Title
Needle Decompression in Appalachia Do Obese Patients Need Longer Needles?

Permalink
https://escholarship.org/uc/item/69q1w3x1

Journal
Western Journal of Emergency Medicine: Integrating Emergency Care with Population Health, 14(6)

ISSN
1936-900X

Authors
Carter, Thomas Edward
Mortensen, Curtis Dee
Kaistha, Salita
et al.

Publication Date
2013

DOI
10.5811/westjem.2013.7.15844

License
CC BY-NC 4.0

Peer reviewed
Needle Decompression in Appalachia
Do Obese Patients Need Longer Needles?

Thomas Edward Carter, DO*
Curtis Dee Mortensen, DO*
Salita Kaistha, DO*
Christopher Conrad, DO*
Godwin Dogbey, PhD†

*Southern Ohio Medical Center and Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
†Ohio University Heritage College of Osteopathic Medicine, Research Office of the Centers for Osteopathic Research and Education, Athens, Ohio

Supervising Section Editor: Anita Eisenhart, DO
Submission history: Submitted January 9, 2013; Revision received July 26, 2013; Accepted July 31, 2013
Electronically published November 5, 2013
Full text available through open access at http://escholarship.org/uc/uciem_westjem
DOI: 10.5811/westjem.2013.7.15844

INTRODUCTION
Tension pneumothorax is a devastating and fatal injury pattern that requires the rapid removal of air via needle decompression of the thoracic cavity as an essential lifesaving technique.¹ The current American College of Surgeons Advanced Trauma Life Support (ATLS) guidelines advocate the use of a 51 mm (2 inch) needle for needle decompression for tension pneumothoraces.¹ The United States is experiencing an increasing problem with obesity, Inaba et al² discussed alternate sites for decompression based on computed tomography (CT) and postulated a change in site of needle decompression. Air collects anteriorly in the supine patient in addition to scar tissue, breast tissue, hemothorax. Placement of the needle in the abdominal cavity, a solid organ, or the heart, would limit the use of a change of site for this blind technique. Two other studies were published with similar hypotheses and design in Canada and Japan, both of which have a smaller percentage of adult populations suffering from obesity.³,⁴ All 3 of these studies focused on trauma populations that are predominately young males with primarily penetrating injuries. As a result of sampling bias away from the general population, these studies’ assertions relating to medical causes of pneumothorax are limited.²,³ Our rural patient population has a preponderance of obese patients exceeding Ohio’s average of 29%.⁵ If an insufficient needle length were used to access the thoracic cavity the patient wound could not be temporized for definitive treatment of a tension pneumothorax, which could result in increased fatalities. Based on a review of the literature and clinical experience,
our hypothesis was that the ATLS recommended needle length of 51 mm would not be sufficient in 90% of our patients.6,9

METHODS
With local institutional review board approval as an exempt study, we queried a retrospective database of 100 sequential patients from November 1, 2010 to November 19, 2010 who had chest CTs in a 180-bed community hospital in Appalachia. Statistical power analysis suggested a sample size of at least 70 complete records to detect moderate differences between the chest wall depth and the needle lengths as significant with 80% power. We reviewed the 100 records to ensure that the study was not statistically powered in case there were incomplete records. Inclusion criteria were adult patients (18 years or older) requiring a chest CT. Only the first CT in the date range selected was used (if the patient received more than 1 CT during the time period). Exclusion criteria involved those under the age of 18, subsequent chest CTs of the same patient, marked subcutaneous emphysema, and those with a chest wall tumor. We measured the average chest wall depth at the anterior second intercostal space at the mid clavicular line bilaterally. Three abstractors, comprised of 2 resident physicians and 1 college student, obtained the measurements. Questions of exclusion were handled by quorum of the 2 resident physicians and the attending research advisor. The variables were well defined and the abstractor group was very small; hence, no measure of interrater reliability was tested. We recorded chest wall depth measurements of 91 subjects who met inclusion criteria in Microsoft Excel and then analyzed the data using PASW 18 software (SPSS Inc., Chicago, IL) to the various needle lengths (46, 51, and 64 mm) using a combination of statistical methods, including the one-sample t-test, simple linear regression, and ANOVA. Statistical significance was set at p≤0.05.

RESULTS
A 46 mm needle reached the pleural space in 52.7% of our patient sample. This was not statistically different from the patient average chest wall depth of 45.98 mm. (p=0.996, 95% confidence interval [CI]: -4.31 to 4.29). Current ATLS guidelines recommend a 51 mm (2 in) needle, which would reach the pleural space in only 64.8% of our population. This was significantly different from the combined average chest wall depth of 45.98 mm (p=0.023, 95% CI: -9.32 to -0.71). Furthermore, it was found that using a 64 mm needle would reach the pleural space in 79% of our patients. Indeed, the 64 mm is statistically significantly higher than the combined average chest wall depth 45.98 mm in our patient sample (p=0.000, 95% CI: -22.31 to -13.70). A comparison of success rates based on needle length is shown in the figure. The table provides summary measures such as the mean and standard deviation of the patient population for height in feet, weight in kilograms, body mass index and chest wall depths in millimeters.

DISCUSSION
We failed to reject our study hypothesis based on the statistical significance between the ATLS- recommended...
Table. Describes study population by height, weight, body mass index (BMI), and average chest wall depth by minimum (Min), maximum (Max), mean with standard deviation.

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (ft)</td>
<td>4.1</td>
<td>6.5</td>
<td>5.47</td>
<td>0.46</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>41.0</td>
<td>169.0</td>
<td>83.98</td>
<td>27.82</td>
</tr>
<tr>
<td>BMI</td>
<td>13.2</td>
<td>70.4</td>
<td>30.25</td>
<td>9.71</td>
</tr>
<tr>
<td>Average chest wall depth (mm)</td>
<td>9.8</td>
<td>99.4</td>
<td>45.98</td>
<td>20.67</td>
</tr>
</tbody>
</table>

needle length of 51 mm and our patient average chest wall depth of 45.98 mm. However, the non-significance between the currently-stocked 46 mm needle and the chest depth wall of 45.98 mm indicated that the stocked needles are not comparatively adequate in reaching the pleural space in our patient population. These results suggest that our current equipment is not sufficient for success in 90% of our patient population.2,7,9,10 The results indicate that a 64 mm needle will offer success in the majority of our patient population however a success rate of 79% is unlikely to be acceptable for the majority of emergency physicians as well as emergency medicine technicians. Given the current obesity epidemic consideration, modifications of many procedural approaches should be considered.

LIMITATIONS
This study is limited by its small sample size and the fact that the geographical region of study is noted for its high obesity rates. Elasticity and compressibility of the anterior chest wall with this procedure may lead to higher success rates than static measurements may imply. This error may be negated by movement of the patient, most notably when related to chest compressions for cardiopulmonary resuscitation. The study sample itself could have been changed when related to chest compressions for cardiopulmonary resuscitation. The study sample itself could have been changed when related to chest compressions for cardiopulmonary resuscitation. The study sample itself could have been changed when related to chest compressions for cardiopulmonary resuscitation. The study sample itself could have been changed when related to chest compressions for cardiopulmonary resuscitation.

CONCLUSION
Using a longer needle will lead to a higher rate of successful needle thoracostomy in our population. Further studies will be needed to validate these findings in a more diverse patient population using a multicenter approach or derivation of a clinical decision rule. Interim changes in technique are needed. Techniques based on aspiration of pleural-based air or ultrasound guidance for reduction of tension pneumothorax to assure successful decompression and reduce potential lung injury will be essential while using longer needles. The current static recommendation of 51 mm needle by the American College of Surgeons ATLS guidelines must increase or be based on the individual patient. Advocacy for longer needle lengths for needle thoracostomy is essential until significant reductions in obesity rates are obtained.

Conflicts of Interest: By the WestJEM article submission agreement, all authors are required to disclose all affiliations, funding sources and financial or management relationships that could be perceived as potential sources of bias. The authors disclosed none.

REFERENCES