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Elastodynamic Green’s Functions for a Laminated Piezoelectric Cylinder 

 

H. Bai 1 , E. Taciroglu 2 , S.B. Dong 2 , and A.H. Shah 3

Abstract 

 

Elastodynamic Green’s functions for a piezoelectric structure represent the electro-

mechanical response due to a steady state point source as either a unit force or a unit charge.  

Herein, Green’s functions for a laminated circular piezoelectric cylinder are constructed by 

means of the superposition of modal data from the spectral decomposition of the operator of the 

equations governing its dynamic behavior.  These governing equations are based on a semi-

analytical finite element formulation where the discretization occurs through the cylinder’s 

thickness.  Examples of a homogeneous PZT-4 cylinder and a two layer cylinder composed of a 

PZT-4 material at crystal orientations of 30o± with the longitudinal axis are presented.  

Numerical implementation details for these two circular cylinders show the convergence and 

accuracy of these Green’s functions. 
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1. Introduction 

Free vibration analysis of a structure, or alternatively the spectral decomposition of the 

operator of its governing equation, yields modal data, which can be used to characterize the 

structural response due to a myriad of forced inputs.  Herein, we are concerned with the 

construction of Green’s functions for a laminated circular cylinder based on modal data 

established by the procedure of Siao et al (1994).  The cylinder under consideration may be 

composed of any number of uniform thickness piezoelectric layers, where each layer may have 

its own material properties.  The availability of Green’s functions will enable methods to be 

formulated for examining the wave scattering phenomena in such cylinders in the presence of 

flaws such as cracks and delaminations.  It is hoped that useful ideas for structural health 

monitoring will emerge from this path of investigation. 

The free axisymmetric and flexural vibrations of a circular piezoelectric cylinder whose 

material belongs to crystal class 6mm were first studied by Paul (1962,1966).  Numerical 

exploration of his frequency equations in the long wave length regime was first attempted by 

Paul and Raju (1981,1982) by means of asymptotic analysis.  Subsequently, Paul and 

Venkatesan (1987) provided numerical data for a wide range of wave lengths under various 

combinations of opened and shorted circuit conditions on the two lateral surfaces of a hollow 

cylinder.  Ding et al (1997) and Chen et al (2004) presented analytic solutions for the free 

vibration of piezoelectric cylinders filled with a compressible fluid, wherein results for a cylinder 

without fluid were also given.  Buchanan and Peddieson (1989, 1991) computed the natural 

frequencies of propagating waves for infinitely long piezoelectric cylinders using a one-

dimensional finite element model in the radial direction.  Siao et al (1994), employing the same 

radial discretization procedure and a semi-analytical finite element formulation, determined 
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spectral data for both propagating waves and edge vibrations in such cylinders.  More recently, 

Hussein and Heyliger (1998) presented a free vibration analysis of laminated piezoelectric 

cylindrical shells using a semi-analytical discrete-layer model.  While the bulk of the literature is 

concerned with free vibration analyses, some studies on forced response have appeared; see, for 

example, Ding et al (2003), who considered the transient axisymmetric plane strain response of a 

hollow piezoelectric cylinder.  For additional references on topics related to piezoelectric 

structures, see Dökmeci (1980, 1989) whose surveys elaborate on a wide range of subjects, 

including many on finite element calculations. 

Siao et al (1994) presented a method for determining the eigendata for a circular 

laminated piezoelectric cylinder.  Such data consist of a finite basis of propagating waves and 

edge vibrations, as contrasted with an infinity of these eigenmodes had an analytical solution 

procedure been used.  Nevertheless, such numerical eigendata can be made as accurate as 

necessary by appropriate discretization of the thickness profile.  Since one-dimensional elements 

are used, the computational cost associated with a very fine model is modest vis-a-vis models 

based on multi-dimensional interpolations.  Herein, we utilize this method to establish the 

eigendata for construction of an elastodynamic steady-state Green function for such a cylinder.  

This construction is based on a modal representation of a singular source term.  Examples of 

such Green’s functions for two-dimensional laminated anisotropic plates and laminated 

anisotropic circular cylinders were given by Zhu et al (1995) and Zhuang et al (1999), 

respectively.  Green’s function is essential to quantitative non-destructive evaluations of crack 

sizes and locations, delaminations, and other flaws in a structure.  They are used to describe the 

loading conditions on the flaws and they comprise the kernels in boundary element analyses.  
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This approach is attractive because of the relative ease in forming boundary integral in the 

presence of crack-tip singularity; see, for example, Zhu et al (1995).   

In the next section, the dependent variables are summarized and a non-dimensionalization 

is invoked.  Then, the governing equations of motion and boundary conditions are given and two 

eigenproblems are discussed.  Next, a steady-state solution for a time harmonic forced input is 

given by means of a Fourier transform.  Based on this solution, an elastodynamic Green’s 

function for the laminated piezoelectric cylinder can be constructed.  Examples of Green’s 

functions are given for a homogeneous PZT-4 cylinder and for a two-layer cylinder of same 

material but with their crystallographic axes oriented at 30o± with the generator.   

 
2.  Preliminaries 

Consider an infinitely long laminated piezoelectric circular cylinder as shown in Figure 1 

where cylindrical coordinates (r, θ, z) have been adopted.  The primary dependent variables in 

this problem are: mechanical displacement [ ], , T
r zu u uθ=u ; stress =T [ , , , , , ]T

rr zz z rz rT T T T T Tθθ θ θ ;

strain [ ], , , , , T
rr zz z zr rS S S S S Sθθ θ θ=S ;electric displacement [ , ,rD Dθ=D ]T

zD ; and electric field 

[ ], , T
r zE E Eθ=E , where φ= −∇E with φ as the electric potential. It is convenient to concatenate 

the mechanical and electrical dependent variables into arrays. 

 
9 1 9 1 4 1

, , φ× × ×

     = = =          
S T uq Q vE D  (1)  

For a given cylindrical lamina, the piezoelectric constitutive relation in terms of the 

concatenated variables is given by 

 *=Q C q where           * =  −  
Tc eC e ε (2) 
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with c, e and εεεε as the matrices of the elastic anisotropic moduli (6×6), piezoelectric constants 

(3×6) and dielectric constants (3×3), respectively.  Also, there are nine generalized deformational 

relations, =q Lv , where operator L contains the linear cylindrical coordinates differential 

operators relating the strain and electric field to the mechanical displacement and potential 

 Dimensionless variables are used herein to preclude numerical anomalies due to large 

differences in the units between the various material properties.  In setting forth this non-

dimensionalization, regard all quantities on the right-hand and left-hand sides, respectively, of 

each defining equation to be the dimensional and their corresponding dimensionless form.  Four 

key properties are selected as the reference values, viz., (1) total cylinder thickness h, (2) an 

elastic modulus , 0c , (3) a piezoelectric constant 0e , and (4) mass density 0ρ where 0c , 0e and 

0ρ are of a particular laminate in the cylinder’s radial profile.  The geometry and mechanical 

displacements, the material constants and mass densities are normalized as 

 , , ,i
i

ur zr z uh h h= = =  ( , , )i r zθ= (3)  

0 0 0 0, , ,ε ρε ρε ρ
pq ij ip i

pq ij ip i
c ec ec e= = = = , ( , 1, 2,3,.....,6)p q = ; ( , 1,2,3)i j = (4)  

where 0ε is the reference dielectric constant given by  0 2 0( )ε oe c= . Introduce E0 and t0 as 
0

0
0 ,cE e=

0
0

0
ρt hc= (5)  

With these parameters, time t and electric potential φ take the non-dimensional forms  

0
tt t= and     0E h

φφ = (6)  

All of the other variables are rendered dimensionless by 

 ( )0 , , 1, 2, ,6p
p p p

TT S S pc= = = L ; ( )0 0, , 1,2,3k k
k k

D ED E ke E= = =  (7)  

Lastly, the normalized charge ρe and body force density component if are given by 
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( )0 0, , , ,ρρ θe i
e i

h h ff i r ze c= = =  (8) 

This non-dimensionalization scheme yields all dimensionless equations in the same form as their 

dimensional counterparts. 

 
3.  Governing Equation and Boundary Conditions 

The equations of motion in Siao et al (1994) are based on a semi-analytical finite element 

formulation, where the discretization of the laminated cylinder takes the form of a series of three-

node cylindrical laminas, each capable of having its own piezoelectric properties and thickness.  

In each three-node element, a quadratic interpolation field is used radially but the axial, 

circumferential and time dependencies are left undetermined at the outset.  Hamilton’s principle 

with Tiersten’s (1969) electric enthalpy as the energy functional was used to derive the following 

matrix equations of motion. 

 
..

1 2 3 4 5 6+ , + , - , - , - , + =θ θθ θz z zzK V K V K V K V K V K V M V F (9)  

where V is an ordered set of nodal variables for all of the nodes in the finite element model of the 

cylinder.  The stiffness and consistent mass matrices, i'sK and, M can be found in Siao et al 

(1994), where 1 4, 5,K K K and 6K are symmetric, while 2K and 3K are antisymmetric. The 

consistent load F is obtained by integrating the product of the radial interpolation functions and 

the mechanical loads and electric charge over the radial profile of the cylinder. 

 T

er
rdrρ

 =  − ∫ fF N  (10) 

where f contains the components of the mechanical load and eρ is the charge density. 
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Homogeneous boundary conditions on the lateral surfaces and end cross-section can be 

stated as follows.  For a hollow cylinder with inside and outside radii, inr and outr , traction-free 

surfaces require that 

0rr r zrT T Tθ= = = (11) 

The electrical condition may take the form of an opened circuit (surface is uncoated) where the 

radial electric displacement component rD must vanish or a shorted-circuited condition (a coated 

lateral surface that is grounded) where the potentialφ (or voltage) vanishes  

rD 0= or          0φ = (12) 

 
4. Free Vibration Analyses 

 For free vibrations, the solution form is 

 exp{ ( )}m mi k z m tθ ω= + −V V  (13) 

where ω is the circular frequency, ( , )mk m are the axial and circumferential wave numbers, and 

mV is the array of nodal coordinates in the radial profile of the finite element discretization.  

Substitution of solution form (13) into the homogeneous form of Eq. (9) gives  

 2 2 2
1 2 3 4 5 6( + + ) =0m m m m mim ik m mk k ω+ + + −K K K K K K V MV  (14) 

For circumferential periodicity, integer values must be used for circumferential mode number m.

Two eigenproblems can be deduced depending on whether 2ω or mk is chosen as the eigenvalue.

 If 2ω is taken as the eigenvalue, then wave number mk assumes assigned values in Eq. 

(14).  This system is Hermitian, since the real and purely imaginary matrices are symmetric and 

antisymmetric, respectively, and only real eigenvalues 2ω are admitted.  Doubling the algebraic 

eigensystem size reveals its real, symmetric positive-definiteness. 
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2 2
21 4 5 6 2 3

2 2
2 3 1 4 5 6

0-( + )
0( + ) ω + + +     =     − −+ + +      

V VMK K K K Κ K
V VMΚ K K K K K

m mm m m

m mm m m

m k m k m k
m k m k m k  (15) 

This eigenproblem consists of two identical subsystems, so that the eigensolution yields pairs of 

real 2ω representing the same wave form except with a phase difference of / 2π . This 

eigenproblem, denoted as EVP1, is useful for establishing the frequency spectra for propagating 

modes. 

If mk serves as the eigenvalue with assigned values for 2ω , Eq. (14) takes the form of a 

second order algebraic eigenproblem. 

 2 2
1 4 2 5 3 6 02

m m m m m( m + im ) k ( m +i ) +k =ω+ − Μ +K K K V K K V K V  (16) 

This eigenproblem, denoted as EVP2, can be converted to the following first order form 

2 2
1 4 2 5 3 6

0 0( + ) ( + )
m

m
m m

km im m i kω
      − =     − + − −      

I I V
K K M K K K K V  (17a) 

 
or in abbreviated form as 

 [ ] 0mmk− =A B V  (17b) 
For a non-trivial solution of Eq. (17a), the determinant must vanish. 

det[ ] 0mk− =A B  (18) 

Expansion of this determinant yields a polynomial equation for the eigenvalues.  This equation 

serves as the dispersion relation for our piezoelectric finite element model.  If Vm is of dimension 

N, then system (17a) is 2N, and there will be 2N roots.  Denote these roots by 2( , )mn mnk k m ω= ;

they represent axial wave numbers and can be real or complex-conjugate pairs. A real wave 

number kmn is associated with a propagating wave, and a purely imaginary or complex conjugate 

pair kmn portrays a standing vibration in a semi-infinitely long cylinder in which the amplitude 

exhibits monotonic or sinusoidal decay away from the origin.  Associated with each kmn are right 
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and left eigenvectors, mnφ and mnψ representing the thickness distributions of the nodal 

displacement and electric potential.   They satisfy the equations 

[ ] 0mn mnk− =Α Β φ  and       0T
mn mnk − = Α Β ψ  (19)

The eigendata can be divided into two groups, one for traveling or decaying modes from the 

origin in the positive z-direction and the other for motions in the opposite direction.   

Furthermore, the right and left eigenvectors also satisfy the bi-orthogonality relations 
( ), , , 1,2, , 2T T

mq mp pq mp mq mp pq mp mpB k B p q Nδ δ= = =ψ Βφ ψ Aφ L (20) 
where δpq is the Kronecker delta. The eigenvectors can also be partitioned into upper and lower 

halves as 

 ,mpu mpu mpu
mp mp

mpl mpl mp mpuk
    = = =        
φ ψ φφ ψφ ψ φ  (21)                     

In view of this partitioning, the orthogonality relations are 

6

2 2
1 4 2 5 3[ + ] [ + ]

T T
mqu mpu mp mql mpu pq mp

T T T
mp mqu mpu mql mpu mp mql mpu pq mp mp

k B

k m im k m i k B

δ

ω δ

+ =

− + − − =

ψ φ ψ K φ

ψ φ ψ K K M K φ ψ K K φ
(22) 

The results by a computer code prepared for this paper were compared with the data of 

Paul and Venkatesan (1987) as well as from data based on their analytical frequency equation.  

Also, comparisons were made with that of Siao et al (1994) using their material data, which 

should be noted were not normalized by the free permittivity oε factor.  Accuracies of three and 

four significant digits in frequencies and wave numbers were seen. 
Spectral Plots 

Two cylinders are considered herein; both composed of a PZT-4 material, whose properties are 

given in Berlincourt et al. (1964).  One cylinder is homogeneous, with the crystallographic axes 

oriented with the coordinate directions and the properties are 
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0

5.42969 3.03906 2.90234 . . .
. 5.42969 2.90234 . . .
. . 4.49219 . . .
. . . 1.0 . .
. . . 1.0 .
. . . . . 1.19531 o

symmetric

    =       

c (23) 

0

. . . . 0.84106 .

. . . 0.84106 . .
0.34437 0.34437 1.0 . . . o

  =   − − 
e (24) 

0

1.46632 . .
. 1.46632 .
. . 1.29229 o

  =    
ε (25) 

where the four key reference parameters are (1) 1h = m, (2) 0
44 25.6c c= = GPA , (3) 

0
33 15.1e e= = 2/C m and (4) 0 4 37.50 10 /kg mρ = ×  so that 0 98.90664 10ε −= ×  F/m and  

0 91.69536 10E = × N/C. The other cylinder is composed of two layers.  Each layer has thickness  

1/ 2h m= , and the longitudinal crystallographic axes of the two layers are at 30o± with the 

generator of the cylinder.  The properties in this case are 

30

5.42969 3.00488 2.93652 0.05920 . .
. 5.17334 2.92432 0.21566 . .
. . 4.70459 0.19029 . .
. . . 1.02197 . .
. . . 1.04883 0.08457
. . . . . 1.14648 o

symmetric
±

    =       

c

m
m
m

m

(26) 

30

. . . . 0.72838 0.42053
0.17219 0.62666 0.29884 0.65525 . .
0.29823 0.37136 0.93915 0.29387 . . o±

±  = ±  − − ± 
e m m  (27) 

30

1.46632 . .
. 1.42280 0.07535

. 1.33581 osym ±

  =    
ε m (28) 
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Based on these values, the normalized frequency is given by 

 
o

ωω ω= where    0 01 / 584.24o chω ρ= =  rad/sec.             (29) 

Using a finite element model of 30 elements for the homogeneous PZT-4 cylinder, 

spectral data for circumferential mode numbers 0,1m = and shorted conditions on the inside and 

outside lateral surfaces were determined.  In Figure 2, three-dimensional spectral plots for the 

homogeneous cylinder for circumferential mode numbers m=0 and m=1 with shorted circuit 

lateral surface conditions are shown.  In these plots, the real and imaginary wave numbers mk are 

normalized by the thickness h, i.e., Re( mk h ), and Im( mk h ), and the normalized frequency is 

shown.  A comparison of the frequency spectra of the propagating modes for opened-opened and 

shorted-shorted lateral surface conditions for ( 0,1m = ) is shown in Figure 3.  Observe that there 

are spectral curves with dips that signify the presence of waves with negative group velocities.  

This information is useful to have in energy conservation calculations in the study of reflected 

waves at the free end of a semi-infinitely long cylinder subjected to a monochromatic incident 

wave.  It is seen from Figure 3 that there is no difference in the torsional spectra for these two 

cases.  A three-dimensional plot of the frequency spectra for the two layer 30o± angle-ply 

piezoelectric cylinder with opened-opened lateral surface conditions is shown in Figure 4.  The 

characteristics in this plot are noticeably different to that for the homogeneous cylinder. 

 
5.  Forced Response to a Steady-State Load 

 Let F in Eq. (9) be a time harmonic load of frequency ω. The θ-dependence of the load 

and hence the response V can be expressed by Fourier series as 

( ) ( ), , i t im
m

m
z t e z eω θθ ∞−

=−∞
= ∑F F  and       ( ) ( ), , i t im

m
m

z t e z eω θθ ∞−
=−∞

= ∑V V  (30) 
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Substitution of Eq. (30) into (9) and suppressing the common factors give a series of differential 

equations in m, each of the form 
2

2 2
6 5 3 1 4 22 [ ] [ ] 0m m

m m
d di m i m imdz dz ω+ + − + − + + =V VK K K K K M K V F  (31)   

where the coefficient matrices of the differential operators are Hermitian. 

 A Fourier transform is used here to remove the z-dependence, where the Fourier transform 

pairs are 

( ) ( ) ( ) ( )1, 2
m mik z ik z

m m m m m m mk z e dz z k e dkπ
∞ ∞−
−∞ −∞= =∫ ∫v V V v% %  (32)   

The Fourier transform to Eq. (31) yields the algebraic equation. 

( )2 2 2
6 5 3 1 4 2[ ] [ ]m m m mk k m i m imω+ + + + − + =K K K K K M K v f%% (33)   

Equation (33) governs the m-th circumferential harmonic in the transformed domain.  The first 

step in the solution of Eq. (33) involves the homogeneous equation, which is in fact EVP2, 

where the spectral decomposition of the governing operator provides the complete set of 

eigendata.  Thus, the solution of Eq. (33) can be represented by a modal summation of the right 

eigenvectors, i.e., 
2

1

N
m mn m

n
unχ

=
= ∑v φ% (34)

where the coefficients χmn’s are evaluated by substituting Eq. (34) into Eq. (33) and using bi-

orthogonality relations (22).  With some algebra, the solution vector mv% in terms of the upper 

and lower half eigenvectors can be put into the form 
2

1 ( )
l

u

TN
mn m

m mn
n m mn mnk k B=

= −∑ ψ fv φ
%

% (35) 
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The inverse Fourier transform of Eq. (35) recovers the axial dependence of the m-th 

circumferential harmonic. 

( ) 2

1

1
2 ( )

m
TN

ik zmnl m
m mnu m

n m mn mn
z e dkk k Bπ

∞
−∞=

= −∑∫ ψ fV φ
%

(36) 

In many problems, mf% , ,mn mnψ φ and Bmn will be independent of wave number km, so that 

application of the Cauchy residue theorem yields the modal response in a straightforward way. 

As the eigendata can be divided into two groups, mκ + and mκ − , according to traveling and 

decaying motions from the origin along the positive and negative z-directions, then ( )m zV can be 

written as 

( ) mn mn

mn m mn m

T T
ik z ik zmnl m mnl m

m mnu mnu
k kmn mn

z i e i eB Bκ κ+ −∈ ∈
= +∑ ∑ψ f ψ fV φ φ

% %
 (37)  

 
6.  Steady-State Green’s Function 

 For construction of Green’s function, consider a unit steady-state concentrated force or 

charge at a source point in the cross-sectional plane z = 0 at θ = 0 and some radial distance r0 .

For convenience of discussion, let r0 coincide with a nodal surface.  In representing this 

concentrated source load in Eq. (9), F(θ, z) takes the form 

 ( ) ( ) ( ) 0, z zθ δ θ δ=F F (38) 

where δ(•) is the Dirac delta function.  The vector F0 is used to define the location and type of 

the unit point source, i.e., a unit force or a unit charge.  Thus, F0 will contain zero entries 

throughout except at nodal surface r = r0, where either a load with components (αr, αθ, αz) or a 

unit charge αq = 1 is prescribed 



14

 Since our forced vibration solution procedure involves the expansion of δ(θ) in Fourier 

series and it is well known that such a representation of it does not converge, it is necessary to 

replace the point source by a uniform spatial pulse of intensity 0q over a narrow circumferential 

wide 2r0θ0. For equivalence of a unit concentrated load, 0q is given by 

 0

0
0 0 0

0 0

11 2q r d or q r
θ
θ θ θ− = =∫ (39) 

For the case of a unit electric charge, the charge density eρ will have the corresponding form 

 
0 0

1
2e rρ θ= (40) 

Therefore, F(θ, z) in Eq. (38), for a unit force or unit charge, takes the form 

 ( ) ( ), im
m

m
z e zθθ ∞

=−∞
= ∑F F  where      ( ) ( )0

0
0 0

sin1
2m

mz zr m
θ δπ θ=F F  (41) 

and its Fourier transform is  

 ( ) 0
0

0 0

sin1
2m m

mk r m
θ

π θ=f F% (42) 

Substituting of Eq. (42) into Eq. (37) and considering motions only in the positive z-direction 

yield the m-th circumferential mode of displacement Green function. Thus the steady-state unit 

concentrated generalized force point source takes the form of a series of circular ring-like 

sources.  The displacement Green function is then represented by the summation of these 

individual circumferential modal responses, i.e., 

 ( ) ( ) ( ) 00

0 0

sin , 02
mn

mn m

T
ik zmnl

m mnu
m m k mn

miz z e zr m Bκ

θ
π θ +

∞ ∞

=−∞ =−∞ ∈
= = ≥∑ ∑ ∑ ψ FV V φ (43) 
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7.  Numerical Examples 

The precision of Green’s function is tied to the number of terms used in the double series 

representation.  Each series entails its own issues, and they were discussed in Zhuang et al (1999) 

for a mechanical cylinder.  Their conclusions will be seen to apply here equally well from the 

discussion of our numerical examples. 

In the representation of a point load, in the circumferential direction by a uniform pulse 

over a short arc length, Zhuang et al (1999) gave a plot showing the number of modes versus 

pulse width for accuracies from 90% to 99%.  This plot serves as guidance for a unit charge 

since it is merely another point source.  Even though a relatively large number of terms are 

needed for representing a uniform pulse over a short circumferential distance, Zhuang et al 

(1999) demonstrated that substantially fewer terms were required for comparable accuracy of the 

stresses and displacements.  The following examples, using the same two cylinders for which 

spectral plots were given in Section 4, will show the same convergence rates.  In both examples, 

a normalized steady-state frequency of ω = 1.5 was used. 
Homogeneous PZT-4 Cylinder

In this example, both opened-opened and shorted-shorted circuit surface conditions were 

considered.  The unit load requires ring-like circumferential loads to be summed.  With regards 

to this circumferential summation for representation of the force and charge point sources acting 

on the outer surface of the cylinder, these source terms were approximated by a uniform pulse 

over a half circumferential width of 0.001 radians.  The response was calculated with sum total 

of circumferential mode numbers of m =10, 20, 40, 60, 80 and 100.  As the accuracy is also 

related to the discretized profile, different size models, i.e., 10, 20, 30, 40, 50 and 60 elements 

were used.  For all circumferential wave numbers, at least 30 elements were observed to be 
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sufficient for good precision of the near-field quantities, which were examined at / 4θ π= and z

= h/4.  For the specific case of a unit radial point load on the outer surface, the convergence 

characteristics as a function of number of circumferential modes are shown in Figure 5(a,b).  

With a 30 element model, displacements and potential converged within twenty (20) 

circumferential modes, and stresses and electric displacement component zD with forty (40) 

modes.  Sums with more than these minimum numbers of modes showed a diminishing return on 

further accuracy.  It is not surprising that more terms are needed for stresses than displacements 

since stress calculations require differentiation of the kinematic field.  In examining the balance 

between the work of the ring-like source and the energy of the response field, differences of less 

than 0.01% were observed for all the cases. 

Displacement, stress, electric displacement and potential profiles at the near field location of 

( ,zθ ) = (π/4, h/4) are shown in Figures 6 and 7 and Figures 8 and 9 for opened-opened and 

shorted-shorted circuit conditions, respectively, and for the complete ser of point sources.  

Obviously, there are no results for a surface charge in Figures 8 and 9 since the outer surface is 

grounded.  Also note that since the electric potential is known only to within an arbitrary 

constant for the opened-opened circuit condition, the inner surface can be grounded without loss 

of generality.  From Figures 6 and 8, observe that the radial and circumferential displacements 

dominate the response for radial and circumferential source loads, while axial displacement and 

electric potential manifest greater responses for the axial point load and the electric charge.  This 

behavior is due to the nature of the PZT-4 material that evinces strong piezoelectric coupling 

between the axial components of stress and electric field, zE . The shear stress Tzr is much 

smaller than the other components as seen in Figures 7 and 9. 
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Two-Layer PZT-4 Cylinder

In this example, opened-opened lateral surface conditions were assumed.  It was again found 

that for a normalized steady-state frequency of ω = 1.5, 30 elements were deemed to be 

sufficient for good precision of the near-field quantities.  The convergence characteristics are 

shown in Figures 10(a, b)  for a unit radial load on the outer surface.  Convergence was obtained 

with essentially the same number of circumferential modes as the homogeneous PZT-4 cylinder.  

Profile plots of the displacement, stress, electric displacement and potential at the near field 

location of ( ,zθ ) = (π/4, h/4) are shown in Figures 11 and 12 for the set of point loads and point 

charge. 

 

8. Conclusions 

 Steady-state Green functions for a laminated piezoelectric cylinder were constructed 

where the circumferential behavior was represented by Fourier series and the axial dependence 

treated by a Fourier transform.  Their implementation is based on modal data from the spectral 

decomposition of the differential operator of the governing equation.  Our Green’s functions are 

essentially by a double summation of these data.  The convergence and precision of this double 

summation was discussed for the two cylinders, considering both opened-opened and shorted-

shorted electric surface conditions.  The study of the convergence characteristics revealed the 

necessary number of elements in the radial discretization as well as the required number of 

circumferential modes for an acceptable precision of the Green’s functions depicting the four 

different source terms, i.e., mechanical loads and electric charge.  The required number of modes 

in their representations was quite nominal and was far from being exorbitantly large.  Thus, 

Green’s functions in these forms should be useful in other applications. 
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Figure 1. Laminated Piezoelectric Cylinder
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Figure 3. Frequency Spectra Comparison Between Opened-Opened and Shorted-Shorted 
Circuit Conditions for m=0 and m=1. 
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Figure 4. Three-Dimensional Spectra for Two Layer 30o± Piezoelectric Cylinder 
For m=0, Opened-Opened Circuit Lateral Surface Conditions. 
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Figure 5(a). Comparison of Generalized Displacements of Green Function for Homogeneous
PZT-4 cylinder Due to Unit Radial Force, Opened-Opened Circuit Conditions.
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Figure 5(b). Comparison of Generalized Stresses of Green Function for Homogeneous
PZT-4 cylinder Due to Unit Radial Force, Opened-Opened Circuit Conditions.
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Figure 6. Generalized Displacements in an Opened-Opened Cylinder along (r, π/4, h/4) due to External Loads Applied
at (rout, 0, 0) for ω = 1.5 ( : Radial Load, : Circumferential Load, : Axial Load,

: Point Charge).
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Figure 7. Generalized Stresses in an Opened-Opened Cylinder along (r, π/4, h/4) due to External Loads Applied
at (rout, 0, 0) for ω = 1.5 ( : Radial Load, : Circumferential Load, : Axial Load,

: Point Charge).
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Figure 8. Generalized Displacements in a Shorted-Shorted Cylinder along (r, π/4, h/4) due to External Loads Applied
at (rout, 0, 0) for ω = 1.5 ( : Radial Load, : Circumferential Load, : Axial Load,

: Point Charge).
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Figure 9. Generalized Stresses in a Shorted-Shorted Cylinder along (r, π/4, h/4) due to External Loads Applied at
(rout, 0, 0) for ω = 1.5 ( : Radial Load, : Circumferential Load, : Axial Load,

: Point Charge).
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Figure 10(a). Generalized Displacements of Green Function for a 2-layer Opened-Opened Piezoelectric Cylinder due
to a Radial Point Load on the Outer Surface.
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Figure 10(b). Generalized stresses of Green Function for a 2-layer Opened-Opened Piezoelectric Cylinder due to a
Radial Point Load on the Outer Surface.
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Figure 11. Generalized Displacements For a 2-layered Piezoelectric Cylinder due to a Point Load
( : Radial Load, : Circumferential Load, : Axial Load, : Point Charge).
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Figure 12. Generalized Stresses For a 2-layered Piezoelectric Cylinder due to a Point Load
( : Radial Load, : Circumferential Load, : Axial Load, : Point Charge).




