Title
NUMERICAL APPLICATIONS OF HYPERBOLIC SPLINE FUNCTIONS

Permalink
https://escholarship.org/uc/item/69z5m26s

Author
Young, Jonathan D.

Publication Date
1968-05-01
University of California

Ernest O. Lawrence
Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545

NUMERICAL APPLICATIONS OF HYPERBOLIC SPLINE FUNCTIONS

Jonathan D. Young

May 1968

RECEIVED
LAWRENCE RADIATION LABORATORY
JUN 27 1968
LIBRARY AND DOCUMENTS SECTION

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUMERICAL APPLICATIONS OF HYPERBOLIC SPLINE FUNCTIONS

Jonathan D. Young

May 1968
This article describes the application of hyperbolic spline fitting to a set of points:

\[(t_i, x_i); \ i = 1, I \text{ with } I \leq 3\]

to obtain:

1. a computational definition of a smooth curve, \(x(t)\);
2. estimates of the first derivative \(x'(t)\) at each \(t_i\);
3. estimates of the second derivative \(x''(t)\) at each \(t_i\);
4. interpolated values for \(x\) at any \(t\), \(t_1 \leq t \leq t_I\).

The \(t_i\) must be distinct and increasing with \(i\), but need not be uniformly spaced.

Introduction

A \(t\)-dependent quantity, \(x(t)\), frequently is known (from observation, table etc) only in the discrete form as a set of points

\[(t_i, x_i); \ i = 1, I\]
with the t_i distinct and increasing with i. Reference (1) constructs and gives the properties of a cubic spline function which fits such a set of points. For reasonably large I, the cubic spline fit will in general have fewer inflection points than the polynomial of degree $I-1$ which fits the data. However, we may find even among the inflection points of the cubic spline fit, some which we consider undesirable. If for example in the double subinterval $[t_{i-1}, t_{i+1}]$ for some $i; i = 2, I-1$ we have

$$x_{i-1} \leq x_i \geq x_{i+1}$$

we should expect that a proper fitting function have everywhere in the double interval, a non-positive second derivative, or no inflections. In cubic spline fitting inflection points can occur here or in the parallel case

$$x_{i-1} \geq x_i \leq x_{i+1}$$

In either case such inflection points are said to be extraneous.

Reference (2) considers fitting the set (t_i, x_i) so that in each subinterval the fitting function represents a simply supported spline under uniform tension, p^2. It is shown that in the limiting case $p^2 = 0$, the fitting function is in fact a cubic spline fit and that for sufficiently large p^2, the fit will have no extraneous inflection points. Unfortunately, although totally adequate for the theoretical development, the formulation given in Reference (2) is for a table (t_i, x_i) with unit uniform steps in t:
In what follows, we provide formulation for non-uniform steps in t to define the fitting function and determine its first and second derivatives at table points. The fitting function (as in reference (2)) is required to have the following properties:

1. over any subinterval $[t_i, t_{i+1}]$; $i = 1, I - 1$ the fitting function $f(t)$ coincides with the hyperbolic spline function

$$g_i(\tau) = x_i + a_i \tau + b_i \left[\frac{(1 - \tau) \sinh p - \sinh p(1 - \tau)}{\sinh p - p} \right]$$

$$+ c_i \left[\frac{\tau \sinh p - \sinh p}{\sinh p - p} \right]$$

where $\tau = (t - t_i)/(t_{i+1} - t_i)$

2. $f(t_i) = x_i$; $i = 1, I$ (exact fit)

3. over the whole interval $[t_1, t_I]$ f has continuous first and second derivatives, $f'(t)$ and $f''(t)$.

4. in the limiting case $p \to 0$, f is the cubic spline fit but for sufficiently large p, f has no extraneous inflection points.

Provided two additional conditions such as the values:

(a) x_1' and x_I'

or

(b) x_1'' and x_I''

are specified, the matching at t_i required by (2) and (3) is sufficient to determine $a_i; b_i$ and c_i; $i = 1, I - 1$ and thereby determine f.
However under the same conditions f is completely determined by the known set

$$(t_i, x_i) \ i = 1, I$$

and the computable

$$f_i' = f'(t_i)$$

Computational processes on the values

$$(t_i, f_i, f_i') \ i = 1, I$$

provide for second order differentiation and interpolation.

Hyperbolic Spline Fit, First derivative.

The problem of defining f is logically equivalent to finding $f_i' \ i = 1, I$ since for any $i; i = 1, I - 1$ the hyperbolic spline segment, g_i, of f is determined by (t_i, x_i, f_i') and $(t_{i+1}, x_{i+1}, f_{i+1}')$.

The computation for the f_i' proceeds as follows.

Let

$$\alpha = \frac{(p \cosh \tau - \sinh \tau)}{(\sinh \tau - p)}$$

$$\beta = \frac{(p^2 \sinh \tau)}{(\sinh \tau - p)}$$

Matching f_i, f_i', f_i'' at $i = 2, I - 1$, we have

$$f_i = g_i(0) = g_{i-1}(1) = x_i$$

$$f_i' = \left[g_i'(0) \right] \left[\frac{1}{t_{i+1} - t_i} \right] = \left[g_{i-1}'(1) \right] \left[\frac{1}{t_i - t_{i-1}} \right]$$

$$f_i'' = \left[g_i''(0) \right] \left[\frac{1}{t_{i+1} - t_i} \right]^2 = \left[g_{i-1}''(1) \right] \left[\frac{1}{t_i - t_{i-1}} \right]^2$$

where derivatives of g are with respect to τ. From which we obtain after elimination of f_i'' the following:
\[(t_{i+1} - t_i)f_{i-1}' + \alpha(t_{i+1} - t_{i-1})f_i' + (t_i - t_{i-1})f_{i+1}' = (\alpha + 1) \frac{(t_{i+1} - t_i)(x_i - x_{i-1})}{t_i - t_{i-1}} + \frac{(t_i - t_{i-1})(x_{i+1} - x_i)}{t_{i+1} - t_i}
\]

\[i = 2, I - 1 \quad (1.0)\]

This system of \(I-2\) equations involves \(I\) unknowns, \(f_i', \ i = 1, I\), consequently two additional equations must be provided.

If as in case (a) above we specify values for \(x_i'\) and \(x_i''\), we then have

\[f_1' = x_1' \quad (1.1)\]

\[f_I' = x_I' \quad (1.2)\]

and the system is determinate.

We may however specify \(x_1''\) and \(x_I''\) (case (b)), then

\[\alpha f_1' + f_2' = (\alpha + 1)(x_2' - x_1') \quad \frac{(\alpha^2 - 1)(t_2' - t_1')f_1''}{t_2' - t_1'} \quad (1.3)\]

\[f_{I-1}' + f_I' = (\alpha + 1)(x_I' - x_{I-1}') \quad \frac{(\alpha^2 - 1)(t_I' - t_{I-1}')f_I''}{t_I' - t_{I-1}'} \quad (1.4)\]

with equations (1.0) provide a determinate system.

Second derivative

The values of the second derivative

\[f_i'' = f''(t_i)\]
can be readily computed from the set:

\[(t_i, x_i, f'_i) \quad i = 1, I\]

by

\[
f''_i = \frac{\beta}{\alpha^2 - 1} \left[\frac{(1 + \alpha)(x_k - x_i)}{(t_k - t_i)^2} \frac{a_i f'_i + f'_k}{t_k - t_i} \right]
\]

where \(t_k\) is adjacent to \(t_i\). For \(i = 2, I - 1\), the \(k\) may be either \(i - 1\) or \(i + 1\). For \(i = 1, k\) must equal 2 and for \(i = I, k\) must be \(I - 1\).

Interpolation

Interpolation for \(x(t^*)\) for

\[t_1 < t^* < t_I\]

is accomplished by computing \(f(t^*)\) from the set

\[(t_i, x_i, f'_i) \quad i = 1, I.\]

For some \(i, i = 1, I - 1\) we have

\[t_i \leq t^* < t_{i+1}\]

and

\[f(t^*) = g_1(\tau^*)\]

where \(\tau^* = (t^* - t_i)/(t_{i+1} - t_i)\).

\[g_1(\tau^*) = x_i + a_i \tau^* + b_i \left[\frac{(1 - \tau^*) \sinh p - \sinh(1 - \tau^*)}{\sinh p - p} + c_i \frac{\tau^* \sinh p - \sinh p \tau^*}{\sinh p - p} \right] \]
where \(a_i = (x_{i+1} - x_i) \)

\[
b_i = -\frac{1}{\alpha^2} \left[(t_{i+1} - t_i)(f_i' + \alpha f_i') - (a + 1)a_i \right]
\]

\[
c_i = (t_{i+1} - t_i)f_i' - a_i - \alpha b_i
\]

Consequently \(g_i(T^*) \) is readily computable from \((t_i, x_i, f_i') \) and \((t_{i+1}, x_{i+1}, f_{i+1}') \).

Conclusion

While the cubic spline fit is computationally very convenient, it may for some data have extraneous inflection points. When this does occur it may be desirable to find the hyperbolic-spline fit which has no such inflection points. The question arises as to the magnitude of \(p \) to effect this. In reference (2) a method is given for estimating the value, denoted by \(p^* \), in the case of uniform steps in \(t \). However, no formal method exists when the steps are non-uniform.

The quantity \(\alpha \) which appears in the equation relating first derivatives to values of \(x \), may provide some clue as to the effect of \(p \) on the fit. Thus for \(p = 0 \) (cubic spline fit) we find \(\alpha = 2 \). Near zero \(p \) the value of \(\alpha \) does not change greatly. Starting with \(p = 3 \), the following table pertains.
and as p increases, α approaches $p - 1$ from above.

In fitting the set
$$(t_i, x_i); i = 1, I$$

it is suggested that the cubic spline fit be made first and tested for extraneous inflection points. If none exist the fit is accepted, otherwise introduce values $p = 3, 4, 5, 6, 7, 8, 9$, accepting any fit which has no extraneous inflection points. If extraneous inflection points still appear, higher values for example $p = 10, 20, 30, 40, 50, 60, 70, 80, 90$ may be tried.

References

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.