Title
Search for neutral B-meson decays to a0π, a0K, ηπ0, and ηf0

Permalink
https://escholarship.org/uc/item/6978f871

Journal
Physical Review D - Particles, Fields, Gravitation and Cosmology, 75(11)

ISSN
1550-7998

Authors
Aubert, B
Bona, M
Boutigny, D
et al.

Publication Date
2007-06-26

DOI
10.1103/PhysRevD.75.111102

License
CC BY 4.0

Peer reviewed
Search for neutral B-meson decays to $a_0\pi$, a_0K, $\eta\rho$, and ηf_0

SEARCH FOR NEUTRAL B-MESON DECAYS TO ... PHYSICAL REVIEW D 75, 111102(R) (2007)

29Harvard University, Cambridge, Massachusetts 02138, USA
30Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31Imperial College London, London, SW7 2AZ, United Kingdom
32University of Iowa, Iowa City, Iowa 52242, USA
33Iowa State University, Ames, Iowa 50011-3160, USA
34Johns Hopkins University, Baltimore, Maryland 21218, USA
35Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B. P. 34, F-91898 ORSAY Cedex, France
37Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38University of Liverpool, Liverpool L69 7ZE, United Kingdom
39Queen Mary, University of London, E1 4NS, United Kingdom
40University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41University of Louisville, Louisville, Kentucky 40292, USA
42University of Manchester, Manchester M13 9PL, United Kingdom
43University of Maryland, College Park, Maryland 20742, USA
44University of Massachusetts, Amherst, Massachusetts 01003, USA
45Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46McGill University, Montréal, Québec, Canada H3A 2T8
47Dipartimento di Fisica e INFN, Università di Milano, I-20133 Milano, Italy
48University of Mississippi, University, Mississippi 38677, USA
49Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51Dipartimento di Scienze Fisiche e INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
52NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53University of Notre Dame, Notre Dame, Indiana 46556, USA
54Ohio State University, Columbus, Ohio 43210, USA
55University of Oregon, Eugene, Oregon 97403, USA
56Dipartimento di Fisica e INFN, Università di Padova, I-35131 Padova, Italy
57Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, F-75252 Paris, France and Université Denis Diderot-Paris7, F-75252 Paris, France
58University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59Dipartimento di Fisica e INFN, Università di Perugia, I-06100 Perugia, Italy
60Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
61Prairie View A&M University, Prairie View, Texas 77446, USA
62Princeton University, Princeton, New Jersey 08544, USA
63Dipartimento di Fisica e INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
64University Rostock, D-18051 Rostock, Germany
65Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67University of South Carolina, Columbia, South Carolina 29208, USA
68Stanford Linear Accelerator Center, Stanford, California 94309, USA
69Stanford University, Stanford, California 94305-4060, USA
70State University of New York, Albany, New York 12222, USA
71University of Tennessee, Knoxville, Tennessee 37996, USA
72University of Texas at Austin, Austin, Texas 78712, USA
73University of Texas at Dallas, Richardson, Texas 75083, USA
74Dipartimento di Fisica Sperimentale e INFN, Università di Torino, I-10125 Torino, Italy
75Dipartimento di Fisica e INFN, Università di Trieste, I-34127 Trieste, Italy
76IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79University of Wisconsin, Madison, Wisconsin 53706, USA
80Yale University, New Haven, Connecticut 06511, USA
(Received 27 March 2007; published 26 June 2007)

*Deceased.
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Also with Università della Basilicata, Potenza, Italy.
‡Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
We present a search for B^0 decays to charmless final states involving an η meson, a charged pion, and a second charged pion or kaon. The data sample corresponds to 383×10^6 $B\bar{B}$ pairs collected with the BABAR detector operating at the PEP-II asymmetric-energy B factory at SLAC. We find no significant signals and determine the following 90% C.L. upper limits: $\mathcal{B}(B^0 \rightarrow a_0^\eta \pi^-) \times \mathcal{B}(a_0 \rightarrow \eta \pi^-) < 3.1 \times 10^{-6}$, $\mathcal{B}(B^0 \rightarrow a_0^\eta K^+ \pi^- \pi^-) < 1.9 \times 10^{-6}$, $\mathcal{B}(B^0 \rightarrow a_0(1450)^- \pi^- \pi^-) < 3.1 \times 10^{-6}$, and $\mathcal{B}(B^0 \rightarrow \eta \rho^0) < 1.5 \times 10^{-6}$. Theoretical expectations for these decays with an $a_0(980)$ meson [7–10] are larger than previous experimental limits [11]. The decays with a ρ^0 meson are expected to have branching fractions $\lesssim 1 \times 10^{-7}$ [12] since they are dominated by color-suppressed tree amplitudes [Fig. 1(d)]. There are no predictions for the decay $B^0 \rightarrow \eta f_0$, but it should have a small branching fraction for the same reason.

The nature of the a_0 meson is not well understood. It is thought to be a $q \bar{q}$ state with a possible admixture of a $K\bar{K}$ bound-state component due to the proximity to the $K\bar{K}$ threshold [13,14]. The a_0 mass is known to be about 985 MeV with a width of 71 ± 7 MeV [15] for the dominant $a_0 \rightarrow \eta \pi$ decay mode [13]. The $a_0(1450)$ has a measured width of 265 MeV [13]. Since the branching fraction for $a_0 \rightarrow \eta \pi$ is not well known, we report the product branching fraction $\mathcal{B}(B^0 \rightarrow a_0^\eta X^+) \times \mathcal{B}(a_0 \rightarrow \eta \pi)$, where X indicates K or π. The properties of the $f_0(980)$ meson are well measured for the $\pi^+ \pi^- \pi^0$ channel that is used in this analysis [16].

Only limits for the following decays have been reported previously: $B^0 \rightarrow a_0(980)^- \pi^+$ and $B^0 \rightarrow a_0(980)^-K^+$ [11] and $B^0 \rightarrow \eta \rho^0$ [17–19]. There have been no previous searches for $B^0 \rightarrow f_0$ or the decays with an $a_0(1450)$. The results presented here are based on data collected with the BABAR detector [20] at the PEP-II asymmetric-energy e^+e^- collider located at the Stanford Linear Accelerator Center. An integrated luminosity of approximately 347 fb$^{-1}$, corresponding to 383×10^6 $B\bar{B}$ pairs, was recorded at the $Y(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV).

The track parameters of charged particles are measured by a combination of a silicon vertex tracker, with five layers of double-sided silicon sensors, and a 40-layer central drift chamber, both operating in the 1.5 T magnetic field of a superconducting solenoid. We identify photons

We investigate the decays of a B^0 meson to final states with an η meson, a charged pion, and either a second charged pion or kaon. The Dalitz plots for the decays without an intermediate charmed meson are expected to have contributions from quasi-two-body decays such as $B^0 \rightarrow a_0^\pi^\pm$, $B^0 \rightarrow a_0^0 K^+$, $B^0 \rightarrow \eta \rho^0$, $B^0 \rightarrow \eta f_0$, and $B^0 \rightarrow \eta K^{*0}$ [1]. The last of these has been investigated recently [2] so in this paper we concentrate on the others, where a_0 is either $a_0(980)$ or $a_0(1450)$ and f_0 is $f_0(980)$. Measurements of B decays involving a scalar meson are interesting since they provide information on such B decays and the nature of scalar mesons. Several B decays involving scalar mesons have been observed, either with an $f_0(980)$ [3,4] or $K^*(1430)$ [2,3,5] in the final state.

Specific predictions can be made for the decays $B \rightarrow a_0 \pi$ if factorization is assumed and if the decay involves only tree or penguin (loop) processes. The dominant amplitude is shown in Fig. 1(a). The companion tree amplitude, shown in Fig. 1(b), is expected to be greatly suppressed, since, neglecting light-quark mass splittings, the virtual W cannot produce an a_0 meson [6]. This is a firm prediction of the standard model because the weak current has a G-parity even vector part and a G-parity odd axial-vector part. The latter can produce an axial-vector or pseudoscalar particle while the former produces a vector particle, but neither can produce a G-parity odd scalar meson (e.g. a_0). Thus the decay $B \rightarrow a_0 \pi^\mp$ is expected to be "self-tagging"—the pion charge specifies the B flavor. Penguin processes such as shown in Fig. 1(c) are allowed, but are suppressed relative to the tree processes. The decays with a kaon in the final state should be dominated by the penguin processes [Fig. 1(c)], though there is a cancellation between two terms in the penguin amplitudes for these decays [7].

The theoretical expectations for these decays with an $a_0(980)$ meson [7–10] are larger than previous experimental limits [11]. The decays with a ρ^0 meson are expected to have branching fractions $\lesssim 1 \times 10^{-7}$ [12] since they are dominated by color-suppressed tree amplitudes [Fig. 1(d)]. There are no predictions for the decay $B^0 \rightarrow \eta f_0$, but it should have a small branching fraction for the same reason.

The nature of the a_0 meson is not well understood. It is thought to be a $q\bar{q}$ state with a possible admixture of a $K\bar{K}$ bound-state component due to the proximity to the $K\bar{K}$ threshold [13,14]. The a_0 mass is known to be about 985 MeV with a width of 71 ± 7 MeV [15] for the dominant $a_0 \rightarrow \eta \pi$ decay mode [13]. The $a_0(1450)$ has a measured width of 265 MeV [13]. Since the branching fraction for $a_0 \rightarrow \eta \pi$ is not well known, we report the product branching fraction $\mathcal{B}(B^0 \rightarrow a_0^\eta X^+) \times \mathcal{B}(a_0 \rightarrow \eta \pi)$, where X indicates K or π. The properties of the $f_0(980)$ meson are well measured for the $\pi^+ \pi^- \pi^0$ channel that is used in this analysis [16].

Only limits for the following decays have been reported previously: $B^0 \rightarrow a_0(980)^- \pi^+$ and $B^0 \rightarrow a_0(980)^-K^+$ [11] and $B^0 \rightarrow \eta \rho^0$ [17–19].
and electrons using a CsI(Tl) electromagnetic calorimeter (EMC). Further charged particle identification (PID) is provided by measurements of the average energy loss (dE/dx) in the tracking devices and by an internally reflecting, ring-imaging Cherenkov detector (DIRC) covering the central region.

We select a_0 candidates from the decay channel $a_0 \to \eta \pi$ with the decays $\eta \to \gamma \gamma$ ($\eta_{\gamma \gamma}$) and $\eta \to \pi^+ \pi^- \pi^0$ ($\eta_{3\pi}$). All charged tracks are required to originate from a common vertex. For the decays $B^0 \to \eta \rho^0$ and $B^0 \to \eta f_0$, we use the same η decay modes and $\rho^0 \to \pi^+ \pi^- f_0 \to \pi^+ \pi^-$. We apply the following requirements on the invariant masses (in MeV) relevant here: $500 < m_{\gamma \gamma} < 585$ for $\eta_{\gamma \gamma}$, $535 < m_{\pi^+\pi^-} < 560$ for $\eta_{3\pi}$, $120 < m_{\gamma \gamma} < 150$ for π^0, and $510 < m_{\pi^+\pi^-} < 1060$ for ρ^0/f_0. For the $a_0(980)$ analysis we use a mass range $775 < m_{\eta \pi} < 1175$, while for $a_0(1450)$ we require $775 < m_{\eta \pi} < 1750$; the latter upper limit removes background from D decays. These requirements, except for π^0 and η, are chosen to remove $\leq 10\%$ of real signal and retain sufficient sidebands to characterize the background for subsequent fitting.

The average number of candidates found per selected event is in the range 1.04 to 1.17, depending on the final state. We choose the candidate with η mass closest to the nominal PDG value [13].

We make several PID requirements to identify the pions and kaons. Secondary tracks from η, ρ^0, or f_0 decays must have measured DIRC, dE/dx, and EMC outputs consistent with pions. For the $B^0 \to a_0^+ \pi^-$ ($B^0 \to a_0^0 K^+$) decays, we require an associated DIRC Cherenkov angle between -2 and $+5$ (-5 and $+2$) standard deviations (σ) from the expected value for a pion (kaon); the requirement is more restrictive on the side where there is kaon (pion) background. The distributions are corrected as a function of momenta and angles so that the distributions are normalized Gaussians. These requirements keep $\geq 90\%$ of the wanted particle species with a misidentification background of $<10\%$.

A B-meson candidate is characterized kinematically by the energy-substituted mass $m_{ES} = (1/2) \bar{s} - \bar{p}_B^2/2$ and energy difference $\Delta E = E_B - \bar{E}_B - \bar{s}/2$, where (E_B, \bar{p}_B) is the B-meson 4-momentum vector and all values are calculated in the $Y(4S)$ frame. Signal events peak at zero for ΔE, and at the B nominal mass for m_{ES}. The $\Delta E (m_{ES})$ resolution is about 30 MeV (3.0 MeV). We require $|\Delta E| \leq 0.2$ GeV and $5.25 \leq m_{ES} \leq 5.29$ GeV.

Backgrounds arise primarily from random combinations in continuum $e^+ e^- \to q \bar{q}$ ($q = u, d, s, c$) events. We reduce these by using the angle θ_t between the thrust axis of the B^0 candidate in the $Y(4S)$ frame and that of the rest of the charged tracks and neutral clusters in the event. The distribution of $|\cos \theta_t|$ is sharply peaked near 1.0 for combinations drawn from jetlike $q \bar{q}$ pairs, and nearly uniform for B-meson decays. We require $|\cos \theta_t| < 0.7(0.8)$ for the $\eta_{\gamma \gamma}$ ($\eta_{3\pi}$) channels. We also use, in the fit described below, a Fisher discriminant F that combines the angles of the candidate direction with respect to the beam axis of the B momentum and B thrust axis [in the $Y(4S)$ frame], and moments describing the energy flow about the B thrust axis [21].

We use additional event-selection criteria to further reduce backgrounds from B decays. For the $\eta \to \gamma \gamma$ modes we remove backgrounds with one high-energy photon and a spurious low-energy photon such as $B \to K^+ \gamma$ by requiring $|\cos \theta_{\gamma\gamma}^o| \leq 0.86$, where $\theta_{\gamma\gamma}^o$ is the angle of the photons in the η rest frame with respect to the direction of the particle recoiling against the η. Many backgrounds with low-energy π, K, or a_0 mesons are reduced with the requirement $|\cos \theta_{\gamma\gamma}^w| \leq 0.8$, where $\theta_{\gamma\gamma}^w$ is defined similarly to $\theta_{\gamma\gamma}^o$. For $B^0 \to \eta \rho^0$ decays, we define H to be the magnitude of the cosine of the angle between the pion from the ρ and the B^0 momentum in the ρ rest frame, and require $H < 0.75$ to remove background from $B^0 \to D^+ (\pi^- \pi^+ \pi^-)$ that populates a narrow region near $H = 0.8$. These additional requirements reduce the backgrounds by a factor of $2 - 4$, depending on the decay mode. We use Monte Carlo (MC) simulation [22] for an estimate of the residual BB background and to identify the few (mostly charmless) decays that survive the candidate selection and have characteristics similar to the signal ($20 - 270$ events, depending on mode). We include a component in the fit to account for them.

We obtain yields and branching fractions from extended unbinned maximum-likelihood fits, with input observables $\Delta E, m_{ES}, m_{res}$ for the $a_0(1450)$ fits, these observables plus F for the $a_0(980)$ fits, and these plus H for the $\eta \rho^0/\eta f_0$ fits. The observable m_{res} denotes the η mass for the a_0 analyses and the η and $\pi^+ \pi^-$ masses for the $\eta \rho^0/\eta f_0$ fits. Early MC studies showed that a fit to the restricted low-mass range yields $\sim 20\%$ better sensitivity for $a_0(980)$, due to simplified PDF description and lower BB backgrounds. Thus we employ separate fits to determine the $a_0(980)$ and $a_0(1450)$ yields. The $a_0(1450)$ fit has a component for $a_0(980)$ with the yield fixed to the value found in the $a_0(980)$ fit, corrected for the small efficiency difference. No $a_0(1450)$ component is used for the $a_0(980)$ fit since none of the subsamples have evidence of $a_0(1450)$ signals.

For each event i and hypothesis j (signal, continuum background, BB background), we define a product of probability density functions (PDF)

$$P^i_j = P_j(m_{ES}^i)P_j(\Delta E^i)P_j(m_{res}^i)[P_j(F^i)][P_j(H^i)].$$

(1)

The bracketed variables F and H are not used in all fits. For all decays except those involving $a_0(1450)$, the absence of significant correlations among observables in the background is confirmed with the background-dominated data samples entering the fits. For the $a_0(1450)$ decays, we find a substantial correlation in data
between \mathcal{F} and the $\eta\pi$ invariant mass, due to the large $\eta\pi$ mass range. We therefore require $\mathcal{F} < 0$ for these modes, which keeps 90% of the signal, and exclude \mathcal{F} from the fit. For the signal component, we correct for effects due to the neglect of small correlations (more details are provided in the systematics discussion below). The $B\bar{B}$ background yield is free in the $\eta\rho^0/\eta f_0$ fits and is found to be in agreement with expectations from MC simulations. For the decays involving a_0 mesons, we fix the $B\bar{B}$ yield to the value predicted by MC and include the uncertainty in the systematic errors (see below).

The likelihood function is

$$\mathcal{L} = \exp \left(-\sum_j Y_j \right) \prod_{i} \left[\sum_j Y_j \mathcal{P}_j \right],$$

where Y_j is the yield of events of hypothesis j that we find by maximizing \mathcal{L}, and N is the number of events in the sample.

We determine the PDF parameters from simulation for the signal and $B\bar{B}$ background components. We parameterize each of the functions $\mathcal{P}_{\text{sig}}(m_{\text{ES}}), \mathcal{P}_{\text{sig}}(\Delta E), \mathcal{P}_{\text{sig}}(\mathcal{F}),$ and $\mathcal{P}_{\text{sig}}(m_{\text{res}})$ with either the sum of two Gaussian functions, a Breit-Wigner shape, or an asymmetric Gaussian function, as required to describe the distribution. $\mathcal{P}_{\text{sig}}(H_{\pi})$ for $B^+ \rightarrow \eta \rho^0$ is described by a second order polynomial. The shape of the real-meson component of $\mathcal{P}_{\text{sig}}(m_{\text{res}})$ in the combinatorial background is described with the same parameters as for signal. The distributions of $m_{\text{res}}, \Delta E,$ and H_{π} for $B\bar{B}$ and combinatorial background are represented by second order Chebyshev polynomials and/or the sum of two Gaussian functions. The $q\bar{q}$ combinatorial background in m_{ES} is described by the function $f(x) = x/1 - x^2 \exp[-x(1-x^2)]$, with $x = 2m_{\text{ES}}/\sqrt{s}$ and free parameter ξ; for peaking BB background, generally with the same or similar final state as signal, we add a Gaussian function to the quantity $f(x)$.

Large control samples of $B \rightarrow D\pi$ with a topology similar to the signal are used to verify the simulated resolutions in ΔE and m_{ES}. Where the control data samples reveal small differences from MC, we shift or scale the resolution used in the likelihood fits. Examples of many of these PDF shapes from a similar analysis are shown in Ref. [21]. Additionally, the signal parameters for the $a_0(980)$ mass (983.5 MeV) and width (80 MeV) are determined from an inclusive data set that is much larger than the sample used for this analysis; they are consistent with expectations from the natural-width values of Ref. [15]. The values for $a_0(1450)$ are taken from Ref. [13].

In Table I we show for each decay mode the measured product branching fraction, together with the quantities entering into its determination. In order to account for the uncertainties in the background PDF parameterization, we include as free parameters in the fit, in addition to the signal and background yields, the principal parameters describing the background PDFs. These include slopes for the polynomial shape for the ΔE and m_{res} distributions, the parameter ξ used for m_{ES}, and three parameters describing the asymmetric Gaussian function for H_{π}. For calculation of branching fractions, we assume that the decay rates of the Y(4S) to B^+B^- and $B^0\bar{B}^0$ are equal [24]. We combine branching fraction results from the two

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fit yield (events)</th>
<th>Bias (events) ϵ (%)</th>
<th>$\prod B_i$ (%)</th>
<th>Signif. (o)</th>
<th>B (10$^{-6}$)</th>
<th>B U.L. (10$^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0(980)^+\pi^+$</td>
<td>87 ± 23</td>
<td>16</td>
<td>15.3</td>
<td>39.4</td>
<td>3.3</td>
<td>3.1 ± 1.1 (1.0)</td>
</tr>
<tr>
<td>$a_0(980)^{\gamma\gamma}\pi^+$</td>
<td>4 ± 12</td>
<td>1</td>
<td>1.18</td>
<td>22.6</td>
<td>0.1</td>
<td>0.1 ± 0.1 (1.1)</td>
</tr>
<tr>
<td>$a_0(980)^+K^+$</td>
<td>28 ± 15</td>
<td>14</td>
<td>14.0</td>
<td>39.4</td>
<td>2.0</td>
<td>1.1 ± 0.7 (0.6)</td>
</tr>
<tr>
<td>$a_0(980)^{\gamma\gamma}K^+$</td>
<td>9 ± 12</td>
<td>11</td>
<td>11.0</td>
<td>22.6</td>
<td>0.7</td>
<td>0.7 ± 0.4 (0.2)</td>
</tr>
<tr>
<td>$a_0(1450)^+\pi^+$</td>
<td>−47 ± 56</td>
<td>26</td>
<td>13.8</td>
<td>39.4</td>
<td>—</td>
<td>−3.5 ± 2.2 (0.8)</td>
</tr>
<tr>
<td>$a_0(1450)^{\gamma\gamma}\pi^+$</td>
<td>−24 ± 32</td>
<td>5</td>
<td>9.8</td>
<td>22.6</td>
<td>—</td>
<td>−3.5 ± 2.3 (0.7)</td>
</tr>
<tr>
<td>$a_0(1450)^+K^+$</td>
<td>22 ± 36</td>
<td>12</td>
<td>13.3</td>
<td>39.4</td>
<td>0.3</td>
<td>0.5 ± 1.8 (1.7)</td>
</tr>
<tr>
<td>$a_0(1450)^{\gamma\gamma}K^+$</td>
<td>13 ± 24</td>
<td>0</td>
<td>9.7</td>
<td>22.6</td>
<td>0.6</td>
<td>1.6 ± 2.9 (1.2)</td>
</tr>
<tr>
<td>$\eta\rho^0$</td>
<td>15 ± 13</td>
<td>7</td>
<td>10.7</td>
<td>39.4</td>
<td>0.7</td>
<td>0.5 ± 0.8 (0.7)</td>
</tr>
<tr>
<td>$\eta\pi\rho^0$</td>
<td>4 ± 11</td>
<td>5</td>
<td>8.4</td>
<td>22.6</td>
<td>—</td>
<td>−1.4 ± 1.0 (1.4)</td>
</tr>
<tr>
<td>ηf_0</td>
<td>−11 ± 10</td>
<td>1</td>
<td>18.8</td>
<td>39.4</td>
<td>—</td>
<td>−0.3 ± 0.3 (0.1)</td>
</tr>
<tr>
<td>$\eta\gamma f_0$</td>
<td>−4 ± 11</td>
<td>−4</td>
<td>14.9</td>
<td>22.6</td>
<td>0.1</td>
<td>0.0 ± 0.5 (0.5)</td>
</tr>
</tbody>
</table>

TABLE I. Signal yield with statistical error, yield bias correction, detection efficiency ϵ, relevant daughter branching fraction product $\prod B_i$, significance (including additive systematic uncertainties), measured branching fraction B, and the 90% C.L. upper limit on this branching fraction. For the a_0 and f_0 modes, B includes the daughter branching fractions for $a_0 \rightarrow \eta \pi$ or $f_0 \rightarrow \pi^+\pi^-\pi^0$.

111102-6
η decay channels by adding the values of $-2 \ln \mathcal{L}$, adjusted for a fit bias (see below), and taking proper account of the correlated and uncorrelated systematic errors. We quote 90\% confidence level (C.L.) upper limits, taken to be the branching fraction below which lies 90\% of the total of the likelihood integral in the positive branching fraction region.

In Fig. 2 we show projections onto m_{ES} and $\eta \pi$ mass of subsamples enriched by a mode-dependent threshold requirement on the ratio of signal to total likelihood (computed without the variable plotted). We show analogous projections of m_{ES} and the $\pi^+ \pi^-$ invariant mass in Fig. 3.

The significance is taken as the square root of the likelihood integral in the positive branching fraction region.

FIG. 2 (color online). Signal-enhanced projections of the B^0-candidate m_{ES} and $\eta \pi$ mass for (a, b) $a_0(980)$ and (c, d) ηf_0. Points with errors represent data, solid curves the full fit functions (both signal modes combined), and dotted-dashed curves the background functions (the peaking $B \bar{B}$ background component is small). These plots are made with a minimum requirement on the likelihood that has an efficiency for signal of 70\%–90\%.

FIG. 3 (color online). Signal-enhanced projections of the B^0-candidate m_{ES} and $\pi^+ \pi^-$ mass for (a, b) $\eta \rho^0$ and (c, d) ηf_0. Points with errors represent data, solid curves the full fit functions (both signal modes combined), and dotted-dashed curves the background functions (the peaking $B \bar{B}$ background component is small). These plots are made with a minimum requirement on the likelihood that has an efficiency for signal of 70\%–90\%.

Most of the yield uncertainties arising from lack of knowledge of the PDFs have been included in the statistical error since most background parameters are free in the fit. Varying the signal PDF parameters within their estimated uncertainties, we determine the uncertainties in the signal yields to be 0–9 events, depending on the final state. This uncertainty is substantial only for the modes with one of the a_0 resonances, where it is dominated by uncertainties in the parameterization of the a_0 signal shape. The neglect of correlations among observables in the fit can cause a systematic bias; the correction for this bias (between -4 and $+26$ events) and assignment of the resulting systematic uncertainty (0.1–13 events) is determined from simulated samples with varying background populations. For the a_0 modes where the $B \bar{B}$ background yield is fixed, we estimate the uncertainty from modeling the $B \bar{B}$ backgrounds by varying the expected $B \bar{B}$ yield by 100\% (0.1–12 events).

The above uncertainties are additive in nature and affect the significance of the results. The largest multiplicative uncertainties include our knowledge of the efficiency and other quantities entering the branching fraction calculation. Selection efficiency uncertainties are 1\%–2\% for $\cos \theta_\tau$ and 0.5\%–0.8\% due to the limited size of the MC samples. Uncertainties in the reconstruction efficiency found from auxiliary studies on inclusive control samples.
B. Aubert et al., include 0.5% \cdot N_t and 1.5% \cdot N_{\gamma}, where N_t and N_{\gamma} are the number of signal tracks and photons, respectively. The uncertainty on the total number of $B\bar{B}$ events is 1.1%. Published data [13] provide the uncertainties in the B-daughter product branching fractions (1%–2%).

In conclusion, we do not find significant signals for the B-meson decays presented here. The measured branching fractions and 90% C.L. upper limits are given in Table I. The limits for the $a_0(980)$ channels are smaller than expectations [7–10]. This has been cited as evidence that the $a_0(980)$ meson is a four-quark state, not the lowest-lying member of the $q\bar{q}$ scalar multiplet [9]. The limits for the $a_0(1450)$ channels and $B^0 \to \eta p^0$ are consistent with theoretical expectations [9,12]. There are no previous measurements or theoretical predictions for the $B^0 \to \eta f_0$ decay.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

[1] The named member of a charge-conjugate pair of particles stands for either.