Title
Lab-on-a-Chip Aquatic Microorganism Analysis System (SEN 2)

Permalink
https://escholarship.org/uc/item/6947w9pp

Authors
Mike Liu
Siyang Zheng
Y.C. Tai

Publication Date
2006
Lab-on-a-Chip Aquatic Microorganism Analysis System

Mike Liu¹, Siyang Zheng¹, Yu-Chong Tai¹, Charlotte Kwong², Nan Li², Chih-Ming Ho², Harvey L. Kasdan³
1. California Institute of Technology; 2. UCLA; 3. Iris Diagnostics Division, IRIS International, Inc.

Introduction: Why Aquatic Monitoring and Lab-on-chip?

Motivation
- Need for monitoring the content of the sea water and assess the concentration of different algae – algal bloom monitoring
- Elucidate the cause of toxin production by algae

Advantages of lab-on-chip systems
- Batch fabricated, low cost, small sample volume.
- Automation and miniaturization.
- Can be integrated with wireless networks.
- Enable multiple parallel experiments.
- Field deployable, disposable, sterile

Algal Bloom Monitoring: Cell Separation and Counting

Flow chart of algae monitoring chip:

- Sea water sample
- Cell Separator
- Live cells for further analysis

On-chip sea water microorganism monitoring
- 1. Collect sea water sample
- 2. Separation of different cells based on SIZE
- 3. Cell counting with impedance sensor.
- 4. Further analysis (ELIZA, PCR,…etc)

A. Cell Separation Based on Particle Size
The separation chip has an array of pillars and the particles can be separated because different sizes of particle have different interaction with the pillars. Small particles can follow a separation lane exactly resulting in a zigzag flow pattern which follows the net fluid flow direction over a long distance. Large particles, incapable of making sudden turns around pillar, flow in displacement mode, and do not remain in one separation lane at all time.

Device for particle separation

Four types of algae tested in device. (A) Aureococcus anophagefferens (B) Chlorella stigmatophora (C) Heterosigma akashiwo (D)Chlamydomonas sp

B. Cell Counting with Impedance Sensor

- Electrical impedance measurement to sense cells passing by electrodes
- Fabricated with PDMS sandwicthed in glass
- Wheatstone bridge and amplitude/phase demodulation increase sensitivity and improve signal to noise ratio

Device Schematic
Successful sensing of cells

Fabricated Device

Algae Culture on Chip—Screen for factors that induce toxin production

- Culture Pseudo-nitzschia, a toxin producing algae, on chip.
- Culture cell under different conditions on ONE chip to screen for factors inducing toxin production.

• Replace several culture experiments with a single chip

• Fabricated device