that both sub-samples FS-4X* and FS-10X* present rather similar interfacial curvature, the distributions of curvature values for each isolated air ganglia differs (Fig. 13.d and h): whereas for FS-4X* most ganglia present similar distributions, the distributions presented by the air ganglia for FS-10X* vary from a ganglion to another and the deviation is also larger. These results include however all the interfaces that remain after deleting from the mesh the vertices that belong to the rock/air interface as explained in Section 2.4.3, which is the procedure that was successfully applied to the glass beads and Boise images. As mentioned in the Material and Methods section, a high fraction of flat air/brine interfaces are still present in the case of the Fontainebleau sandstone, due to the presence of thin films between the air phase and the rock. These interfaces, which are likely
Table 4
Curvature analysis results for all the sub-volumes analyzed (more details regarding the sub-volumes can be found in Table 1. They all sample different volumes of the Glass-beads, Boise or Fontainebleau images, except BS-2X° and BS-5X° which correspond to the exact same volume of Boise sample imaged with two different voxel sizes). For each image the table lists its name, voxel size, number of ganglia \(N \) ganglia, average standard deviation \(SDg \) of curvature values for a ganglion, the average curvature presented by the ganglia \(k \), the standard deviation of the ganglia curvature values \(SDK \), the average capillary pressure presented by the ganglia \(P_c \) and the standard deviation of the capillary pressure values \(SDp_c \).

<table>
<thead>
<tr>
<th>(\mu C T) images</th>
<th>Voxel size ((\mu m))</th>
<th>(N) ganglia</th>
<th>(<SDg>) ((\mu m^{-1}))</th>
<th>(<SEg>) ((\mu m^{-1}))</th>
<th>(<k>) ((\mu m^{-1}))</th>
<th>(SD_k) ((\mu m^{-1}))</th>
<th>(PC) (Pa)</th>
<th>(SDp_c) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-2X°</td>
<td>3.28</td>
<td>5</td>
<td>0.009</td>
<td>1.2E-04</td>
<td>0.008</td>
<td>0.002</td>
<td>1107</td>
<td>308</td>
</tr>
<tr>
<td>GB-4X°</td>
<td>1.62</td>
<td>3</td>
<td>0.011</td>
<td>2.3E-04</td>
<td>0.015</td>
<td>0.008</td>
<td>2139</td>
<td>1173</td>
</tr>
<tr>
<td>BS-2X°</td>
<td>4.44</td>
<td>73</td>
<td>0.234</td>
<td>8.1E-03</td>
<td>0.042</td>
<td>0.042</td>
<td>6071</td>
<td>6106</td>
</tr>
<tr>
<td>BS-5X°</td>
<td>1.80</td>
<td>90</td>
<td>0.068</td>
<td>1.8E-03</td>
<td>0.040</td>
<td>0.020</td>
<td>5782</td>
<td>2957</td>
</tr>
<tr>
<td>BS-5X°</td>
<td>1.80</td>
<td>102</td>
<td>0.066</td>
<td>1.8E-03</td>
<td>0.054</td>
<td>0.033</td>
<td>7803</td>
<td>4742</td>
</tr>
<tr>
<td>BS-5X°</td>
<td>1.80</td>
<td>38</td>
<td>0.061</td>
<td>1.7E-03</td>
<td>0.032</td>
<td>0.020</td>
<td>4617</td>
<td>2899</td>
</tr>
<tr>
<td>FS-4X°</td>
<td>1.62</td>
<td>107</td>
<td>0.205</td>
<td>1.0E-02</td>
<td>0.110</td>
<td>0.113</td>
<td>15,893</td>
<td>16,340</td>
</tr>
<tr>
<td>FS-10X°</td>
<td>0.64</td>
<td>20</td>
<td>0.099</td>
<td>3.1E-03</td>
<td>0.147</td>
<td>0.093</td>
<td>21,110</td>
<td>13,401</td>
</tr>
</tbody>
</table>

Fig. 12. Interfacial curvature analysis for the analyzed sub-volumes of the Boise sandstone sample imaged with a voxel size of 4.44 \(\mu m \) (BS-2X° - figures a) to d) and of 1.8 \(\mu m \) (BS-5X° - figures e) to h) and BS-5X° - graphs m) to p)). a), e), i) and m) the disconnected air ganglia are represented with different colors. b), f), j) and n) the total air phase is represented in navy blue and the interfaces with the brine phase are colored in red. o), g), k) and o) the mean curvature is plotted for each portion of interface used for the calculation. d), h), l) and p) the mean curvature distribution is plotted for each separated air ganglion that presents interfaces large enough for the calculation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ent air ganglia is also higher for the lower resolution sub-sample (Figs. 14c and 15). As already noticed for Boise sub-samples, Fig. 14c also highlights that higher curvature values are more frequent for air ganglia of smaller volume.

4. Discussion

4.1. Identifying gas ganglia and gas/brine interfaces

Since the ability to accurately characterize the trapped non-wetting phase and identify the interface shared with the wetting phase is an important factor to estimate capillary pressure distribution in rocks using interfacial curvature calculations on X-ray microtomography images, this issue was addressed first. As expected, it is highly dependent on both i) the pore size and shape of the scanned rock sample and ii) the image resolution of the scans.

Fig. 13. Interfacial curvature analysis for the analyzed sub-volumes of the glass beads sample imaged with a voxel size of 1.62 μm (FS-4X* - graphs a) to d)) and of 0.64 μm (FS-10X* - graphs e) to h). a) and e) the disconnected air ganglia are represented with different colors. b) and f) the total air phase is represented in navy blue and the interfaces with the brine phase are colored in red. c) and g) the mean curvature is plotted for each portion of interface used for the calculation. d) and h) the mean curvature distribution is plotted for each separated air ganglion that presents interfaces large enough for the calculation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to be supported by the solid, significantly lower the mean interfacial curvature values of air ganglia and were therefore removed for the curvature calculation listed in Table 4 and displayed in Figs. 14 and 15.

The average standard error of the mean, for a single ganglion, is on average one order of magnitude higher for FS-4X* than for FS-10X*, and also generally higher than for Boise sandstone. It corresponds to 95% confidence intervals in terms of capillary pressure of ± 3096 Pa for the lower resolution and ± 874 Pa for the higher resolution. The average ganglia curvature values \(K \) are also different for the two sub-volumes, leading to mean capillary pressure estimates of 15,893 Pa for FS-4X* and 21,110 Pa for FS-10X*. The standard deviation of the mean curvature presented by the differ-

4.1.1. Glass beads

Porous samples which have a pore structure consisting of well-connected flow paths of large diameter and low or moderate pore body to pore throat ratio, represented here by the glass beads sample, display large nonwetting and wetting phase features with very clearly identifiable interfaces between the two fluids. The glass beads sample presents a mean pore-throat diameter, estimated with MICP, about 30 times larger than the lower image resolution (GB-2X, voxel size of 3.28 μm) and even the smaller features, pre- sented by the brine phase, are more than one order of magnitude larger than the highest voxel size. Although the same object would be described by more voxels using higher resolution images, all the features are still represented by a very high number of voxels at the lower magnification. In addition, the use of the lower resolution allows imaging of a larger volume. Even though the glass beads pore space is very homogeneous and could be well represented by a smaller volume, the trapped gas consists of a single well-connected cluster spanning through most of the sample. This is in good agreement with previous X-ray microtomography analysis of trapped nonwetting phase in water-wet glass beads packs conducted by Armstrong et al. (2012a), Chaudhary et al. (2013) and Georgiadis et al. (2013). For such rock types displaying a well-connected large pore structure, the volume of the sample becomes more critical for fluid flow investigations than the voxel size.

Although this is not directly in the scope of the paper, it is...
worth mentioning that, for this sample, the large difference in saturation between the 2X and 4X scans is due to movement of fluid phases in between the two image acquisitions. Motion artifacts were actually still present on the 10X scans. This suggests that for such pore morphologies, the residual trapping process seem to require longer equilibration time than usually assumed. Armstrong et al. (2012a) reported that 20 min was not enough. The present study suggests that even five hours is not sufficient to have complete equilibrium in this class of systems. Recent work from McClure et al. (2016a, 2016b) also indicates that relaxation times for curvatures may range from several hours to a day.

4.1.2. Sandstones

If one considers that at least three voxels are required as a minimum to correctly identify an object, then the images acquired with the 2X magnification (voxel sizes of 4.44 μm for Boise and 3.28 μm for Glass beads and Fontainebleau) could not unambiguously probe any features smaller than about 10–13 μm. Fig. 1 indicates that 20% and 30% of the pore network exists below this threshold for the Boise and Fontainebleau samples respectively. Therefore, whereas this resolution is sufficient to accurately probe the pore network displayed by the Glass beads sample, higher resolution is needed for a more precise characterization of the microstructure for these standard sandstone samples. The compari-
Fig. 14. Air ganglia mean curvature [µm⁻¹] as a function of the air ganglia volume [mm³] for the analyzed sub-volumes of a) the glass beads sample, b) the Boise sandstone sample and c) the Fontainebleau sandstone sample.

Fig. 15. Capillary pressure distribution for Boise sandstone sample (represented by sub-sample BS-5X∗) and Fontainebleau sandstone sample (represented by sub-sample FS-10X∗).

son of porosity and saturation values computed on different sub-volumes confirms that Boise sandstone is more heterogeneous than Fontainebleau sandstone. Boise microstructure is unique and quite different than the average sandstone due to quartz overgrowth bridges as well as the abundance of platy mica grains (Prasad, 2001). Laminations present in the sample lead to more variability and an overall significant heterogeneity of the pore structure. The data also show that Fontainebleau sandstone exhibits a higher residual gas saturation. In Fontainebleau sandstones, the reduction of porosity by quartz overgrowths around the grains leads to angular pores between quartz grains of moderate size and very thin planar pores between two grains (Bourbie and Zinszner, 1985). This pore space morphology, characterized by a large aspect ratio between the pore bodies and throats is known to favor trapping by snap-off (Tanino and Blunt, 2012). Hamon et al. (2001) measured residual gas saturation in different types of sandstones, including a similar Fontainebleau sample, and reported that Fontainebleau trapped much more gas (70% saturation) than the other shaly samples, comparable to Boise sandstone (40–50% maximum saturation). Sok et al. (2002) performed imbibition site-based invasion percolation simulations on Fontainebleau sandstone networks and also concluded in higher gas saturation for low porosity Fontainebleau.

The sub-volumes of 1 mm³ investigated for the two sandstones with voxel sizes around 1.7 µm sample a large amount of disconnected ganglia (114 for Boise and 157 for Fontainebleau) and the largest ganglia contribute to less than 20% of the total gas phase (17.2% for Boise and 12.9% for Fontainebleau); we can then assume that these volumes are well representative of the gas ganglia distribution. Because of the heterogeneity of Boise sandstone different sub-volumes might present different porosity and fluid saturation values; however, the characteristics of the air phase is very consistent. The cluster size analysis of air ganglia for all different sub-volumes investigated for Boise sandstone show indeed very similar results, with air ganglia volumes distributed over four orders of magnitude. The distribution of air ganglia volume displays a similar trend for Fontainebleau but with generally smaller air ganglia. Iglauer et al. (2011) showed that Doddington sandstone was trapping clusters from a hundred voxels to ten thousands voxels. Andrew et al. (2014a) also reported that significant proportions of scCO₂ is trapped in various sandstone and carbonate samples in clusters with sizes ranging over five orders of magnitude, with better connected pore spaces having more large clusters relative to small clusters. This is supported by the comparison of the results for the Fontainebleau sandstone presented in this study and results reported by Kumar et al. (2010) for a more porous Fontainebleau sample, exhibiting larger pore sizes and better connectivity; in this case, the authors imaged larger size clusters that may span more than hundreds of pores. For both sandstone samples investigated in the present paper, the mean air ganglia volume estimated from the cluster size study suggests that despite the presence of few large air ganglia spanning a larger number of pore bodies and throats, most disconnected air ganglia are located in one or few pores. The most significant difference between the two sandstones lies in the size and shape of the interfaces that gas ganglia share with the brine phase. For Boise sandstone the equivalent diameter for the brine phase is larger than the throat diameter estimated with MICP and both are larger than the voxels size. However, in the case of Fontainebleau sandstone the equivalent diameter for the brine phase is smaller than the MICP throat diameter and is close to the size of few voxels. This is both due to the very high gas saturation, hence low fraction of brine in the sample, and the fact that the wetting phase occupies the smallest part of the pore space, which in the case of Fontainebleau sandstone can be very close to the voxels size. In order to
have a better identification of the interfaces for curvature calculations the highest resolution (voxel size of 0.64 μm) is necessary for rocks presenting similar pore and throat sizes than those displayed by Fontainebleau sandstone, whereas the medium resolution (voxel size of 1.8 μm) allows a good representation of the interfaces for Boise sandstone or any type of rocks presenting a similar pore space topology and morphology.
4.2. Measuring pore-scale capillary pressure

4.2.1. Capillary pressures controlled by pore structure

As expected, the mean curvature is low for trapped ganglia in the glass beads sample and significantly larger for trapped ganglia in the Fontainebleau Sandstone in comparison to the Boise sandstone. Due to the pore morphology (Fig. 14), Armstrong et al. (2012a) reported curvatures of one order of magnitude lower (0.001–0.002 μm⁻¹) in a glass beads pack with much larger pores than our glass beads sample. In their study of a Ketton limestone, Andrew et al. (2014b) measured a mean curvature of 0.01 μm⁻¹, four times smaller than for the Boise sandstone sample presented here, which is also consistent since Boise presents smaller and more angular pores than the Ketton sample. To a first order, the mean curvatures values for the three samples we investigated lead to mean capillary pressures that are in good agreement with the MICP measurements for the three samples (Fig. 16). One can note that the mean capillary pressure estimated from the interfacial curvature between the trapped gas ganglia and the brine is in the order of magnitude of the entry pressure for each rock. Andrew et al. (2014a) observed in a Ketton limestone that the curvature of the ganglia was controlled by the size of the neighboring throats. In the post-imbibition context of geological storage, it is therefore plausible that the capillary pressures of disconnected ganglia will be, to a first order; well approximated by the capillary entry pressure of the rock. This does not mean that the system is at equilibrium, however.

4.2.2. Variability of capillary pressure measured on a single ganglion

The analysis of the impact of image resolution and interface identification shows that very similar curvatures are estimated for a well-rounded gas bubble with a range of resolutions or using different portions of the interface (Fig. 9a, Fig. 10a). The error will however be decreased when using higher resolution images and the entire interface that can be identified, leading to higher confidence in capillary pressure estimates (Table 3). For gas ganglia presenting more complex shapes, a different resolution can lead to a different interface identified (Fig. 9b and c) and the capillary pressure of the same gas ganglia can vary from 4450 Pa to 6955 Pa for instance for a gas ganglia from the Boise sample (Table 3a). It can be seen on the 2D raw image displayed in the figures that the quality of the high resolution image is significantly enhanced and the segmentation is therefore more likely to be reliable resulting in improved curvature estimates, not to mention the fact that a single object is described by more voxels with a higher resolution, thus reducing curvature calculation errors. For such gas ganglia, the comparison between curvature values calculated using the entire identified interface or just a portion of the interface lead to noticeable variation in the curvature, hence capillary pressure estimates exhibit similar variability (Fig. 10b, Table 3b). One possible explanation to the measured differences in capillary pressures is that there are measurement errors. Estimating the curvature of the surface is the product of a series of complicated image processing steps. Uncertainty is in particular associated with image segmentation step (e.g. Wildenschild and Sheppard, 2013). A second explanation is that the interfaces are supported by a solid surface, and we can therefore not apply Laplace’s law to link mean curvature to capillary pressure directly. A third possibility is that isolated brine/air/grain surfaces are “pinned” and represent contact angle hysteresis. If the capillary pressure variability across individual ganglia is real, then either the pressure of the gas inside the ganglia is non-uniform, or the pressure in the liquid is non-uniform, or both are non-uniform. Non-uniform pressures do not appear likely however, especially since the brine phase is well connected.

In general, the standard error of the curvature values calculated for all points of the interface of a ganglion is low compared with the average curvature value for the ganglion and it can be concluded that the curvature calculations yields confident capillary pressure estimates, especially for the Glass Beads dataset and the Boise and Fontainebleau imaged with the highest resolution (BS-SX dataset, and FS-10X dataset).

4.2.3. Variability of capillary pressure across a population of ganglia

This sub-section summarizes the major findings regarding the ganglia capillary pressure distributions for the two sandstones. The comparison of the exact same sub-volume of Boise sample imaged with two different resolution (BS-2X° and BS-5X°) shows that more trapped gas ganglia are identified on the higher resolution image due mostly to the identification of a higher amount of small-size ganglia (Fig. 8, Table S2). Although for the lower resolution image fewer interfaces are used for the curvature calculation and less voxels describe these interfaces, the mean curvature value for the entire sub-volume does not differ much from the one calculated on the sub-volume imaged with a higher resolution, leading to a similar mean capillary pressure value. How- ever, the standard deviation of mean...
The curvature value for the disconnected gas ganglia is two times bigger for the higher resolution image, which may yield different conclusions regarding the distribution of capillary pressures and the stability of residually trapped gas. Considering that the confidence for curvature calculations is significantly increased for high-resolution images, it would be recommended to use similar voxel sizes (below 2 μm at least) for interfacial curvature analysis in sandstone rocks, as well as for any types of similar investigation such as contact angle measurement, in rocks presenting comparable pore structure, in particular pore bodies and throats size and shape. The analysis of the different Boise sub-volumes suggest however that there is a noticeable sampling effect probably due to the heterogeneity of the sample pore structure, leading to differences in mean capillary pressure as well as their distribution depending on the sub-volume investigated. Most air ganglia have similar size and present similar curvature value but the amount of smaller air ganglia, which present significantly higher curvatures, varies from on sub-volume to an-
other (Fig. 14b). Hence, the mean capillary pressure ranges from about 4600 to 7800 Pa for the same Boise sample.

For a similar number of gas ganglia investigated, Fontainebleau sandstone presents a larger number of ganglia having higher curvature values than the average compared with Boise sandstone (Fig. 15). Although the general mean curvature for Fontainebleau sample is higher than for Boise sample due to the pore space topology, the Fontainebleau sample does not have a higher proportion of small gas ganglia than Boise sample imaged with similar resolution (BS-5X and FS-4X). The more distributed values of curvatures for Fontainebleau is likely due to the geometry of the interfaces used for the curvature calculations which present a higher degree of variability than for Boise sandstone. Even though most planar interfaces were removed for the calculation, the portions of inter- faces of interest may display significantly different curvature imposed by the pores and throats shape, as depicted in Fig. 9c. For this type of sandstone it is important to note that the number of voxels representing the interfaces used for the curvature calculations is smaller, leading to potentially higher error than for Boise sandstone, even when the calculation is done using the highest resolution sub-volume of Fontainebleau (FS-10X). In addition, Fig. 9c also confirms the necessity of using a submicron voxel size for this type of sandstone in order to have more accurate results. One issue remains the very small size of sample investigated when using very high image resolution and the current technical impossibility to perform flow experiment in a pressure vessel, necessary to investigate scCO₂/fracture systems with reservoir conditions, using a sample size that would allow sub-micron resolution image acquisition. Another issue that may be raised when using a higher resolution is the identification of thin films of brine. Along the surface of the gas phase that is in contact with the thin films supported by the rock grains, Laplace’s law is not applicable. The portion of the interface that is in contact with these films should then be removed for the purpose of capillary pressure estimation, which complicates the analysis procedure.

4.2.4. Implications for Ostwald ripening

For both sandstone samples the disconnected gas ganglia may present capillary pressures showing differences that are statistically significant and Ostwald ripening would result in transferring gas from ganglia with higher capillary pressures to surrounding ganglia with lower capillary pressures.

In the case of Boise sandstone and for all the analyzed sub-volumes, the ganglia presenting higher capillary pressures consist of small gas ganglia that represent a minor fraction of the trapped gas phase. Since most other gas ganglia display almost identical capillary pressure, it can be assumed that Ostwald ripening would concern only a very small fraction of gas and would therefore not be an important mechanism for remobilizing the trapped gas in that type of sandstone.

The larger distribution in capillary pressures presented by the Fontainebleau sandstone sub-volumes would result in more gas transfer by Ostwald ripening than for Boise sandstone. However the smaller average throat dimensions and longer pore channel length, characteristic of low porosity Fontainebleau sandstone (Lindquist and Venkatarangan, 2000), would significantly increase the diffusion time.

The results of this study are not intended to provide definitive conclusions one way or another regarding the potential for Ostwald Ripening to remobilize residually trapped CO₂. Instead the goal is to develop and demonstrate experimental methods (with associated uncertainty quantification) to address the questions, do capillary pressure differences exist between gas clusters that could provide a driving force for Ostwald Ripening and can we measure them? The answer to these questions is yes: there are differences in capillary pressures between gas clusters and we can measure them. Fully addressing the question of whether or not these capillary pressure gradients can remobilize residually trapped CO₂ requires multi-physics and multi-scale modeling on a larger spatial scale than is imaged here. With regard to acquiring the data sets needed to populate and validate these models, the trade-off be-tween resolution and sample volume is evident. The larger the sample volume, the higher the probability that heterogeneities and gas cluster dimensions and topology will be fully sampled. Larger sample volumes however lead to lower spatial resolution, which results in poorer quality (and potentially erroneous) capillary pressure measurements. Advances in imaging technology that allow higher resolution on larger samples will be beneficial in this regard.

5. Conclusion

We presented a series of experiments providing multi-scale X-ray microtomography images of representative residually-trapped gas in three different sample types: a sintered glass-beads sample, a Boise sandstone sample and a Fontainebleau sandstone sample. The method to calculate interfacial curvatures was efficiently applied to the three samples leading to mean capillary pressure values in agreement with the literature and MICP measurements.

The analysis of the trapped gas in the two sandstones, which mostly consists of ganglia isolated to one or few pores, high-lights the impact of image resolution and interface identification on the curvature estimates. Sub-micron resolution is recommended to lead such investigation in real rocks as it increases confidence in interfacial curvature calculations due to the high number of voxels representing the interfaces of interest. Higher resolution may however result in the identification of thin films of brine, which complicates curvature estimation.

A distribution of capillary pressures is seen for both sandstones, to a higher extent for Fontainebleau, suggesting that Ostwald ripening could occur and result in gas transfer from ganglia having higher capillary pressures to neighbor ganglia having lower capillary pressures. However, although some small gas ganglia may have higher capillary pressures, a high proportion of the gas phase consists of ganglia having similar capillary pressures, suggesting that Ostwald ripening could be limited for remobilizing residually-trapped gas. Likewise, we cannot determine from this experiment whether a cyclical process involving Ostwald ripening could yield transport of residually-trapped CO₂ over distances greater than the pore scale.

It should however be noted that this study investigates the capillary pressure distribution for a single homogeneous rock, and difference in pore sizes between different portion of a rock at a larger scale will result in differences in capillary pressure that could drive Ostwald ripening; this phenomenon could be particularly important for sandstones with significant laminations and sorting differences.

Acknowledgment

This research was supported by the Center for Nanoscale Control of Geologic CO₂, an Energy Frontier Research Center funded by the U.S. Department of Energy, under contract number DE-AC02-05CH11231. C. Garing and S.M. Benson also acknowledge support from The Global Climate and Energy Project (GCEP) at Stanford. Microtomographic imaging was performed with the assistance of Alastair MacDowell and
Dula Parkinson at the Advanced Light Source, Beamline 8.3.2, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences (DE-AC02-05CH11231).
Supplementary materials
Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.advwatres.2017.04.006.

References

