
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Scalable Integrated Routing Using Prefix Labels and Distributed Hash Tables for MANETs

Permalink
https://escholarship.org/uc/item/6980x66f

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2009-10-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6980x66f
https://escholarship.org
http://www.cdlib.org/

978-1-4244-5113-5/09/$25.00 c©2009 IEEE

Scalable Integrated Routing Using Prefix Labels
and Distributed Hash Tables for MANETs

J.J. Garcia-Luna-Aceves†∗
† Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

Email: jj@soe.ucsc.edu

Dhananjay Sampath∗
∗Computer Engineering Department
University of California, Santa Cruz

Santa Cruz, CA 95064
Email: dsampath@soe.ucsc.edu

Abstract—We present AIR (Automatic Incremental Routing),
a unified approach for scalable unicast and multicast routing
in mobile ad hoc networks (MANET). In AIR, nodes run a
distributed routing algorithm to assign prefix labels to themselves.
The labels are assigned such that routing to unicast or multicast
destinations is automatic, in that a route from any node to a
destination is defined by the node’s prefix labels, and incremental,
in that no relay node needs to know an entire path to any
destination. We verify that AIR provides correct unicast and
multicast routing, and present simulation results comparing AIR
with AODV, OLSR, MAODV and ODMRP in MANETs. The
results from these simulation experiments, as well as from tests
carried out in a small testbed running AIR in wireless routers,
illustrate that AIR offers substantial performance advantages
over traditional unicast and multicast routing protocols, even in
the case of small networks.

I. INTRODUCTION

End user applications for mobile ad hoc networks
(MANETs) typically involve point-to-point or many-to-many
communication among network nodes. These applications call
for the support of both unicast and multicast routing in
MANETs. Traditional approach to routing in MANETs as-
sumes the use of node identifiers such as MAC or IP addresses
to denote destinations in routing tables, and more importantly,
the use of separate protocols for unicast (e.g., OLSR, AODV)
and multicast (e.g., ODMRP) routing. Maintaining routing
tables, built using node identifiers that are independent of the
relative locations of nodes in the network, relies on some form
of flooding or network-wide dissemination. This is because,
in order for routing tables to establish entries to it, either
a destination or a representative of a group must announce
its presence using identifiers that have little to do with the
topology of the network. Flooding occurs even when sources
search for their intended destinations without knowing their
location. Depending on the protocol, the resulting signaling
may consist of the flooding of link states (e.g., OLSR), the
dissemination of distances to destinations (e.g., DSDV), the
flooding of route requests (e.g., AODV, DSR), or the flooding
of group join requests (e.g., ODMRP). This poses a problem
as the dissemination of control information on a network-wide
basis does not scale with the number of nodes in a MANET.

The main contribution of this paper is the introduction
of Automatic Incremental Routing (AIR), which is the first

approach to unicast and multicast routing in MANETs in
which routing is automatic, in that routes from any source
to any destination is implicit in the labels assigned to nodes;
and incremental, in that no relay node needs to know an entire
path to a destination.

The short review of prior related work presented in Sec-
tion II helps to highlight the novelty of our approach. We
observe that no prior solution to routing in MANETs exists
that attempts to reduce or avoid flooding of signaling mes-
sages, supports both unicast and multicast routing, and routes
robustly in dynamic topologies. AIR is the first approach
that eliminates the need for flooding any signaling packet,
routes unicast and multicast traffic using an integrated routing
structure, and allows the addition or deletion of nodes or links
with limited impact to node labels and locally stored routing
state.

Sections III and IV summarize the operation of AIR, which
supports unicast and multicast routing in MANETs using rout-
ing tables based on prefix labels rather than node identifiers.
AIR uses neighbor-to-neighbor signaling to label each node
with a prefix label that denotes its position in the MANET
relative to a root node. The root node is elected with the help
of the same signaling messages used to assign labels. Given
the prefix labels of a source and a destination, at least one
route is defined implicitly at each hop by simply comparing
the prefix label of the relaying node with the prefix label
of the destination. As a result, the routing table of a node
contains only prefix labels of its neighboring nodes, rather
than identifiers of intended destinations.

AIR builds and maintains a Distributed Hash Table (DHT)
to allow a source node to obtain the prefix label of a destination
without flooding. Nodes use a consistent hash function to
map their node identifiers, which are globally unique, to the
prefix labels of anchor nodes that are in charge of storing
the mappings between a node identifier and its corresponding
prefix label. Each destination publishes its presence in the
network by hashing its own identifier to obtain a prefix label,
and then sends a unicast publish message with the mapping
towards that prefix label. The node that best matches the
target prefix label becomes the anchor node of the destination
and stores the mapping. A source subscribes to a destination
simply by first hashing the destination identifier with the

consistent hash function to obtain the prefix label of the
anchor, and then sends a unicast subscribe message towards
the anchor. For the case of multicasting, the publish-messages
are group join requests from multicast receivers that form
a shared multicast tree by forcing nodes between multicast
receivers and the group anchor to join the multicast group.
A multicast source simply sends its multicast data packets
towards the anchor of the target multicast group. These packets
are multicast over the shared multicast tree after they reach the
first node that is already a member of the group.

Section V presents the results of an extensive simulation
study using the QualNet [23] simulator to illustrate the per-
formance gains obtained with AIR compared to traditional
routing in MANETs. The results show that AIR incurs much
less overhead, and provides higher delivery rates and shorter
end-to-end delays than traditional unicast and multicast routing
protocols aimed at establishing shortest paths proactively or on
demand. Lastly, Section VI summarizes the results obtained in
a small ten-node testbed running AIR and OLSR to illustrate
the fact that our new approach is more efficient than traditional
routing even in small networks.

II. RELATED WORK

Several schemes have been proposed for routing in
MANETs, and due to space limitations we only summarize
a small representative sample to highlight the novelty of the
approach adopted in AIR.

A. Unicast Routing protocols

Hierarchical routing schemes reduce signaling overhead by
organizing nodes into clusters (e.g., [14], [24]). HSLS [22]
and FSR [19] further reduce signaling of clustering schemes
by limiting propagation of control messages based on their
distance from an originating point. The key limitation of
clustering schemes is that the affiliation of nodes to clusters is
easily broken when nodes move. Re-establishing such affilia-
tions involves flooding. An approach to reducing the amount
of information communicated among nodes is to hash node
identifiers of destinations into Bloom filters, which are then
used in routing updates (e.g., [1], [3]). However, such schemes
suffer from the existence of false positives, which forces nodes
to use additional mechanisms to verify the existence of a route
to a destination.

An alternative approach consists of establishing a distributed
hash table (DHT) over a virtual topology defined on top of the
physical network. Examples of this approach are Kademlia
[17], Tapestry [28], and VRR [4]. The advantage of this
approach is that the DHT size grows only logarithmically
with the number of intended destinations. The key limitation
with approaches based on overlays is that a virtual link
can correspond to a multi-hop path in the physical network
topology. Accordingly, signaling overhead must be incurred
to maintain such links, and this becomes excessive in large
MANETs.

GPSR [13], XYLS [7], GLS [16]) are examples of using ge-
ographical coordinates for routing. These schemes are limited

by the requirement of line-of-sight to satellites (for GPS based
devices) and the overhead of discovering the geographical
coordinats of intended destinations.

A number of schemes substitute the use of geographical
coordinates with virtual coordinates consisting of the distances
of nodes to a few reference nodes (beacons). Examples of this
approach are Beacon Vector Routing (BVR) [10] and LCR
[5]. The main limitation of these approaches is that multiple
nodes may be assigned the same virtual coordinates, and there
is no inherent uniqueness to a specific vector of distances to
beacons. This results in either incorrect routing or the use of
additional signaling (including flooding) aimed at resolving
false positives.

Several compact routing schemes exist in which the routing
tables of nodes grow sub-linearly with the number of nodes
at the expense of using paths than may be longer than the
shortest paths. Interestingly, all the compact routing schemes
proposed to date are based on different forms of depth-first
searches used to label nodes with identifiers that denote their
relative location in a search tree. Tribe [26] is an example
of this approach. Tribe partitions a finite address space into
”control regions” corresponding to finite continuous intervals
of addresses. The advantages of this approach are that routing
tables are very small and the route between any two nodes is
therefore implicit from their intervals, just as is the case in
AIR. However, the limitation of these schemes is that they are
not applicable to MANETs, because the addition or deletion
of any node or link requires the relabeling of large portions
of the network.

We are aware of only one prior approach based on prefix
labels. DART [9] amounts to establishing clusters of nodes
based on prefix address trees. The key limitation of this
approach is that substantial relabeling of nodes occur when
nodes move or links fail, which is the same node-to-cluster
affiliation problem present in hierarchical routing.

B. Multicast Routing protocols

Multicast routing protocols for MANETs build either trees
or meshes over which data packets are forwarded. These
schemes are further classified as sender-initiated or receiver-
initiated based on their signaling. In the receiver-initiated
approach, introduced in CBT [2], also called shared-tree ap-
proach, only one node–called the core of the group–originates
the dissemination of information about a multicast group
reaching all nodes in the network. Receivers send explicit
requests towards the core to join the group. Sources forward
multicast data packets towards the core, and the packets are
then multicast once they reach any node in the multicast tree
or mesh. In contrast, source-based or sender-initiated schemes
have each multicast source initiate the dissemination of state
information that reaches all nodes in the network. Examples of
sender-initiated approaches for MANETs are MAODV [20],
ADMR [12], MZR [27], and ODMRP [15]. Examples of
receiver-initiated approaches for MANETs are CAMP [11]
and PUMA [25]. The limitation with both schemes is that
they require the flooding of signaling packets from either the

(a) Assigning prefix labels (b) Using hash function to route to anchor (c) Routing unicast traffic

Fig. 1. Overview of unicasting with AIR

sources or the cores of multicast groups, which does not scale
when the network size and number of multicast groups are
large.

Recently, a few solutions have explored the use of geograph-
ical coordinates in multicasting. GMR [21] supports multicast
routing as an extension of geographical unicast routing; how-
ever, the coordinates of the destinations are assumed to be
known, which is not scalable, as it requires that information
to be disseminated throughout the network. On the other
hand, HRPM [8] is an example of multicast routing based
on geographical coordinates that avoids the need for cores
or sources to send control traffic to the entire network by
means of geographic hashing and hierarchical routing. HRPM
assumes that each node knows its own geographic location,
which can be attained by using GPS [18] at every node. The
key advantage of this scheme is that it reduces the multicast
signaling overhead by eliminating the need for flooding from
cores (i.e., RPs). The disadvantage of the scheme is the need
to implement geographic routing and the use of GPS.

III. AUTOMATIC INCREMENTAL ROUTING

AIR routes packets from sources to unicast or multicast
destinations by the assignment of prefix labels to nodes, and
the dynamic mapping of unique node identifiers (e.g., IP or
MAC addresses) to prefix labels. The basis for the operation of
AIR is the distributed establishment of the Labeled Directed
Acyclic Graph (LDAG) rooted at an elected node. The root
node is elected such that: (a) Each node is assigned a prefix
label denoting the relative location of the node with respect
to the root of the LDAG; (b) the prefix labels of a source and
a destination define one or multiple valid routes between two
nodes; and (c) node mobility, link or node failures and addition
of new nodes have limited impact on the prefix labels already
assigned to other nodes.

This type of election used for the root node in AIR is similar
to the election of a root node in distributed spanning tree
algorithms. Neighbor-to-neighbor Hello messages are used
to create and maintain the LDAG. A node announces to its
neighbors its own prefix label and the prefix labels it assigns
to its children in the LDAG, and stores prefix labels it hears
from all its neighbors. Each of these Hello messages carry
a sequence number to establish its freshness. The soft-state
nature of Hello messages is used to update the labels of the

nodes as the topology changes. Hello messages are propagated
from the root node in a breadth-first manner and percolates
through the MANET. The Hello sent by a node also lists the
identifiers and prefix labels of its one-hop neighbors, as well
as the multicast groups to which the node belongs. Over time,
each node knows the identifiers and prefix labels of nodes in
its two-hop neighborhood. Figure 1(a) shows an example of
an LDAG built with AIR in a MANET.

Clearly, a source must know the prefix label of its intended
destination to route to it. To discover routes to destinations,
nodes build and maintain a DHT and publish-subscribe to the
mappings of node identifier and their prefix labels in this DHT.
Each destination uses a consistent hashing function (e.g., as
SHA-1) that takes as input the node identifier and returns a
prefix label. If the node identifier corresponds to a multicast
address, then the hash function returns a group-prefix-label.
The node whose label is the closest match to the prefix label
returned by the hash function becomes the anchor for that
destination. A destination then publishes its presence in the
network by sending its own mapping (i.e., its node identifier
and its prefix label) to its anchor (see Figure 1(a)). To find
a destination and subscribe to it, a source uses the same
consistent hashing function with the destination node identifier
as input. The source then sends a subscription request to the
resulting anchor node. Anchor nodes forward requests and data
traffic directly to the destinations by looking up the locally
stored mappings.

In the case of multicasting, establishing receiver-initiated
multicast trees is very similar to the manner in which unicast
routes are established. The group-prefix-label derived from a
multicast group identifier serves as the anchor of the multicast
group, which serves the traditional role of the core [2], [11]
of a multicast group. To join a multicast group, a multicast
receiver first determines if any of its neighbors is on the group
and if so it sends a join request to it; otherwise, the receiver
simply hashes the multicast group identifier to obtain the group
prefix label. A join-request is sent towards the node with the
closest match to such a label, which serves as the anchor of
the group. A join request is answered with a join reply by any
node that is already part of the shared tree, and a reverse path
is activated as the join reply is forwarded and relaying nodes
become a part of the shared multicast tree for the group.

(a) Joining a multicast group (b) Forwarding multicast data

Fig. 2. Overview of multicasting with AIR

The following examples further illustrate the basic opera-
tion of AIR. Figure1(a) shows an LDAG rooted at node j.
Figures1(b),1(c) illustrate the operation of AIR for unicast
traffic. As shown in these two figures, node q hashes its own
node identifier and acquires a prefix label 031. The node
corresponding to this label, node d, becomes the anchor of
node q. Node h, a source node, hashes the node indentifier of
node q, obtains the prefix label of node d, and routes to node
q via node d.

Figure 2(a) illustrates the creation of a shared-tree for a
multicast group whose group-prefix-label is 0111, which is
also the prefix label for node b. This makes node b the core of
the multicast group. Nodes a, d, e, p,m, n, h and o are already
participating in the multicast routing tree of the group. Nodes
r and i are new receivers attempting to join. The join request
from node r is answered by node n , while the request from
node i traverses all the way to the core of the group at node
b. Figure 2(b) shows how a source node s that is not a part
of the shared tree simply forwards multicast data packets to
node p, which is a next-hop to the prefix route between node
s and node b. When the data packet reaches node b (or any
node that is already a member of the group, in this case node
p), it is multicast over the shared tree.

IV. AIR PROTOCOL DETAILS

A. Information Stored and Exchanged

Each node maintains a neighbor table (NT) and a two-hop
neighborhood table (TNT). The NT of node i contains an
entry for each immediate neighbor of node i, and each entry
states the identifier and prefix label of a neighbor; the most
recent sequence number received from the neighbor; and a
list of multicast groups to which the neighbor belongs, with
each entry in the list indicating if node i was selected by
its neighbor to reach the core of the group. The TNT of
node i contains an entry for each two-hop neighbor of node
i, and each such entry states the node identifier and prefix
label of the neighbor. Each node also maintains a multicast
group table listing information for each multicast group to
which the node belongs; the information stored for each group
includes: the identifier and group-prefix-label of the group, a
group sequence number, and the next-hop towards the core of
the group.

Each node also maintains a packet cache listing information
about multicast data packets heard recently, and a signaling
cache that stores and aggregates update information to be sent
in the next Hello.

AIR uses a single type of control message called a Hello
to carry out its signaling. A Hello sent by node a contains
the following information: (a) An LDAG identifier consisting
of the node identifier of the root of the LDAG and the last
sequence number created by the root, (b) the prefix label and
node identifier of the node, (c) a sequence number created by
the sending node, (d) the list of node identifiers and prefix
labels for neighbors one and two hops away, and (e) a group
information list (GIL).

The GIL in a Hello consists of a list of one or more
entries describing the state of the sending node with respect
to a multicast group. Each entry in the GIL specifies: (a) the
identifier and group-prefix-label of a multicast group; (b) an
action being taken for the group (join-request, join-reply, quit
request, or member); (c) the node identifier and prefix label of
the next hop selected to reach the core of the group; and (d)
the node identifier of one or more nodes to which a join-reply
is intended.

B. Structure of Prefix Labels

Let Σ be the alphabet containing a finite number of symbols
and Σ∗ be the set of all strings over Σ such that |Σ| ≥ 2. Every
node labels its links to each of its neighbors with a letter w
from Σ. If wi represents the letter assigned to the ith link of
any node then, wi "→ {wi ∈ Σ | wi %= wi+1∀i ≤ d − 1},
where d is the degree of the node. Hence, a unique letter is
assigned to each link connecting any node to its neighbors. The
labeling logic labels each node in the LDAG in a breadth-first
fashion. Given that the LDAG can be organized as a k-ary
tree, with k being the degree of the LDAG, each child (up to
k) is assigned a prefix label Λ as defined below:

Prefix Label: A prefix label Λ for node y is a word in Σ∗

such that Λ =Λ parent) l′, where Λparent is the prefix label
obtained from the parent,) is a concatenation operator, and
Λparent is concatenated with a unique suffix over k different
choices from Σ to form Λ.

It follows from the above definition that the prefix label
of a node Λ uniquely identifies the node in a given LDAG.

Algorithm 1: Root Election
Data: nbrTable, labelTimeOut, pkt
root = self; parent = self;
parentExists = Fn(findParent(nbrTable, parent));
if parentExists == False then

if labelTimeOut == True then
/* elect self as root node and

assign labels to nbrs */
root = self;
for each nbr in nbrTable do

nbr.label = node.nbrLabel;
pkt.type = ’label-rep’;
pkt.nbrInfo = (nbr, nbr.label);
/* send packet with nbr info */
Fn(sendPacket(pkt, nbr, nbr.label));

end
end

else
/* valid parent exists in nbrhood */
if parent.rootId < self.Id then

/* parent offers better path to a
root node */

pkt.type = ’label-req’;
/* send request for label and upon

receiving a label reply change
the local label to reflect the
prefix label */

Fn(sendPacket(pkt, parent, parent.label));
else

/* labeling as root is already
handled */

continue;
end

end

The prefix labels of nodes define a predecessor relation in the
LDAG, denoted by ←↩, such that for any two nodes s and d
in the LDAG:

1) s ←↩ d : s precedes d. In this case, d can be reached
by traversing a prefix path of descendents of s in the
portion of the LDAG rooted at s.

2) d ←↩ s : d precedes s. In this case, d can be reached
upstream from s by traversing a prefix path of ancestors
of s.

3) d ≈ s : d and s are not directly related. In this case, d
can be reached by traversing the LDAG from s up to
the first common ancestor of d and s, say A, such that
A ←↩ s and A ←↩ d hold, and then down from A to d.

The topology of a MANET changes constantly and nodes
join or leave the network arbitrarily, which results in incon-
sistent labels while nodes are updating them. AIR enforces
a strict labeling by ordering prefix labels using sequence
numbers as well. Let L represent a tuple (Sa

n,Λa
n), where

Sa
n denotes the sequence number that originates at a and is

Algorithm 2: Determine next hop by comparing prefixes
getNextHop(nbrTable, destLabel)
{ nbr = self; prefixLength = 0;
for each nbr in nbrTable do

/* find the nbr that offers the
maximum matching prefix */

prefixLength = Fn(maxMatching(nbr, destLabel));
if prefixLength > maxPrefixLength then

nextHop = nbr;
maxPrefixLength = prefixLength;

else
continue;

end
end
if nbr == self then

/* no valid nbr exists so returning
error */

return ’no valid nextHop’;
else

/* valid nbr exists. returning nbr
*/

return nextHop;
end
}

forwarded by node n, and Λa
n denotes the prefix label of the

current node with respect to a. S is a monotonically increasing
integer, while Λ is a word in Σ∗. We define an operator ≺ over
the set of ordered-pair of identifiers L. If La

x, La
y are two such

tuples then,

{La
x ≺ La

y | La
x,y ∈ Σ} (1)

if { (Sa
x < Sa

y) ∨ [(Sa
x = Sa

y) ∧ (Λk
x & Λj

y)] }

It can be shown that the operator ≺ is anti-reflexive and
transitive over the set Σ∗, and that these prefix labels can be
used to establish an ordering among the nodes.

C. Electing a Root and Assigning Prefix Labels

A root node is elected in a distributed fashion using Hello
messages. Ties between two nodes are broken by their node
identifiers, for example. If a node is not labeled, it looks up its
neighbor table to determine if any node is labeled. If no node
is labeled and its local timer for labeling expires, the node
elects itself as the root node. The self-elected root node then
sends Hello messages with its own label and assigns labels to
the neighboring nodes.

The node with the lowest node identifier enforces the order-
ing among the nodes in the LDAG as described in Algorithm 1.
In this paper, for the sake of simplicity, we only consider prefix
labels assigned by a single root node.

D. Routing on AIR

To route to a destination d, node s chooses the link to
any of its two-hop neighbors that offers the maximum length
of prefix label that matches with the prefix label of the
destination. This is simply maximum matching prefix logic,
shown in Algorithm 2, which selects the next hop using a
greedy strategy that considers the two-hop neighborhood of
a node, and can find shorter paths than the traditional prefix-
tree routing by leveraging the richer path diversity of an LDAG
compared to a prefix tree. For instance, if there exists a label
in the two-hop neighborhood that is lexicographically closer
to the destination, the next hop is chosen such that the packet
is forwarded to that node instead of routing via the prefix-tree
parent. We ensure that this greedy strategy does not encounter
a local minima by randomly selecting a next hop when all
nodes offer the same matching prefix.

From the predecessor relation induced by the prefix labels
in the LDAG of a MANET, a given node selects a next hop to
a prefix label according to the possible cases allowed by the
predecessor relation.

E. Building the DHT

As we stated before, to avoid bottlenecks and single-points
of failure, the mappings of node identifiers to prefix labels is
distributed within the network. Node publish and subscribe to
both unicast and multicast destinations using the same LDAG.
Algorithm 3 briefly describes these mechanisms.

1) Publishing Destinations: Each node publishes the map-
ping between its node identifier and its prefix label to an
anchor node according to Algorithm 3. The node with a prefix
label that is the closest match in its two-hop neighborhood
to the prefix label stated in a publish request becomes the
designated anchor for the mapping and stores it.

The frequency of the update messages is controlled by the
topology changes in the neighborhood of the node. Each node
also maintains a list of prefix labels assigned to it and its
corresponding parent. If the node detects a change in its prefix
label, it then sends an update to its anchor.

2) Subscribing to Destinations: Active unicast sources sub-
scribe to unicast destinations by first hashing the node iden-
tifier to get the label of the anchor. The unicast subscription
request (typically the first data packet) travels all the way to
the corresponding anchor node, which can then forward to the
unicast destination.

Multicast receivers subscribe to the multicast groups in
much the same way as above. However, multicast subscriptions
by receivers are resolved by the first member of the multicast
group reached by the join request. The anchor of a multicast
group is that node whose prefix label is the closest match to
the group prefix label stated in a subscription request for the
group.

Sources route towards the anchor of a unicast or multicast
destination, choosing the next hop that best matches the
anchor’s prefix label.

Algorithm 3: Publish Algorithm
Data: nodeAddress, nodeLabel, prevLabel, timeOut, pkt
anchorLabel = Fn(getHash(nodeAddress));
nextHop = Fn(getNextHop(nbrTable, anchorLabel));
if nodeLabel %= prevLabel or timeOut == True then

/* set packet information */
pkt.type = ’update’;
pkt.mapping = (nodeAddress, nodeLabel);
pkt.anchorLabel = anchorLabel;
pkt.prevHopLabel = nodeLabel;
pkt.srcLabel = nodeLabel;
/* send the message to the nextHop

*/
Fn(sendPacket(pkt, nextHop, anchorLabel));
Fn(resetTimer(timeOut)) ;
prevLabel = nodeLabel ;

else
/* wait for next time-out or event

*/
Fn(Wait())

end

Algorithm 4: Handling Publish packets
Data: pkt, nodeLabel, nbrTable, anchorLabel
if pkt.type == ’update’ then

/* Node that matches the anchorLabel
closest is assigned as anchor */

nextHop = Fn(getNextHop(nbrTable, anchorLabel));
if nextHop == ’no valid next hop’ then

/* no node matches the anchor
label closer than current node
*/

Fn(storeMapping(self, pkt.mapping))
else

/* found better mapping */
Fn(sendPacket(pkt, nextHop, anchorLabel))

end
end

F. Adaptive Timers

Hellos are transmitted periodically by a node to all its
immediate neighbors. The periodicity of Hellos is determined
by the nature of the updates that need to be conveyed. Two
separate timeout values, a long-timeout (LT) and a short-
timeout (ST) are maintained by each node. Updates to the
neighborhood information or GIL are aggregated until either
timeout expires. Any event that changes the next hop towards
the core of a group for which the node is active fires the short-
timeout. When the ST expires, the node sends its Hello with
the aggregated updates stored in its signaling cache, and the
node takes the steps needed to maintain multicast trees. The
long-timeout is fired when the topology is relatively static and
fewer messages are needed to maintain the multicast trees of

Algorithm 5: Subscribe Algorithm
Data: destAddress, nbrTable, nodeLabel
anchorLabel = Fn(getHash(destAddress));
nextHop = Fn(getNextHop(nbrTable, anchorLabel));
if nextHop %= ’no valid next hop’ then

/* set packet information */
pkt.type = ’subscription’;
pkt.sessionType = ’unicast’ or ’multicast’;
pkt.destination = destAddress;
pkt.anchorLabel = anchorLabel;
pkt.prevHopLabel = nodeLabel;
pkt.srcLabel = nodeLabel;
/* send packet to nexthop */
Fn(sendPacket(pkt, nextHop, anchorLabel));
Fn(setTimer(timeOut)) ;

else
/* sending packet to self since no

nextHop available */
Fn(sendPacket(pkt, self, nodeLabel));

end

various groups. Figure 3 shows an example of the adaptive
update timers. These timers ensure that the frequency with
which a node transmits its Hellos is a function of the topology
changes around the node.

Fig. 3. Message aggregation using adaptive timers

G. Node Dynamics

Nodes acquire new labels when they reposition themselves
in the network. While changes to nodes joining as a fringe
node is trivial, changes in the prefix label of internal nodes
are more involved. As Algorithm 7 illustrates, a node tries to
find paths to its peers in the event a parent node moves/fails.
If it finds a valid path to all its peers, then it emulates the
parent node until the expiration of a relabel − timer. This
prevents dropping of existing packet flows. Moreover, each
node maintains its old label for one complete time-period after
relabeling to avoid loops or packet drops.

Changes to labels of anchors or cores does not affect the
topology much as the node that is next closest to the prefix
label or the group-prefix-label automatically assigns itself as
the anchor or core.

Algorithm 6: Handling Subscribe packets
Data: pkt, nodeLabel, nbrTable, anchorLabel
if pkt.type == ’subscription’ then

if pkt.sessionType == ’unicast’ then
nextHop = Fn(getNextHop(nbrTable, anchorLabel));
if nextHop == ’no valid next hop’ then

/* This node matches the anchor
label closest. Look up the
mapping for the destination */

destLabel = Fn(lookupMapping(pkt.destAddress));
nextHop = Fn(getNextHop(nbrTable, destLabel));
Fn(sendPacket(pkt.data, nextHop, destLabel));

end
Fn(sendPacket(pkt, nextHop, anchorLabel));

else
/* Packet is a multicast packet */
if node.multicastGroup == pkt.multicastGroup then

/* Node is a part of multicast
group send data in pkt to all
members of the group */

for each nbr in nbrTable do
if nbr in multicast group then

Fn(sendPacket(pkt.data, nbr,
anchorLabel));

else
continue;

end
end
/* add the nbr that sent

subscription to the multicast
group */

Fn(addNbrToGroup(node.multicastGroup.members,
pkt.prevHop));

else
/* Packet is forwarded towards the

core of the group, current node
subscribes to the group as well
*/

Fn(subscribe(anchorLabel, nbrTable,
nodeLabel));

end
end

end

H. Group Dynamics

Group membership is maintained using simple soft-state
logic through the exchange of Hellos periodically. Although
each Hello specifies control information in the GIL for one or
multiple multicast groups, the steps taken for a given multicast
group are independent of other groups.

A receiver interested in joining a particular multicast group
hashes the name of the group to obtain the corresponding
group-prefix-label. It then sends a join-request for the group
in the GIL of its Hello stating the identifier and prefix label of
the neighbor node it chooses along one of its implicit routes
to the group-prefix-label.

A core node of the multicast group G receives a join-request
for that group in the Hello from a neighbor x. It then, sends a
join-reply entry for group G in the GIL of its own Hello and
states the identifier of node x as the recipient of the reply. The
same action is taken by a node that is a member of multicast

Algorithm 7: Handling node dynamics
Data: nbrTable, oldNbrTbl, topoTestTime, topoTimeOut,
repair = False;
while topoTestTime < topoTimeOut do

if nbrTable %= oldNbrTbl then
/* one hop neighborhood has

changed */
if (getNextHop(nbrTable, ’0’) == ’no valid next
hop’) then

/* next hop to root does not
exist */

for each nbr in oldNbrTbl do
if Fn(checkPathExists(nbr)) then

repair = True;
else

repair = False;
/* subtree is disconnected

from rest of the DAG,
initiating relabeling
*/

Fn(initLabeling());
end

end
else

/* Valid next hop to root node
exists. Do nothing */

Fn(incr(topoTestTime));
continue;

end
else

/* no topology change. increment
timer */

Fn(incr(topoTestTime));
continue;

end
end

group G when it receives a join-request for that group in the
Hello from a neighbor stating that the node is the next hop
to the core of the group. The core of a group G becomes
a member of the group and starts sending a ‘member’ entry
for group G in the GIL of its Hellos after receiving the first
join-request for the group.

If node x is not a member of a multicast group G and
receives a join-request from a neighbor stating the node as the
next hop to the core of group G, then node x sends a join-
request of its own in the GIL of its next Hello. Its join-request
states its choice of next hop to the core of G along one of its
implicit routes to the core.

A ‘member’ entry for group G in the GIL of the Hello
from a node serves as an update of the multicast state for
all its neighbors. It also helps nodes decide when to forward
multicast data packets. A multicast receiver that does not serve
as a relay and chooses to leave a group simply stops including
an entry for group G in its Hellos.

V. PERFORMANCE COMPARISON

We modeled AIR using a discrete event simulator called
QualNet [23] (version 4.0) and compared AIR separately with
unicast and multicast protocols. We chose AODV and OLSR
for unicast and MAODV and ODMRP as multicast protocol
benchmarks. We also ran tests to compare AIR with nodes
running both unicast and multicast protocols by combining
AODV and OLSR with ODMRP. In each of our experiments,
we use three metrics to compare the performance of the
protocol: The total number of control packets transmitted per
node; the delay measured per flow on an end-to-end basis;
and the packet delivery ratio, defined as the number of data
packets successfully delivered.

Simulations were instrumented in networks of nodes placed
in a terrain of dimensions 1500m X 1500m and nodes were
placed randomly within unit blocks (each of which was 5%
of the dimension of the region). Radios in the nodes were
802.11 with CSMA channel access and transmission power
of 10dbm. The simulation time was set to 450 seconds and
data sources were generators that produced a constant bit rate
(CBR) at a rate of 10 packet per second. Each multicast source
was allowed to transmit up to 1000 packets.

The random waypoint mobility model was chosen to simu-
late the movement of nodes. While it is common observation
that this mobility model is more aggressive than real scenarios,
it helps us understand the performance of each protocol under
the worst possible case. Each simulation was run 10 times
with different seeds to avoid any artifact of pseudo random
number generators.

Key parameters of all routing protocols were selected to
ensure sufficient likeness for comparison. Periodic refresh
timeouts for ODMRP and MAODV were set to 3 sec. Maxi-
mum group timeouts were set to 3 times the refresh timeouts.
AODV’s horizon threshold was set to the same value as
ODMRP’s TTL-Max. Protocols running in combination had
separate trace files and statistics gathered were combined.

A. Unicast Traffic with increasing Pause Times

Our first scenario demonstrates the robustness of AIR in the
face of mobility by comparing the different protocols under
pause times increasing from 0 to 300 seconds in a MANET
of 400 nodes. Figures 4(a), 4(b), and 4(c) show the results for
this scenario. We observe that when nodes move constantly,
all protocols have low delivery ratios. OLSR suffers because
of too many LSUs being propagated to the entire network after
each topology change. AODV manages to catch up faster as
the rate of mobility goes down; it leverages the unexpired
entries in its routing table cache to respond to nodes that are
not moving as fast.

AIR utilizes anchors very effectively. It achieves almost
15% higher delivery ratio than either OLSR or AODV and
yet has 20% less overhead than the two. The higher delivery
ratio is explained by fewer control messages transmitted,
resulting in lesser congestion across the network. The end-to-
end latency of AIR is also low under high mobility because
fewer packets are retransmitted. While it is hard to outperform

(a) Delivery ratio (b) End-to-End latency (c) Control Overhead

Fig. 4. Performance of AIR, AODV and OLSR with increasing pause times.

(a) Delivery ratio (b) End-to-End Latency (c) Control Overhead

Fig. 5. Performance of AIR, MAODV and ODMRP with increasing pause times.

(a) Delivery ratio (b) End-to-End latency (c) Control Overhead

Fig. 6. Performance of AIR, AODV+ODMRP and OLSR+ODMRP with increasing pause times.

flooding in terms of latencies, flooding under overloaded
conditions results in severe performance degradation and this
is where AIR shows better end-to-end latencies. The perfor-
mance of AODV and OLSR come closer to that of AIR only
in relatively static scenarios.

B. Multicast Traffic with increasing Pause Times

In this scenario, we simulated only multicast traffic to
observe how AIR compares with multicast routing protocols.
Each multicast group was set to contain 20 members and
sources of these groups sent 10 packets per second. The
multicast groups were assigned unique global addresses. Fig-
ures 5(a) to 5(c) show the results for this scenario. We can
see that AIR delivers 20% more than MAODV and almost

10% more than ODMRP while at the same time incurring
almost 40% less overhead. Note that, for short pause-times
of up to 50 seconds, AIR manages to deliver packets two to
three seconds faster as well. Under longer pause times, it is
hard to outperform network-wide floods in terms of latency.
AIR outperforms both protocols in the combined performance
of delivery, overhead and latency.

AIR performs better than MAODV and ODMRP, because
of the reduced amount of control overhead generated by
AIR, and in particular the absence of periodic network-wide
flooding of control packets. In MAODV, whenever a receiver
disrupts the shared-tree by leaving and joining at a different
location, it floods the network with a RREQ. On the other-
hand, in ODMRP, a multicast source floods the entire network

(a) Delivery ratio (b) End-to-End latency (c) Control Overhead

Fig. 7. Performance of AIR, AODV+ODMRP and OLSR+ODMRP with increasing groups.

periodically with a join-query message. In contrast, disruptions
due to mobility trigger fewer updates in AIR, and control
messages are propagated throughout the network. This reduces
any congestion that may occur owing to network wide floods
and improves delivery significantly.

C. Combined Unicast, Multicast Traffic with Increasing Pause
Times

We ran simulations of ODMRP with two different flavors of
unicast routing protocols. AODV and OLSR characterize two
different class of unicast routing protocols, one is a reactive
routing protocol and the other a proactive one. As we can see
from Figures 6(a), 6(b) and 6(c), AIR does better in terms
of all three metrics. ODMRP with reactive routing does better
for smaller pause times. The congestion caused by repeated
broadcasts of control messages causes the delivery ratio to
drop almost by 35%. AIR manages to deliver packets at the
same rate as before and sends fewer messages without much
bias for either types of traffic.

D. Combined Traffic with Varying Group Size and Shape

In this scenario, the topology of the network is static and
the number of multicast groups is increased from 1 to 6. Each
of these groups was divided such that the total members in
the groups increased by a factor, corresponding to the number
of groups. However, the size of each group was determined
uniformly at random.

Therefore, in the first experiment with 1-group, the group
size was set to 10 members. In the second experiment with
2-groups, the group size was set to 20 members, and the
consitution of each of the group was determined randomly
such that it totaled 20 members. In this case, group-1 was setup
with 8 nodes and group-2 with 12. Similarly the number of
groups were varied from 1 to 6. The average distances between
each group member was set to vary from 3 hops to 7 hops.
This helped us to observe the effect of having wide-spread
group members vs. spatially co-located ones.

We observe from Figures 7(a) to 7(c) that AODV+ODMRP
performs better for smaller groups that are spatially co-located.
However, as the number of groups increases, its performance
degrades independently of how the groups are located in
the network. AIR outperforms both AODV+ODMRP and

Delivery Overhead Overhead
Raio single link Total

OLSR 95.224% 63 pkts 5400 pkts
AIR 97.117% 16 pkts 3100 pkts

TABLE I
IMPLEMENTATION RESULTS

OLSR+ODMRP as the number of groups increases, and the
performance of AIR is very similar for any number of multi-
cast groups. These results should be expected, given that the
cores of groups do not generate any signaling traffic in AIR.

VI. TESTBED EVALUATION

We designed a prototype of AIR to demonstrate some of
its characteristics using a testbed. We wrote AIR in Python,
because it enabled rapid prototyping. The testbed consisted
of 10 nodes and each node in the network was equipped
with a 802.11b/g radio on a Mini-ITX board running Debian.
Each node establishes a UDP connection with the neighboring
nodes to exchange messages. We built our own version of
flow control without explicit acks to leverage the use of the
hello messages. The testbed nodes were deployed within a
building as shown in Figure 8 and were placed such that any
source-destination pair was connected over multiple hops. We
evaluated the behavior of AIR under different scenarios. As
a benchmark, we used the OLSR protocol from [6] for our
comparisons.

Due to space limitations, we briefly discuss a single scenario
to show a proof of concept and also demonstrate some crucial
properties of AIR. To characterize the effects of mobility, we
studied the scenario where a node is moved to a different
part of the network after 10 minutes of static placement,
and determined the overhead incurred by AIR and the OLSR
protocol. Table I shows the performance results for the two
protocols. Note that while there is a slight improvement in
the delivery ratio in AIR, the number of control messages
transmitted when a single node moved is almost four times
less in AIR than in OLSR.

Fig. 8. Testbed deployment

VII. CONLCUSION

We presented the first unified approach to unicast and
multicast routing in MANETs that eliminates completely the
need for flooding of signaling packets in the network, or the
network-wide dissemination of signaling packets from each
source or each destination. Our approach is called Automatic
Incremental Routing (AIR) because routing to any unicast or
multicast destination is automatic, in that the routes to the
destination are implicit in the prefix label assigned to nodes;
and incremental, in that no relay node needs to know an
entire path to any destination. We described salient aspects of
our implementation of AIR, and used simulation experiments
to compare its performance with the performance of tradi-
tional unicast and multicast routing protocols, OLSR, AODV,
ODMRP and MAODV in particular. Testbed experiments
using a Python implementation of AIR demonstrate that AIR
can offer significant performance advantages over traditional
routing schemes even in very small wireless networks.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the U.S. Army Re-
search Office (ARO) under grant W911NF-05-1-0246 and by
the Baskin Chair of Computer Engineering. Any opinions,
findings, and conclusions are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison. Scalable
bloom filters. Inf. Process. Lett., 101(6):255–261, 2007.

[2] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (cbt).
SIGCOMM Comput. Commun. Rev., 23(4):85–95, 1993.

[3] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey, 2002.

[4] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron.
Virtual ring routing: network routing inspired by dhts. SIGCOMM
Comput. Commun. Rev., 36(4):351–362, 2006.

[5] Q. Cao and T. Abdelzaher. Scalable logical coordinates framework for
routing in wireless sensor networks. ACM Trans. Sen. Netw., 2(4):557–
593, 2006.

[6] T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr).
In RFC Editor, United States, 2003.

[7] S. Das, H. Pucha, and Y. Hu. Performance comparison of scalable
location services for geographic ad hoc routing. INFOCOM 2005,
2:1228–1239 vol. 2, March 2005.

[8] S. M. Das, H. Pucha, and Y. C. Hu. Distributed hashing for scalable
multicast in wireless ad hoc networks. IEEE Transactions on Parallel
and Distributed Systems, 19(3):347–362, 2008.

[9] J. Eriksson, M. Faloutsos, and S. V. Krishnamurthy. Dart: dynamic
address routing for scalable ad hoc and mesh networks. IEEE/ACM
Trans. Netw., 15(1):119–132, 2007.

[10] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon vector routing: scalable point-to-point routing in
wireless sensornets. In NSDI’05, pages 329–342, Berkeley, CA, USA,
2005. USENIX Association.

[11] J. J. Garcia-Luna-Aceves and E. L. Madruga. The core-assisted
mesh protocol. IEEE Journal on Selected Areas in Communications,
17(8):1380–1394, Aug 1999.

[12] J. G. Jetcheva and D. B. Johnson. Adaptive demand-driven multicast
routing in multi-hop wireless ad hoc networks. In ACM MobiHoc ’01,
pages 33–44, New York, NY, USA, 2001. ACM.

[13] B. Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for
wireless networks. In MobiCom 2000, pages 243–254, New York, NY,
USA, 2000. ACM.

[14] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks
performance evaluation and optimization. Computer Networks (1976),
1(3):155 – 155, 1977.

[15] S.-J. Lee, M. Gerla, and C.-C. Chiang. On-demand multicast routing
protocol. In Proc. of the IEEE Wireless Comm. and Net. Conf., 1999.
WCNC., pages 1298–1302 vol.3, 1999.

[16] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In MobiCom
2000, pages 120–130, New York, NY, USA, 2000. ACM.

[17] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information
system based on the xor metric. In 1st International Peer-to-Peer
Symposium (IPTPS 2002), pages 53–65, 2002.

[18] B. Parkinson and J. J. Spiker. Global Positioning System: Theory and
Applications, Volume 1, volume 163. xx 1996.

[19] G. Pei, M. Gerla, and T.-W. Chen. Fisheye state routing: a routing
scheme for ad hoc wireless networks. ICC 2000, 1:70–74 vol.1, 2000.

[20] E. Royer and C. Perkins. Multicast ad hoc on- demand distance vector
(maodv) routing, 2000.

[21] J. Sanchez, P. Ruiz, and I. Stojmenovic. Gmr: Geographic multicast
routing for wireless sensor networks. In IEEE SECON 2006, pages
37–44. IEEE, 2006.

[22] C. A. Santivánez, R. Ramanathan, and I. Stavrakakis. Making link-state
routing scale for ad hoc networks. In MobiHoc 2001, pages 22–32, New
York, NY, USA, 2001. ACM.

[23] S. N. Technologies. Qualnet. http://www.scalable-networks.com/.
[24] P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in

very large networks. SIGCOMM Comput. Commun. Rev., 18(4):35–42,
1988.

[25] R. Vaishampayan and J. J. Garcia-Luna-Aceves. Efficient and robust
multicast routing in mobile ad hoc networks. IEEE MASS 2004, pages
304–313, Oct. 2004.

[26] A. C. Viana, M. D. de Amorim, S. Fdida, and J. F. de Rezende. An
underlay strategy for indirect routing. Wirel. Netw., 10(6):747–758, 2004.

[27] X. Zhang and L. Jacob. Multicast zone routing protocol in mobile ad hoc
wireless networks. Local Computer Networks, Annual IEEE Conference
on, 0:150, 2003.

[28] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and. Technical report,
University of California at Berkeley, Berkeley, CA, USA, 2001.

