Lawrence Berkeley National Laboratory
Recent Work

Title
Geophysical characterisation of the groundwater–surface water interface

Permalink
https://escholarship.org/uc/item/6b447227

Journal
Advances in Water Resources, 109

ISSN
0309-1708

Authors
McLachlan, PJ
Chambers, JE
Uhlemann, SS
et al.

Publication Date
2017-11-01

DOI
10.1016/j.advwatres.2017.09.016

Peer reviewed
Geophysical characterisation of the groundwater–surface water interface

Author links open overlay panel P.J.McLachlan, J.E.Chambers, S.S.Uhlemann, A.Binley

https://doi.org/10.1016/j.advwatres.2017.09.016

Highlights

• Properties and processes of the GW–SW interface are variable in space and time.

• Revealing hydrological and biogeochemical heterogeneity remains a challenge.

• Geophysics offer useful tools for addressing variability across multiple scales.

• Future studies should incorporate geophysical progress gained in parallel fields.

Abstract

Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW–SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW–SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW–SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and
processes of the GW–SW interface, and ultimately the implications for water quality and environmental health.

Keywords
Groundwater–surface water interactions
Groundwater–surface water interface
Hyporheic zone
Geophysics

1. Introduction

It is widely recognised that groundwater (GW) and surface water (SW) form a continuum and are not isolated components (Winter et al., 1998, Malard et al., 2002, Sophocleous, 2002). GW–SW interactions have significant implications for water quantity, water quality, and health of aquatic ecosystems, at site to catchment scales (Winter, 1976, Stanford and Ward, 1993, Findlay, 1995, Boulton et al., 1998, Boulton et al., 2010, Buss et al., 2009, Harvey and Gooseff, 2015). For instance, contaminated GW discharge can degrade streams, lakes, deltas and wetlands, and associated habitats; conversely GW discharge may also supply vital nutrients and act as a thermal buffer to maintain ecological function (Power et al., 1999, Brunke and Gonser, 1997, Hayashi and Rosenberry, 2002, Marzadri et al., 2013a, Marzadri et al., 2013b). Over-abstraction of GW can also result in the redistribution or disappearance of SW resources (Winter et al., 1998), and in coastal regions, the contamination of fresh water aquifers (Ingham et al., 2006).

The transition zone between SW environments and GW systems, the GW–SW interface, is important as it governs the exchange of water, nutrients, and pollutants (Kalbus et al., 2006, Buss et al., 2009, Fleckenstein et al., 2010, Lin, 2010, Lansdown et al., 2015). Despite conceptually representing an interface, the term GW–SW interface is commonly used to describe alluvial sediments proximal to SW bodies, e.g. stream beds, lake beds, riparian zones, and flood plains. Therefore, it typically has vertical extents up to several metres and horizontal extents on the order of hundreds of metres. It is important to note that here the term GW–SW interface is not synonymous with the hyporheic zone (HZ). The HZs definition is ambiguous and discipline dependent (Stanford and Ward, 1988, Triska et al., 1989, Tonina and Buffington, 2009, Boulton et al., 2010, Ward, 2016, Hester et al., 2017); however it is perhaps best described as
the region of the GW–SW interface that occurs non-continuously in both space and time, and permits the mixing of both GW and SW (e.g. Gooseff, 2010). Therefore it is not as ubiquitous as is commonly assumed and mixing is often limited to narrow zones (Hester et al., 2013, 2017). The physical dimensions of the hyporheic zone are also difficult to define, however, the majority of HZ studies focus on lateral scales of 1–10 m and vertical scales of < 1 m (Ward, 2016).

There are numerous established methods that exist for characterisation of the GW–SW interface (Cook and Herczeg, 2000, Stonestrom and Constantz, 2003, Bridge, 2005, Greswell, 2005, Kalbus et al., 2006, Rosenberry and LaBaugh, 2008, Fleckenstein et al., 2010). However, despite providing direct measurements, use of piezometers, seepagemeters, and boreholes may be limited by site conditions, environmental protection, or installation costs. In this way information may be spatially limited and unrepresentative. Conversely, tracer experiments (e.g. Findlay et al., 1993, Triska et al., 1993, Harvey et al., 1996, Harvey and Fuller, 1998, González-Pinzón et al., 2015, Xie et al., 2016) provide information that is averaged over larger volumes and therefore may fail to characterise spatial heterogeneity, e.g. identifying low mobility and high mobility zones in the subsurface (Singha et al., 2008).

In the past two decades, near surface geophysics has been increasingly used in characterisation of the GW–SW interface, in addition to other environmental applications (Binley et al., 2015, Parsekian et al., 2015, Singha et al., 2015). Geophysical techniques are sensitive to geophysical properties of the subsurface and hence act as proxies for geological, hydrological, and biogeochemical parameters. It is important to note that while advances in geophysical instruments and subsequent modelling have allowed for more reliable data interpretation, geophysical data can still be ambiguous and often special consideration is required for the deployment of geophysical tools in different settings. Nonetheless, geophysical tools offer the unprecedented opportunity to characterise subsurface parameters at vertical scales of centimetres to hundreds of metres, horizontal scales of metres to hundreds of metres, and temporal resolutions of minutes to hours. Furthermore, given that multidisciplinary research has been essential in GW–SW interface research (Newbold et al., 1982, Bencala, 1984, Valett et al., 1993; Sophocleous, 2002, Wojnar et al., 2013, Ward, 2016), the wider application of geophysical tools would be beneficial. However, it is essential that geophysics is used to address hydrogeological or biochemical problems, rather than hydrogeological or biogeochemical solutions being used to explain geophysical results.
This review focuses on various geophysical tools relevant to characterising properties and processes of the GW–SW interface. In this review, the GW–SW interface and GW–SW interactions are first considered, common geophysical approaches are outlined, various geophysical applications are then reviewed, and finally, avenues of future research are discussed. Although important in governing zones of GW–SW interaction, more general geophysical studies investigating properties of the bedrock aquifers are not included here, but have been the subject of a number of reviews (e.g. Rubin and Hubbard, 2005, Linde et al., 2006, Singha et al., 2007, Holliger, 2008, Hubbard and Linde, 2011, Binley et al., 2015, Singha et al., 2015, Boaga, 2017). However, large scale airborne geophysical studies, which typically sense to depths of tens to hundreds of metres, are considered as they have the potential to provide a large scale context for processes occurring across the GW–SW interface. Moreover, these applications fit well into the requirements of GW–SW interactions to be considered at catchment scales (Kaika, 2003, Hering et al., 2010, Buss et al., 2009, Harvey and Gooseff, 2015).

2. The groundwater–surface water interface

The GW–SW interface is subjected to exchanges spanning multiple spatial scales (Tóth, 1963, Woessner, 2000). At large scales, GW flow paths are principally influenced by hydrostatic forces arising from topography and geology, and occur on scales of metres to hundreds of kilometres (Tóth, 1963, Freeze and Witherspoon, 1967, Winter et al., 1998). On smaller scales, flow paths originating in the SW may temporarily enter the subsurface and allow for GW–SW mixing. These flow paths are commonly referred to as hyporheic exchange flows (HEFs) and are principally governed by geomorphological features (Elliott and Brooks, 1997, Käser et al., 2009, Boano et al., 2014, Hester et al., 2017). HEFs are generally reported to be driven by hydrodynamic forces induced by sand dunes, and cobbles at millimetre to centimetre scales or by hydrostatic forces generated by pool-riffle sequences, sediment bars, meanders, and riparian zones at metres to tens of metres (Harvey et al., 1996, Woessner, 2000, Lautz and Siegel, 2006, Tonina and Buffington, 2007, Tonina and Buffington, 2009, Käser et al., 2009, Käser et al., 2013, Stonedahl et al., 2010, Stonedahl et al., 2013, Boano et al., 2014). In this way, hydrological pathways are typically viewed as being nested within in each other (Fig. 1). In reality, this distinction is somewhat arbitrary as HEFs have been stated to occur laterally over hundreds of metres (Boano et al., 2014). Ideally, the point at which the water originating from SW, mixes with and, more closely resembles the GW is the point at which it becomes groundwater recharge regardless of where and when it returns to the surface.
Fig. 1. (a) Various scales of groundwater flow paths and their relation to (b) macro-scale and (c) micro-scale exchanges in a fluvial and floodplain hyporheic zones (after Tóth, 1963, Winter et al., 1998, Stonedahl et al., 2010).

The GW–SW interface is also influenced by temporal variability across scales of milliseconds to years. For instance, turbulent flow in rivers can drive GW–SW mixing within several millimetres of the sediment–water interface on timescales of milliseconds to seconds (Menichino and Hester, 2014, Chandler et al., 2016). On larger timescales, periodic variations in precipitation, snowmelt, evapotranspiration, and flood pulses can modify, or reverse, GW–SW interactions (Boano et al., 2008, Loheide and Lundquist, 2009, Wondzell et al., 2010, Larsen et al., 2014, Zimmer and Lautz, 2014, Dudley-Southern and Binley, 2015, Malzone et al., 2016, Schmadel et al., 2016). GW–SW interactions can also be influenced by waves and tides (Harvey et al., 1987, King et al., 2009, Bianchin et al., 2011), or driven by density contrasts (Musgrave and Reeburgh, 1982, Webster et al., 1996, Boano et al., 2009).
Properties and processes of the GW–SW interface are therefore highly spatially and temporally heterogeneous. Heterogeneity in alluvial deposits can influence permeability, dispersivity, subsurface residence times, and zones of GW–SW exchange. Also bedrock aquifers can dictate whether interaction are localised (e.g. in fractured or karstic settings) or distributed (e.g. in clastic aquifers), and consequently they influence hydrological and biogeochemical conditions at the GW–SW interface (Nagorski and Moore, 1999, Gandy et al., 2007, Kennedy et al., 2009). Temporal variability in hydrostatic forces can influence locations and timings of GW–SW interactions, the interaction of GW discharge and HEFs, and consequently biogeochemical reactions (Boano et al., 2014). Biogeochemical properties, such as cation exchange capacity, redox gradients, and thermal gradients, have long been known to be important (e.g. Bencala et al., 1984; von Gunten et al., 1991; Winter et al., 1998, Power et al., 1999) but are highly variable, making it difficult to predict pollutant attenuation and nutrient cycling. Furthermore, there have been a limited number of investigations into HZ and GW–SW interface processes across different orders of streams, and their relevance to the catchment (e.g. Gomez-Velez and Harvey, 2014, Kiel and Cardenas, 2014, Marzadri et al., 2017). Therefore, field methods that provide spatially and temporally complete data sets about geological, hydrological, and biogeochemical information at site to catchment scales are required (Buss et al., 2009, Boano et al., 2014, Harvey and Gooseff, 2015, Ward, 2016, Hester et al., 2017).

3. Geophysical approaches

The general premise of geophysics is to obtain information about the geophysical properties of the subsurface to infer information about geological, hydrological, and biogeochemical properties (Binley et al., 2015). Geophysical properties can be interpreted using petrophysical models, calibration with other methodologies (both non-geophysical and geophysical), and analysis of temporally distributed data sets of dynamic processes. Geophysical techniques considered here are electrical resistivity (ER), induced polarisation (IP), self-potential (SP), electromagnetic induction (EMI), ground penetrating radar (GPR), and seismic methods (Table 1). Furthermore, forward, inverse, and petrophysical modelling are also briefly discussed due to their importance in data interpretation. Fundamental geophysical theory (e.g. Telford et al., 2010) is beyond the scope of this section, and instead focus is given to the basic principles of field and modelling techniques. Applications of temperature sensing in GW–SW interface studies are also beyond the scope of this review (e.g. Stonestrom and...
Irvine and Lautz, 2015, Hare et al., 2015, Irvine et al., 2016, Wilson et al., 2016).

Table 1. Geophysical techniques and the parameters which they relate to. Rough indications of investigation depths and temporal resolution are also included. In practice, terrestrial surveys typically involve horizontal scales of metres to hundreds of metres, whereas for waterborne and airborne surveys, horizontal extents may be hundreds of metres to tens of kilometres and hundreds of metres to hundreds of kilometres, respectively.

<table>
<thead>
<tr>
<th>Geophysical technique</th>
<th>Geophysical properties</th>
<th>Examples of derived environmental parameters</th>
<th>Typical investigation depths</th>
<th>Typical acquisition time for 100 m transect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical resistivity</td>
<td>Electrical conductivity</td>
<td>Water content, clay content, pore water conductivity, porosity, stratigraphy</td>
<td>Metres to tens of metres</td>
<td>Tens of minutes</td>
</tr>
<tr>
<td>Induced polarisation</td>
<td>Electrical conductivity, chargeability</td>
<td>Water content, clay content, pore water conductivity, surface area, permeability, stratigraphy</td>
<td>Meters to tens of meters</td>
<td>Tens of minutes to hours</td>
</tr>
<tr>
<td>Spectral induced polarisation</td>
<td>Electrical conductivity, chargeability (with frequency dependency)</td>
<td>Water content, clay content, pore water conductivity, surface area, permeability, stratigraphy</td>
<td>Meters to tens of meters</td>
<td>Tens of minutes to hours</td>
</tr>
<tr>
<td>Self-potential</td>
<td>Electrical potential</td>
<td>Hydrological flux, permeability, redox gradients</td>
<td>Metres</td>
<td>Seconds to minutes</td>
</tr>
<tr>
<td>Electromagnetic induction</td>
<td>Electrical conductivity</td>
<td>Water content, clay content, salinity</td>
<td>Metres to Hundreds of Metres</td>
<td>Seconds to minutes</td>
</tr>
<tr>
<td>Ground penetrating radar</td>
<td>Dielectric permittivity, electrical conductivity</td>
<td>Water content, porosity, stratigraphy</td>
<td>Metres to tens of metres</td>
<td>Minutes to tens of minutes</td>
</tr>
<tr>
<td>Seismic</td>
<td>Bulk density, elastic moduli</td>
<td>Porosity, stratigraphy</td>
<td>Metres to tens of metres</td>
<td>Tens of minutes</td>
</tr>
</tbody>
</table>

3.1. Electrical resistivity

ER methods are used to determine subsurface electrical resistivity by injecting low frequency (< 1 kHz) electrical currents into the ground with two current electrodes and measuring the resultant voltage between two or more potential electrodes (Binley, 2015). ER methods are typically minimally invasive as they commonly involve placing stainless steel electrodes several centimetres into the subsurface, however, in some cases borehole ER is used for enhanced characterisation (e.g. Slater et al., 1997, Crook et al., 2008, Wilkinson et al., 2010, Coscia et al., 2011, 2012). In environmental applications the ER signal is typically dependent on the characteristics of the pore fluid and grain-fluid interface (Glover, 2015). Modern ER instruments are capable of systematically using different combinations of electrodes arranged in lines or
grids to image the subsurface in 2D or 3D surveys (Loke et al., 2013). These types of surveys are often referred to as ER imaging (ERI) or ER tomography (ERT). In addition to 2D and 3D surveys, temporally distributed measurements can be used to monitor dynamic processes (e.g. Ward et al., 2010a, Johnson et al., 2012, Uhlemann et al., 2016).

3.2. Induced polarisation

IP methods are effectively an extension of ER methods and use low frequency (< 1 kHz) currents to assess the capacitive properties of the subsurface (Binley, 2015). The IP signal typically arises due to the temporary accumulation of ions in porous media following the injection of an electric current (Kemna et al., 2012). Whereas the ER signal is dependent on the properties of both the pore fluid and the porous media, the IP signal is more closely associated with the properties of the grain-fluid interface (Revil et al., 2012). IP can therefore provide information about lithological properties with minimal interference from pore water conductivity (Vinegar and Waxman, 1984, Kemna et al., 2000, Lesmes and Frye, 2001, Weller et al., 2013, Glover, 2015).

As with ER methods, IP measurements can be made using two current electrodes and two potential electrodes. Modern multichannel systems permit the use of multiple potential dipoles simultaneously in addition to recording the full waveform of the IP signal. Induced polarisation can be conducted in either the time or the frequency domain (Revil et al., 2012). Time domain IP methods involve injecting a direct electrical current between the current electrodes before abruptly switching it off and measuring the voltage decay over a specific time interval between the potential electrodes. Frequency domain IP involves injecting alternating electrical currents and measuring the impedance and the phase lag of the current and voltage waves. Frequency domain IP methods can also be carried out using multiple frequencies to assess the frequency dependent impedance and phase shift between injected current and measured voltage, this is typically referred to as spectral IP (SIP).

3.3. Self-potential

Unlike ER and IP methods, SP methods are passive in that they measure naturally occurring voltages within the subsurface (Jackson, 2015). The SP method is relatively simple in that voltages can be measured using non-polarising electrodes and a high impedance voltmeter (Minsley et al., 2007). Non-polarising electrodes are required to minimise polarisation at the electrode surface and a high impedance voltmeter is required to avoid drawing current from the ground. Under natural conditions the SP
signals arise from electro-kinetic, electro-chemical and thermo-electric effects (Wynn and Sherwood, 1986, Revil, 2012, Jackson, 2015). The electro-kinetic effect, or streaming potential, arises from the advective transfer of excess charges through porous materials (Rizzo et al., 2004). The electro-chemical effect originates from the presence of ion and electron concentration gradients, such as those resulting from redox conditions (Sato and Mooney, 1960, Revil et al., 2010). The thermo-electric effect is caused by the differential thermal diffusion of ions in pore fluid and electrons and donor ions in porous media (Wynn and Sherwood, 1986).

3.4. Electromagnetic induction

Whereas ER, IP, and SP use low frequency (<1 kHz) electrical currents, electromagnetic methods (e.g. EMI and GPR) use higher frequency signals to induce electromagnetic effects in the subsurface. EMI instruments operate in either the frequency domain (FD-EMI) or the time domain (TD-EMI) and use primary and secondary coils to determine subsurface electrical conductivity and magnetic susceptibility (Everett and Meju, 2005, Fitterman, 2015). In FD-EMI systems a primary current with a specific angular frequency is generated in the primary coil; this induces a primary magnetic field that is out-of-phase with the initial current. The primary magnetic field creates an electromagnetic force that induces eddy currents in the subsurface and a consequent secondary magnetic field. The secondary magnetic field is detected by the secondary coil and is used to infer information about in-phase and out-of-phase components of the subsurface electromagnetic properties. In TD-EMI systems, a current is typically passed around the primary coil before it is abruptly switched off. This current generates a primary magnetic field which induces an electromagnetic force, both of which are in-phase with the primary current. The electromagnetic force generates eddy currents that decay by ohmic dissipation following termination of the primary current. The decay of the eddy currents produces a secondary magnetic field and its rate of change through time is measured by the secondary coil to infer subsurface conductivity (Nabighian and Macnae, 1991). Modern FD-EMI instruments contain multiple secondary coils and can be used to detect information from several depths simultaneously. EMI systems have advantages over electrical methods in that they do not require contact with the subsurface, allowing for easier usage in waterborne or airborne surveys (e.g. Butler et al., 2004, Binley et al., 2013, Harrington et al., 2014).

3.5. Ground penetrating radar
As with EMI, GPR methods use electromagnetic signals to assess subsurface properties. However the frequencies used in GPR are higher (10 MHz to 2 GHz), such that the signal travels by wave propagation, rather than by diffusion. In GPR systems a high frequency signal is emitted into the subsurface via a transmitter antenna before it travels to the receiver antenna, e.g. by reflection from an interface of contrasting electrical properties (Huisman et al., 2003; Annan, 2005; van der Kruk, 2015). The amplitudes and travel times of the returning waves are then used to determine dielectric properties and locate boundaries in the subsurface. Field studies often involve time domain GPR systems and typically use frequencies between 50 and 500 MHz. Frequency domain systems are also available, and in some cases using wider bandwidth permits more accurate modelling of the subsurface (Lambot et al., 2004, 2006). The depth of penetration of the signal is dependent upon the electrical conductivity of the subsurface and the frequencies used. Due to frequency dependent attenuation mechanisms, higher frequencies do not penetrate to as great depths but permit higher resolution images. Furthermore, highly electrically conductive environments may attenuate the signal and reduce the penetration depth.

3.6. Seismic methods

Seismic methods operate in a similar way to GPR but use the propagation of acoustic energy to infer information about the mechanical properties of the subsurface (Steeples, 2005, Schmitt, 2015). Seismic surveys can be conducted by generating waves with an acoustic source (e.g. a sledgehammer). When these waves reach boundaries of contrasting mechanical properties, some energy may refract along the boundary before returning to the surface. Returning seismic waves are detected by a series of receivers (geophones) on the surface and can be used to calculate seismic wave velocity, mechanical impedance, elastic moduli, and determine the locations of structural boundaries.

3.7. Geophysical modelling

Forward modelling is used to calculate the data that would theoretically be observed for a given distribution of geophysical properties. The underlying principles of geophysical methods are well understood, so the creation of synthetic data sets from a model of geophysical properties is straightforward (Binley, 2015). Forward modelling serves two key purposes: (1) to aid survey design and (2) to assist in inversion and interpretation of data. For instance, different geophysical methods and measurement schemes have different strengths and weaknesses. Therefore, by making reasonable estimates of the
subsurface properties, the usefulness of a geophysical technique can be assessed prior to its deployment (Terry et al., 2017). Forward modelling may also be useful in guiding interpretation of unusual features, and prior to sufficient computational power, geophysical data was often interpreted by comparing data with forward models, such as ER sounding curves (Loke et al., 2013).

Inverse modelling is the process of determining the distribution of subsurface geophysical properties based on observed geophysical data and any prior information. The principles of geophysical inversion are beyond the scope of this paper but information can be found elsewhere (e.g. Aster et al., 2005, Tarantola, 2005, Menke, 2012, Linde et al., 2015). The majority of inverse problems are non-unique in that there can be an infinite number of solutions for one geophysical data set. In order to constrain the inversions, regularisation may be used to introduce assumptions to prevent over fitting of data and encourage unique solutions, e.g. lateral smoothing in stratified deposits (Constable, 1987, Tarantola, 2005). Moreover, uncertainty can further be reduced by carrying out joint or coupled inversions. In hydrogeophysics, joint inversions involve incorporation of various geophysical and hydrogeological data sets (e.g. Linde et al., 2006, Herckenrath et al., 2013) while coupled inversions model geophysical data within the bounds of prior hydrological models (e.g. Hinnell et al., 2010, Huisman et al., 2010).

In order to be of use in hydrogeology, geophysical models are often interpreted in terms of geological, hydrological, or biogeochemical parameters. Although geophysical data can be interpreted qualitatively (e.g. by locating contrasts in geophysical properties), by monitoring dynamic processes (Johnson et al., 2012, Singha et al., 2015), or through combination with other methods (e.g. Day-Lewis and Lane, 2004, Moysey et al., 2005, Huisman et al., 2010, Miller et al., 2014), petrophysical relationships are commonly used. Petrophysical relations can be used in joint inversions to relate two independent geophysical methods (e.g. Hoversten et al., 2006, Zhang and Revil, 2015) or after geophysical inversion to translate geophysical data. Although mechanistic petrophysical models exist (e.g. Leroy and Revil, 2009, Montaron, 2009; Revil et al., 2012), the majority of models used are semi-empirical or empirical. For instance, models have been developed to relate electrical conductivity and porosity (Archie et al., 1942; Waxman and Smits, 1968), to link water content with dielectric permittivity (Topp et al., 1980), and to interpret and IP responses with surface area, grain size, and permeability (Vinegar and Waxman, 1984, Börner and Schön, 1991, Slater and Lesmes, 2002, Binley et al., 2005, Slater, 2007, Weller et al., 2013, Weller et al., 2015a, Weller et al., 2015b, Weller and Slater, 2015). It is also
important to note that electrical conductivity is also linked to temperature, and as a result, ERI monitoring studies are often corrected for temperature (e.g. Brunet et al., 2010, Chambers et al., 2014a, Uhlemann et al., 2016).

4. Geophysical characterisation of groundwater–surface water interactions

Geophysical applications to characterise properties and processes at the GW–SW interface can be split into three principle areas: (1) characterising subsurface structure, (2) mapping zones of GW–SW connectivity, and (3) monitoring hydrological processes. Whereas structural characterisation and GW–SW exchange mapping have included studies at site and catchment scales, monitoring dynamic processes has been conducted solely at site scales. In this section various geophysical applications relevant to characterising the GW–SW interface are discussed. The majority of studies have focused on freshwater streams and rivers; however, studies have also been conducted in wetlands, deltas, and lakes.

4.1. Structural characterisation

Structural characterisation is essential as the structure governs hydrological properties and subsequent processes. Although minimally intrusive, calibration of geophysics with intrusive methodologies is often required to interpret geophysical information (e.g. Zhou and Greenhalgh, 2000, Chambers et al., 2014b). Also, in some cases borehole methods involving ERT, IP, GPR, or seismic methods may be used for increased resolution of the deeper subsurface (e.g. Slater et al., 1997, Huisman et al., 2003, Kemna et al., 2004, Crook et al., 2008, Dorn et al., 2011). Nonetheless, geophysical methods provide a level of resolution that would be unachievable through use of point measurements alone.

4.1.1. Small scale structural characterisation

Several applications have used geophysics to characterise subsurface structure at the Hanford Nuclear Site (Washington, US) to assess pollution pathways to the Columbia River (Johnson et al., 2015). For example, Slater et al. (2010) used waterborne ERI and IP surveys to determine the contact depth of a high permeability unit and low permeability sections of the underlying unit. Depressions in the contact interface were interpreted to be palaeochannels, and were shown to be areas of GW discharge by using distributed temperature sensing. Land-based IP surveys were also conducted at the site and were effective in revealing contrasts between the two units and locating palaeochannels (Mwakanyamale et al., 2012). The locations of these palaeochannels were also in agreement with later studies that used temporally
distributed ERI to monitor GW–SW interactions (Johnson et al., 2012, Wallin et al., 2013), as discussed in Section 4.3. Also at the Hanford Site, Williams et al., 2012a, Williams et al., 2012b, Williams et al., 2012c, Williams et al., 2012d used seismic surveys over several tens of kilometres to interpolate the sandstone-basalt interface between boreholes. They identified significant lows in the contact and determined additional potential pollution pathways to the Columbia River.

A number of geophysical studies have also been conducted at a riparian wetland (Boxford, UK). Crook et al. (2008) used surface and down borehole ER methods to reveal geological boundaries beneath the neighbouring River Lambourn. In the wetland, Chambers et al. (2014b) used ERI, soil probing and borehole data to characterise the 3D structure of the subsurface. They identified different superficial deposits, determined the depth to the chalk bedrock, and identified the weathering profile within the chalk, all of which are likely to have important hydrological implications (Fig. 2). Loke et al. (2015) compared a standard ERI Wenner array and an optimised array and found that the optimised array was able to locate geological interfaces with greater accuracy. In another study, surface GPR revealed that the gravels subdivide into a lower section of chalky gravels and an upper section of coarse flint gravel (Newell et al., 2015). The study also found that gravels below a depth of 2 m were relatively structureless whereas the shallower gravels displayed potential point bar lateral accretion surfaces in association with the peat channels, which are likely to have further implication for hydrology of the site.
1. Download high-res image (699KB)
2. Download full-size image
Fig. 2. 3D resistivity model of the Boxford riparian wetland. Solid volumes are shown for regions with resistivities of less than 50 Ohm\textperiodcentered\,m (peat) and with resistivities greater than 150 Ohm\textperiodcentered\,m (gravel) (Chambers et al., 2014b).

Geophysics has also been employed successfully for site-scale structural characterisation in a variety of other settings. Crook et al. (2008) used ERI to evaluate the structure and volume of alluvial deposits in Oregon (US), highlighting how it could be used to provide valuable information to model biogeochemical exchange. In comparison, Mermillod-Blondin et al. (2015) characterised alluvial structure using GPR in the Rhone River (Lyon, France). They identified two lithofacies and installed piezometers to monitor hydraulic head and temperature. Samples were also taken to assess water chemistry, sedimentology, and bacterial and invertebrate assemblages. They found that HEFs were faster in the cobble/gravel facies than the gravel/sand facies, and that faster flow led to a greater delivery of organic carbon and an increase in microbial activity. Revil et al. (2005) demonstrated how ERI can be used to determine the 3D geometry of a palaeochannel and showed that SP can be used to determine preferential flow paths (Camargue, France). Several studies have also indicated how multiple geophysical techniques can be used to more accurately characterise the subsurface structure (e.g. Gallardo and Meju, 2004, Günther and Rucker, 2006, Jafargandomi and Binley, 2013). For instance, Doetsch et al. (2012a) and Zhou et al. (2014) were able to improve structural characterisation at the Thur River, Switzerland by structurally guiding ERI inversion with GPR data. As well as constraining geological boundaries, geophysics has been used to enhance the spatial extent of hydrogeological information. For example, Doro et al. (2013) correlated ERI with slug and pumping tests at the River Steinlach, Germany and Miller et al. (2014) used ERI and permeameters at several alluvial floodplains in Oklahoma, US.

Although the majority of structural studies provide static images of the system, SW systems, particularly rivers, are characterised by dynamic erosional and depositional patterns. This dynamic nature is known to have important hydrological and biogeochemical implications for processes in the GW–SW interface (Elliott and Brooks, 1997, Packman and MacKay, 2003, Harvey et al., 2012). Toran et al. (2012) used ERI to determine changes in sedimentation following installation of a restoration structure, however the dynamic nature of river beds is more widely studied in civil engineering where scouring may lead to undermining of bridge foundations (Anderson et al., 2007). Several methods (e.g. echo sounding, intrusive measurements, bulk electrical conductivity probes) have been used to assess changes in channel bed geometry.
(Prendergast and Gavin, 2014). However, GPR and seismic methods have been particularly useful as they can provide information about the channel geometry and sediment structure beneath the sediment–water interface without the need for intrusive measurements (Webb et al., 2000, Prendergast and Gavin, 2014).

4.1.2. Large scale structural characterisation

Large scale structural characterisation has typically used airborne TD-EMI (AEM) in association with other data sets. Harrington et al. (2014) used AEM, geological maps, and environmental tracers to infer aquifer architecture beneath a large river in north-western Australia at the catchment scale (Fig. 3). They postulated zones of GW discharge which could be useful in targeting sites for future investigation. AEM has also been used alongside geological mapping data to reveal sedimentary structures and faults (Jørgensen et al., 2012), with ERI to reveal geological variability in deltaic deposits (Meier et al., 2014), with borehole data to identify hydrofacies in glacial deposits (He et al., 2014), with seismic methods to identify the bedrock-superficial interface (Oldenborger et al., 2016), and with modelling to aid in predicting nitrate reduction at catchment scales (Refsgaard et al., 2014). Although AEM dominates regional scale geophysical surveys, other techniques have also been used. Froese et al. (2005) used ERI and GPR at 20–40 km intervals, along with lithological descriptions of bank cuttings to characterise alluvial deposits along a 1000 km reach of the Yukon River (N. America), and Ball et al. (2006) used waterborne ERI and geological borehole data to characterise leakage potential in the Interstate and Tristate Canals (US). Columbero et al. (2014) also used waterborne ERI surveys to characterise the subsurface structure of a glacial lake (NW Italy). They identified an area where lacustrine silts had reduced thickness, and found that this region coincided with anomalous SP signals. They tentatively suggested that SP could be used to locate zones of GW discharge.
1. Download high-res image (1MB)
2. Download full-size image

Fig. 3. Combined plot showing (A) river water sample locations and AEM survey line with respect to basement geology, (B) isotope data, (C) chemical data, and (D) an inverted conductivity-depth section with litho-stratigraphic interpretation along AEM flight path, as shown in (A). Solid black lines in (A) and (D) represent faults, dashed lines and arrows in (D) represent interpreted lithological boundaries and groundwater flow directions. The conductivity-depth section is vertically exaggerated with a V:H ratio of 1:100 (Harrington et al., 2014).

4.2. Mapping zones of groundwater–surface water exchange

A principle consequence of structural heterogeneity is that it generates variability in GW–SW connectivity. Identification of zones of enhanced GW–SW connectivity is important for informing water management and locating areas of potential environmental significance (Buss et al., 2009, Binley et al., 2013). Methods for assessing spatial variability in GW–SW exchange (e.g. seepagemeters and piezometers) can be labour intensive to install. Several geophysical applications have demonstrated how geophysics can exploit the contrasts in electrical and thermal properties of SW and GW to identify areas of GW–SW interaction at site to catchment scales more quickly. In this way geophysics can be used as a reconnaissance tool for identifying important areas for further study or as an additional data source to extrapolate information between traditional measurements.

4.2.1. Local scale mapping of groundwater–surface water interactions

Although contrasts in the electrical properties of GW and SW are relatively small in freshwater environments, several geophysical studies have been successful in revealing areas of GW–SW exchange. For instance, Mansoor et al. (2006, 2007) used waterborne ERI to detect locations of elevated pore water conductivities within an urban wetland which arose due to leaching from marginal landfill sites during rainfall events. Nyquist et al. (2008) mapped locations of GW–SW exchange within a stream section at metre-scale resolution by comparing 2D ERI sections collected at high and low stage. Differences in the inverted models were interpreted as zones of GW–SW exchange; these zones correlated with the thinning of a clay layer located beneath a carbonate aquifer and the overlying alluvium. FD-EMI methods have also been used to reveal contrasts in electrical conductivity and locate zones of GW–SW connectivity. Butler et al. (2004) used FD-EMI and seismic methods to locate a clay aquitard and the extent of a clay window recharge zone. Binley et al. (2013) used
waterborne FD-EMI surveys alongside piezometric data and chemical sampling (Heppell et al., 2014) to reveal spatial variability in GW discharge. Areas of high electrical conductivity were correlated with upwelling of more solute rich GW, while areas of low electrical conductivity coincided with areas exhibiting horizontal hydraulic gradients (Fig. 4).

Fig. 4. Comparison of interpolated hydraulic heads obtained from piezometers and electrical conductivity obtained from waterborne FD-EMI survey. (a) Horizontal profile obtained from 100 cm deep piezometers. Symbols show measurement locations. (b) Vertical profile obtained from 20, 50, and 100 cm deep piezometers. The dashed line shows measured stage profile. (c) Map of riverbed electrical conductivity obtained using Geonics EM38. Hydraulic heads are shown in metres above ordinance datum (metres above sea level) (after Binley et al., 2013).
Contrasts in electrical conductivity have also been used in coastal environments where the contrasts can be much larger. For instance, Zarroca et al. (2014) used ERI methods in association with piezometric and natural tracer data in a coastal wetland. They were able to identify zones of focused upwelling and distinguish between local and regional GW flow paths, and the intrusion of seawater which converged in the wetland. Kinnear et al. (2013) demonstrated that FD-EMI could be used to map lateral variability in electrical conductivity. They found that fresh GW discharge in the brackish Ringkøbing Fjord (Denmark) was constrained to the shoreline and demonstrated the potential for geophysical techniques to aid in assessing water budgets over larger areas.

4.2.2. Catchment scale GW–SW connectivity mapping

In a similar way as structural characterisation, there have been several applications to map GW–SW connectivity at larger scales (hundreds of metres to tens of kilometres). Paine (2003) used field based FD-EMI to determine ranges in electrical conductivity and AEM to locate salinisation sources, in addition to quantifying lateral extent and intensity of salinitisation, by developing relationships from borehole water samples in northern Texas (US). In the Venice Lagoon (Italy), Viezzoli et al. (2010) used AEM to assess saltwater intrusion in the coastal aquifer and to characterise the transition between freshwater saturated sediments and overlying saltwater saturated sediments beneath the lagoon. Kirkegaard et al. (2011) used AEM in the Ringkøbing Fjord (Denmark) finding that buried valleys beneath the lagoon were characterised by high salinity waters while some areas of the lagoon were characterised by fresher waters. ERI has also been used to map locations of GW–SW discharge. Kelly et al. (2009) used a towed waterborne ERI array and tracer data to differentiate between local and regional GW discharge along a 50 km river reach in South East Australia.

4.3. Monitoring groundwater–surface water interactions

In addition to using contrasts in the geophysical properties of GW and SW to map areas of exchange, geophysical techniques have been used to monitor and quantify processes of the GW–SW interface at local scales (metres to tens of metres). Aside from heat tracing methods, geophysical monitoring studies have almost exclusively involved ERI. However, Christiansen et al. (2011) demonstrated how time-lapse gravity measurements can be used assess river-riparian zone exchanges. ERI methods are somewhat analogous to monitoring wells in tracer experiments in that changes in resistivity are used to infer changes in hydrological properties or conditions (e.g.
saturation or pore water conductivity). ERI can be used to image the entire region immediately beneath an electrode array. This means that low mobility zones, which are likely to be important in biogeochemical cycling, can be also be detected (Singha et al., 2008, Toran et al., 2013b).

Temporally distributed ERI surveys have been used at the Hanford Site (US) to monitor inland water intrusion in relation to changes in river stage and to detect high and low mobility zones in the riparian zone (Johnson et al., 2012, Wallin et al., 2013). They used time-series and time-frequency analysis to reveal the timing and location of GW–SW interactions. Cardenas and Markowski (2011) imaged a flood cycle in a dam regulated river finding that the HZ was laterally discontinuous and varied with time. In addition to surface electrodes, cross borehole ERI has been used to increase sensitivity at depths and locate areas of high and low permeability by monitoring 3D hydrological processes within the riparian zone of the Thur River, Switzerland (Coscia et al., 2011, 2012). At the Boxford riparian wetland, Uhlemann et al. (2016) found that peat exhibited a two layer behaviour separated by an intermittent clay layer; the upper layer showed a reduction in resistivity during the summer due to increased pore water conductivity and the lower layer exhibited an increase in resistivity during the winter months due to the reception of resistive GW.

Studies in fresh water environments have also used salt tracers to artificially induce electrical conductivity contrasts. For instance, Ward et al. (2010a) estimated the relative areas of the HZ by comparing a pre-injection ERI model with subsequent post-injection ERI models (Fig. 5). More recently, Ward et al. (2013) monitored changes in the HZ finding that hydraulic gradients parallel and perpendicular to the valley gradient had minimal influence on HZ extent and that the HZ extent increased with decreasing vertical gradients away from the stream. Similarly, Toran et al. (2013a) found that persistence of the saline tracer was more dependent on thickness and grain size rather than on the presence of restoration structures. Recently, Houzé et al. (2017) used a 3D array to obtain 7 m × 1 m × 1 m resistivity images of the subsurface following the injection of a tracer into the subsurface and note the importance of characterising boundary conditions for inverse modelling.
Fig. 5. Electrical resistivity imaging of solute transport in subsurface of a stream during a 21 h injection. Transects run perpendicular to the stream, with flow direction out of the page. (A) Pre-injection electrical resistivity model. (B) Model sensitivity based on the positions of electrodes in the electrode array. (C-G) Time-lapse ERI results, at time elapsed after beginning the conservative solute injection, results are shown as percentage change in resistivity from background conditions. (H) Interpretation of
resistivity images. Resistive feature in pre-injection model is interpreted to be an abandoned cobble bed (Singha et al., 2015; adapted from Ward et al., 2010a). ERI and salt tracer studies have also been used to monitor processes in the riparian zone. To investigate the importance of voids in the riparian zone Menichino et al. (2014) created an artificial macro-pore and monitored intra-meander flow using ERI. They found that their open macro-pore enabled more solute transport and increased solute tailing, both of which are likely to be important in hydrological and biogeochemical processes. Whereas Doetsch et al. (2012b) used a 3D ERI monitoring array to estimate riparian zone infiltration velocities and found agreement with monitoring well data.

Similar to mapping zones of exchange, the natural conductivity contrasts in coastal environments can be used to monitor GW–SW interaction processes. Swarzenski et al. (2007) investigated bidirectional exchange between a coastal aquifer and sea water using ERI, electromagnetic seepage meters and geochemical tracers. They found that the tide strongly influenced hydraulic gradients such that during high tides GW discharge was reversed and sea water infiltrated into the coastal aquifer. In a similar experiment, Henderson et al. (2010) found that their ERI also indicated suppressed GW discharge, whereas temperature measurements indicated GW discharge continued at high tide. Their sensitivity modelling indicated that during high tide electrical current was preferentially focused in the conductive SW and that consequently, the resistive GW could not be easily resolved. This demonstrates the issue that methods may be limited in certain environments, it therefore highlights the importance of forward modelling to realise the sensitivity of geophysical data.

5. Discussion

Geophysical techniques have successfully provided information about processes and properties relevant to the GW–SW interface, with research focusing on three key areas: (1) characterising structure, (2) mapping zones of GW–SW interaction, and (3) monitoring dynamic processes. However, studies of properties and processes in the GW–SW interface would benefit from continued geophysical input, for which there are several avenues of potential research. In this section the strengths, challenges, and recent developments in geophysical techniques are discussed alongside opportunities for the future.

5.1. Strengths of geophysics
It is convenient to organise geophysical techniques into more general themes to consider their strengths as tools to: (1) guide more focused investigations, (2) supplement other data sets, and (3) monitor dynamic processes. These strengths are also apparent in other fields of near surface geophysics (e.g. Singha et al., 2015, Binley et al., 2015, Parsekian et al., 2015). Their presence highlights the scope of geophysics for studies concerned with the GW–SW interface and more general environmental applications.

5.1.1. Reconnaissance tools

Often the usefulness of data can only be appreciated following the instrumentation of a site. By targeting specific sites based on preliminary geophysical investigations it may be possible to save resources and obtain more representative and useful information. In addition, at catchment scales the decision to select a particular site may be purely incidental to land access and prior instrumentation. At local scales FD-EMI (e.g. Butler et al., 2004, Binley et al., 2013) and ERI (e.g. Mansoor and Slater, 2007, Nyquist et al., 2008) have been shown to be capable of identifying zones of hydrological interest. However, geophysics has also been used to locate areas of biogeochemical interest. For example, Uhlemann et al. (2017) used ERI to guide biogeochemical and hydrological sampling of an arsenic-contaminated aquifer in Cambodia (Richards et al., 2017) by characterising its sedimentological setting. In this way, geophysics can also be used to improve the confidence that intrusive data is representative or appropriate for characterisation of the site.

Additionally, geophysics has also been used as a reconnaissance tool at catchment scales; AEM has been used for locating palaeochannels (Worrall et al., 1999, Abraham et al., 2012) and areas of GW–SW connectivity (Jørgensen et al., 2012, Harrington et al., 2014). As noted by Kruse (2013), there is significant potential for combining remote sensing data with aerial and land based geophysics. These methods are highly complementary given that remote sensing data is typically sensitive to the surface and shallow subsurface (< 1 m) whereas geophysical techniques may be sensitive up to depths of several tens or hundreds of metres (Parsekian et al., 2015). Geophysics and remote sensing has been combined in permafrost studies, for instance AEM (Pastick et al., 2013) and ground based ERI and GPR (Yoshikawa and Hinzman, 2003) was used alongside remote sensing data to assess the thickness and distribution of permafrost. Approaches such as those employed by Wilson et al. (2016), whereby lakes were prioritised based on their geological setting before thermal imagery was analysed, could be enhanced by inclusion of geophysical data. The combination of
remote sensing data and geophysics would be useful in linking surface and subsurface properties and would be a powerful tool in GW–SW interaction studies. Furthermore, these applications could provide additional constraints for catchment scale considerations of HEFs (e.g. Kiel and Cardenas, 2014, Gomez-Velez and Harvey, 2014).

5.1.2. Supplementing other data sets

Geophysical measurements that are sensitive to geological, hydrological or biogeochemical properties can be used to reduce interpolation uncertainty and increase the spatial coverage of information. The combination of methods has additional advantages in that by combining different data sources, poor sensitivity and other methodological limitations can be reduced. Combining data sets is common in GW–SW interface research. For instance, González-Pinzón et al. (2015) combined centimetre scale probes with chemical tracers, piezometers, fibre-optic distributed temperature sensing, temperature sensors and ERI to improve conceptual understanding of a river reach at several scales. The development of integrated and standardised approaches may also be beneficial for generating common data sets to compare field sites and improve conceptual models. Multi-method approaches are similarly used in hydrogeophysical research to combine geophysical techniques with hydrological and geophysical techniques (e.g. Moysey et al., 2005, Hinnell et al., 2010). The grouping of traditional and geophysical applications can improve the spatial extent of available information across a range of scales and improve the quantitative interpretation of geophysical data. To date most geophysical studies of the GW–SW interface have focused on characterising the geological structure. Future applications should endeavour to extract information about the hydrological and biogeochemical properties of the subsurface.

5.1.3. Monitoring dynamic processes

Processes occurring at the GW–SW interface can be highly dynamic. It can be difficult to characterise these processes with traditional methods as they can interrupt processes and continuous measurements may not be possible. In this review, the ability of ERI to characterise dynamic processes has been demonstrated (e.g. Ward et al., 2010a, Johnson et al., 2012, Wallin et al., 2013). These strengths are also highlighted in related fields where ERI and IP have been used to monitor contaminant transport, biological activity and biogeochemical processes (e.g. Michot et al., 2003, Garré et al., 2011, Atekwana and Slater, 2009, Johnson et al., 2010, Flores Orozco et al., 2011).
(Chen et al., 2009; Singha et al., 2015). It is anticipated that knowledge from these fields could be applied to characterisation of the GW–SW interface. In addition, temporally distributed surveys of other geophysical methods may be beneficial, for example FD-EMI could be used to extend the information obtained in ERI monitoring studies and temporally distributed GPR, or seismic surveys could be used to better characterise the dynamic nature of river bed geomorphology.

5.2. Challenges of geophysics

Despite the progress made by geophysics it is also important to appreciate the challenges of geophysical methods. These are related to geophysics in general and are on-going issues in geophysical research. The principal challenges of geophysical techniques are that: (1) geophysics is inherently uncertain, (2) site specific considerations are often needed, and (3) geophysics needs to be processed and modelled for quantitative interpretation. These limitations greatly contribute to the reluctance to adopt geophysical techniques in environmental studies. Here these challenges are discussed briefly but it is anticipated that by addressing the issues more thoroughly, application of geophysics in environmental sensing will become more common.

5.2.1. Geophysical uncertainty

Geophysical data and modelling methods are uncertain. Despite the broad recognition of errors in geophysical methods, they can be poorly dealt with and as a result, incorrect interpretations of geophysical data can be made (Binley et al., 2015). For instance, GPR and EMI survey devices often need to be corrected for instrument drift (Jacob and Hermance, 2004, De Smedt et al., 2016). Particular interest has been given to errors in ERI data. Typically, stacked or reciprocal measurements are used to assess the quality of measurements and weight them appropriately in inverse modelling (Binley, 2015, Singha et al., 2015). Stacked errors are obtained from consecutive repeat measurements for each current injection and reciprocal errors are obtained by reversing the measurement sequence and conducting a secondary survey. Reciprocal measurements are typically viewed as being more robust, as stacked measurements may underestimate measurement error (Tso et al., 2017). However, it should be noted that if the process of interest is occurring faster than a direct and reciprocal measurement scheme, then reciprocal errors may not be so useful (e.g. Ward et al., 2010a). Additionally, some studies have also looked at assessing the value of information within geophysical images in order to assess how reliable geophysical
models are (e.g. Oldenburg and Li, 1999, Daily et al., 2005). For instance, Oldenburg and Li (1999) use a depth of investigation method to assess the vertical reliability of ER and IP models. More recently, JafarGardomi and Binley (2013) investigated the information content of combined ERI, FD-EMI and GPR data sets, and Nenna and Knight (2013) assessed the benefit of adding geophysical data to assess maintenance of a coastal aquifer. Methods similar to these could assist in determining the value of data assimilation and help to aid in survey design.

5.2.2. Site specific considerations

In all applications, it is important to consider the target, scale of interest and the likely subsurface properties in order to return the most beneficial information. For instance, larger electrode spacing in ERI and IP or lower frequencies in GPR surveys will permit characterisation to deeper depths, but will sacrifice resolution (Binley et al., 2015, van der Kruk, 2015). Forward modelling tools such as Terry et al. (2017) can help to guide survey design based on the targets of interest and the expected subsurface properties. In some cases, geophysical surveys may also be optimised, for example in ERI electrode number, position and measurement geometry can be designed to improve spatial resolution whilst removing unnecessary measurements and consequently reducing measurement time (Wilkinson et al., 2006, Wilkinson et al., 2012, Loke et al., 2015).

It is useful to briefly note some of the considerations necessary to applications in SW bodies. The water column can be problematic as it can create current focusing effects in methods influenced by electrical conductivity. For instance, in in-stream ERI surveys the depth of investigation required, the river level, and electrical conductivity of river water should be taken into consideration when deciding the electrode spacing; furthermore consideration of whether use floating arrays or bed electrodes is also important (Snyder et al., 2002). These measurements can also aid in interpretation of data (e.g. Slater et al., 2010, Binley et al., 2013). However, it should be noted that additional constraints make it more difficult to solve inverse problems and errors in measurements of water depth or in-stream electrical conductivity may generate significant inversion artefacts (Day-Lewis et al., 2006). ERI studies in SW bodies have involved static arrays (Nyquist et al., 2008, Crook et al., 2008) and towed arrays (e.g. Kelly et al., 2009, Slater et al., 2010). The latter methodology has benefits in that it can improve survey productivity; however, it precludes error quantification (Slater et al., 2010) and requires various electrode spacings to improve vertical resolution (Allen, 2007). In addition to resolution and methodology considerations, some
geophysical applications may not be appropriate for the setting. For example, use of salt tracers and ERI may be prohibited in ecologically sensitive areas, or GPR signals may be attenuated in highly electrically conductive areas.

5.2.3. Extracting quantitative information

Recovering quantitative information from geophysics is a major challenge and has been the subject of numerous reviews (e.g. Rubin and Hubbard, 2005, Singha et al., 2007, Singha et al., 2015, Loke et al., 2013). Hydrogeological information can be extracted from geophysical data by using petrophysical relationships, interpreting time-lapse data and through combination with other techniques. Petrophysical models are commonly used due to their simplicity; however, their usage can be problematic. As noted by Singha et al. (2015) translation of geophysical images with poorly resolved heterogeneity or inversion artefacts will be erroneous, the support volumes of geophysical and hydrological parameters are often different, meaning conversions can be poor, and the resolution of geophysical images can be spatially and temporally variable such that petrophysical transformations may be inconsistent. Geophysical information can also be interpreted temporally without the need for petrophysical transformations. Johnson et al. (2012) and Wallin et al. (2013) used time-series and time-frequency analyses of the Columbia River stage and ERI to reveal preferential pathways, whereas Ward et al. (2010b) demonstrated that temporal moments of ER and solute transport data were well correlated for diffusive transport in the HZ.

Geophysical data may also be interpreted from the combination with other techniques. For example, calibrating geophysical and hydrological data at point scale and estimating the correlation at field scale (Day-Lewis and Lane, 2004), by using changes in geophysical properties to calibrate hydrological models (e.g. Binley et al., 2002), or by coupled (e.g. Hinnel et al., 2010) and joint inversions (Kowalsky et al., 2005, Johnson et al., 2009).

As noted, many applications to characterise the structure of the GW–SW interface (i.e. static surveys) have been qualitative in that they are used to reveal geometry of geological deposits. Future applications should aim to characterise properties such as permeability, surface area and cation exchange capacity. Although petrophysical models are often used to translate static geophysical data following inversion, in recent years there has been increasing interest in joint inversions. Joint inversions use petrophysical relations to link multiple geophysical data sets with each other, or with hydrological data sets. They have demonstrated significant potential in recovering hydrological properties (Kowalsky et al., 2005, Johnson et al., 2009, Jardani et al., 2013, Soueid Ahmed et al.,...
2014, 2016) and are a promising direction for quantitative interpretation of geophysical surveys of the GW–SW interface.

5.3. Recent developments in geophysical applications

Since the advent of hydrogeophysics during the 1990s (Binley, 2015), geophysical techniques have evolved from their traditional exploratory usage to being capable of characterisation of hydrological states and dynamic processes. Additionally, in more recent years the field of biogeophysics, which aims to relate the biological processes and modifications of the subsurface to geophysical properties, has emerged (Atekwana and Slater, 2009). Biogeophysical applications have typically involved characterising reactive conditions (e.g. Naudet et al., 2003, Sassen et al., 2012, Chen et al., 2013), detecting biogeochemical by-products (e.g. Slater and Binley, 2006, Comas et al., 2007, Comas et al., 2014, Parsekian et al., 2011), detecting changes to physical structure as a result of microbial activity (e.g. Williams et al., 2005, Slater et al., 2008), or monitoring plant-water interactions (e.g. Michot et al., 2003, Shanahan et al., 2015). In addition, the usage of unmanned vehicles in environmental research has vastly increased and it is expected that automated deployment of miniaturised geophysical devices could become common in future years. In this section developments in: (1) electrical resistivity monitoring, (2) induced polarisation, (3) self-potential, (4) multi-coil electromagnetic induction, and (5) unmanned vehicles, and their potential application in GW–SW characterisation are discussed.

5.3.1. Electrical resistivity monitoring

ERI is one of the most commonly and widely applied geophysical methods. There has been significant interest in developing low power, automated instruments for long term monitoring (e.g. Daily et al., 2004, Kuras et al., 2009, Ogilvy et al., 2009, Chambers et al., 2015). These instruments have the potential to provide spatially extensive data sets, with high spatial and temporal resolution. Moreover, instruments can also transmit data to high performance computers to allow for real time monitoring of subsurface processes (Singha et al., 2015). For instance, computational advances in inversion schemes, e.g. image differencing to avoid regularisation in the time dimension (Wallin et al., 2013) or parameterisation based on the physics of plume shape evolution (e.g. Miled and Miller, 2007; Pidlisecky et al., 2011), are promising tools for extracting hydrological information from ERI monitoring data. As noted, time-lapse ERI to monitor processes in the HZ typically do not use reciprocal measurements as a more robust
estimate of error as acquisition times are perhaps too long for revealing processes of interest. ERI acquisition times could be reduced using multi-channel systems, optimised electrode arrays (e.g. Wilkinson et al., 2012), or shorter current injection. However, it should be noted that use of short injection times could result in unreliable measurements of resistivity (Binley, 2015). Also, although most studies have been conducted over periods of several hours, longer ERI monitoring studies such as that of Uhlemann et al. (2016) could be used to aid in revealing seasonal variation in GW upwelling or river-riparian zone interactions.

5.3.2. Induced polarisation

Despite being less commonly used than ERI, many modern ERI instruments are also capable of IP measurements. Although, ERI is more robust in that it has higher signal to noise ratios, the IP signal is more closely related to geological characteristics and petrophysical relationships exist for relating IP signal to surface area, permeability and cation exchange (Vinegar and Waxman, 1984, Börner and Schön, 1991, Slater, 2007, Revil, 2012, Weller and Slater, 2015). These properties have clear relevance to the GW–SW interface, however, IP studies of the GW–SW interface have been limited (e.g. Slater et al., 2010, Mwakanyamale et al., 2012). The limited application, in comparison to ERI, is probably due to the complexity associated with analysis of data and future applications should be cautious in interpretation of IP data. Nonetheless, it is anticipated that IP would be beneficial in revealing variability in permeability, surface area and cation exchange capacity, and potentially biogeochemical processes (e.g. Flores Orozco et al., 2011, Chen et al., 2009, Chen et al., 2013), at the GW–SW interface.

5.3.3. Self-potential

Similar to IP, usage of SP in GW–SW interaction studies has been less frequent; however, there are several possible applications. The SP signal arises from electro-kinetic, electro-chemical, and thermo-electric sources. SP has been used to characterise hydraulic properties during pumping tests (Rizzo et al., 2004; Revil et al., 2008, Soueid Ahmed et al., 2014, 2016), through palaeochannels (Revil et al., 2005), through fractures (Wishart et al., 2006, 2008), and in arctic hill-slopes (Voytek et al., 2016). Applications in GW–SW interface research could involve assessing the spatial and temporal variability of GW discharge (e.g. Colombero et al., 2014) or HEFs, or characterising hydraulic conductivity. However, perhaps the most intriguing use of SP at the GW–SW interface would be to characterise the variability in redox conditions.
has been used to extend the spatial coverage of redox measurements obtained from monitoring wells associated with a contaminant plume at the Entressen Landfill in France (Fig. 6) (Naudet et al., 2003, Naudet et al., 2004, Arora et al., 2007, Linde and Revil, 2007). Naudet et al. (2004) removed the electro-kinetic contribution using piezometric head data and found that the SP signal and redox potential values showed good correlation ($R^2 = 0.85$). It is however important to note the differentiation of SP sources may be more complex in the GW–SW interface, and the electro-kinetic effect may dominate the signal. Any work involving SP would need to account for all sources of the SP signal appropriately in addition to adequate understanding of redox chemistry.
Fig. 6. Map of self-potential obtained by linear interpolation of measurements made at 10 m resolution in first 2 km from landfill site and 20 m elsewhere. Hydraulic gradients obtained from piezometers (Naudet et al., 2004).

5.3.4. Multi-coil electromagnetic induction

In recent years FD-EMI instruments have been increasingly used in hydrological investigations due to their improved reliability and stability (Boaga, 2017). Furthermore,
FD-EMI methods have the advantage over ERI in that they do not require contact with the ground and can therefore be more productive. Modern FD-EMI instruments contain multiple coils and are able to provide information about vertical variability in addition to lateral variability. They therefore make it possible to extend the application of FD-EMI beyond qualitative mapping of GW–SW interactions (e.g. Butler et al., 2004, Binley et al., 2013, Kinnear et al., 2013). In addition, as noted recently by Christiansen et al. (2016), the majority of studies present apparent electrical conductivity, e.g. without appropriate data processing or inverse modelling. Advances in data filtering and inversion schemes, such as EM4Soil (EMTOMO, 2013), Aarhus Workbench (Christiansen et al., 2016) or FEMIC (Elwaseif et al., 2017), permit more accurate modelling of subsurface conductivity structure and may lead to more reliable subsurface characterisation using FD-EMI. Furthermore, temporally distributed FD-EMI surveys similar to Robinson et al., 2012, Shanahan et al., 2015 and Huang et al. (2017) could prove useful in GW–SW interface characterisation. For instance, FD-EMI instruments could be used to investigate diurnal dynamics of salt water wedges in coastal environments or seasonal changes in GW upwelling, provided there are substantial contrasts in the electrical conductivity of GW and SW. It is important, however, to note that some authors (e.g. Lavoué et al., 2010) argue for the need to calibrate FD-EMI with ERI, this may be particularly true in time-lapse measurements where ambient conditions, or the operator, may influence the readings obtained.

5.3.5. Unmanned vehicles

Given the significant increase in the availability and application of automated ground-based, waterborne and aerial technology in many aspects of environmental sensing, the translation to geophysical sensing is inevitable. Automated aerial, terrestrial and waterborne vehicles offer the ability for precise and repeatable data collection. Unmanned aerial vehicles have the ability to fly at lower elevations (∼30 m) than typical aircraft, and are therefore able to provide high resolution data sets without sacrificing productivity. Geophysical applications using automated vehicles have predominantly involved magnetic mapping to locate manmade features (Stoll, 2013, Phelps et al., 2014). Automated vehicles may also be able to simultaneously process and contour data, and transmit information in real time (Phelps et al., 2014). Furthermore, automated systems could be programmed in such a way that anomalous regions are re-surveyed in higher resolution automatically.
The majority of unmanned aerial vehicles are small (< 25 kg) and are limited to light weight instruments, however larger vehicles capable of carrying heavier payloads are available (Whitehead et al., 2014a, 2014b). It can be envisaged that miniaturisation (or weight reduction) of geophysical tools, and the increasing pay loads of UAVs, could allow for increased collection of automated aerial geophysical data. However, non-aerial geophysical applications could easily be adapted to use automated vehicles, for instance roving surveys using plate electrodes for ERI (Christensen and Sørensen, 1998), large scale FD-EMI surveys (Christiansen et al., 2016) or waterborne surveys (Kelly et al., 2009, Binley et al., 2013, Colombero et al., 2014) would not be difficult to automate and may aid in collection of data across larger scale, e.g. to investigate parameters at catchment scales.

6. Summary

Geophysical tools have clear application in revealing geological, hydrological and biogeochemical heterogeneity at the GW–SW interface. Geophysical tools are highly complementary to traditional tools as they are sensitive to regions of the subsurface not always reachable by direct measurements. The majority of geophysical applications have focused on characterising subsurface structure, revealing spatial variability in GW–SW interaction and imaging hydrological processes. Data sets obtained from these field studies have significant potential to improve characterisation and modelling of parameters at the GW–SW interface. Over the last 20 years geophysical methods have grown to be powerful tools in hydrogeological research, in part due to the view that geophysical tools be used to aid hydrogeological problems alongside traditional methods. Geophysics provides valuable practical tools for assessing many unknowns of the GW–SW interface. Moreover, although caution in quantitative interpretation of geophysical data is warranted, attempts at improving uncertainty quantification, inversion routines and translating data are on-going. Efforts to provide solutions to these issues can only continue to improve confidence in geophysics so that its potential can be more widely appreciated and applied across a variety of scales. In recent years, there has been significant development in techniques and methodologies in parallel research areas, some of which would enhance the information obtained in studies of the GW–SW interface. Continued integration of geophysical methods would be beneficial in characterising hydrological and biogeochemical heterogeneity in the GW–SW interface and understanding the implications for water quality and ecological health.

Acknowledgements
We are grateful to André Revil, Kamini Singha and an anonymous reviewer for their comments on an earlier version of the manuscript. This work is supported by the NERCEnvision Doctoral Training Programme (GA/15S/004 S301). The contributions of J. Chambers and S. Uhlemann are published with the permission of the Executive Director of the British Geological Survey (NERC).

References

Abraham et al., 2012
Airborne Electromagnetic Mapping of the Base of Aquifer in Areas of Western Nebraska (2012), pp. 1-38
CrossRef

Allen, 2007
D.A. Allen
Electrical Conductivity Imaging of Aquifers Connected to Watercourse Faculty of Science, University of Technology, Sydney (2007), pp. 1-438
CrossRefView Record in Scopus

Anderson et al., 2007
N.L. Anderson, A.M. Ismael, T. Thitimakorn
Ground-penetrating radar: a tool for monitoring bridge scour
http://pubs.er.usgs.gov/publication/70031991
CrossRefView Record in Scopus

Annan, 2005
A.P. Annan
GPR methods for hydrogeological studies
Y. Rubin, S.S. Hubbard (Eds.), Hydrogeophysics, Springer, Netherlands (2005), pp. 185-213
CrossRefView Record in Scopus

Archie, 1942
G.E. Archie
The electrical resistivity log as an aid in determining some reservoir characteristics
https://doi.org/10.2118/942054-G
CrossRefView Record in Scopus

Arora et al., 2007
T. Arora, N. Linde, A. Revil, J. Castermant
Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data
Aster et al., 2005
R. Aster, B. Borchers, C. Thurber Parameter Estimation and Inverse Problems

Atekwana and Slater, 2009
E.A. Atekwana, L.D. Slater Biogeophysics: a new frontier in Earth science research
https://doi.org/10.1029/2009RG000285

Ball et al., 2006
(2006), pp. 1-53
View Record in Scopus

Bencala, 1984
K.E. Bencala Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport
https://doi.org/10.1029/WR020i012p01804
CrossRef View Record in Scopus

Bencala et al., 1984
CrossRef View Record in Scopus
M.S. Bianchin, L. Smith, R.D. Beckie Defining the hyporheic zone in a large tidally influenced river
J. Hydrol., 406 (2011), pp. 16-29
https://doi.org/10.1016/j.jhydrol.2011.05.056
Article Download PDF View Record in Scopus

A. Binley, G. Cassiani, R. Middleton, P. Winship Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging
J. Hydrol., 267 (3–4) (2002), pp. 147-159
https://doi.org/10.1016/S0022-1694(02)00146-4
Article Download PDF View Record in Scopus

A. Binley, L.D. Slater, M. Fukes, G. Cassiani Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone
https://doi.org/10.1029/2005WR004202
View Record in Scopus

A. Binley, S. Ullah, L. Heathwaite, C. Heppell, P. Byrne, K. Lansdown, M. Trimmer, Zhang H. Revealing the spatial variability of water fluxes at the groundwater–surface water interface
https://doi.org/10.1002/wrcr.20214

Binley et al., 2002

Binley et al., 2005

Binley et al., 2013
A. Binley. **Tools and techniques: electrical methods**


https://doi.org/10.1016/B978-0-444-53802-4.00192-5

**CrossRef View Record in Scopus**

A. Binley, S.S. Hubbard, J.A. Huisman, A. Revil, D.A. Robinson, K. Singha, L.D. Slater. **The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales**


https://doi.org/10.1002/2015WR017016

**CrossRef View Record in Scopus**

J. Boaga. **The use of FDEM in hydrogeophysics: a review**

J. Appl. Geophys., 139 (2017), pp. 36-46

https://doi.org/10.1016/j.jappgeo.2017.02.011

**CrossRef View Record in Scopus**

F. Boano, R. Revelli, L. Ridolfi. **Reduction of the hyporheic zone volume due to the stream-aquifer interaction**


L09401

https://doi.org/10.1029/2008GL033554

**CrossRef View Record in Scopus**

F. Boano, D. Poggi, R. Revelli, L. Ridolfi. **Gravity-driven water exchange between streams and hyporheic zones**


https://doi.org/10.1029/2009GL040147

**CrossRef View Record in Scopus**

F. Boano, J.W. Harvey, A. Marion, A.I. Packman, R. Revelli, L. Ridolfi, A. Wörman. **Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications**


https://doi.org/10.1002/2012RG000417

**CrossRef View Record in Scopus**

F.D. Börner, J.H. Schön

**View Record in Scopus**

A.J. Boulton, S. Findlay, P. Marmonier, E.H. Stanley, H.M. Valett *The functional significance of the hyporheic zone in streams and rivers* 
[https://doi.org/10.1146/annurev.ecolsys.29.1.59](https://doi.org/10.1146/annurev.ecolsys.29.1.59)  
**CrossRef**  
**View Record in Scopus**

[https://doi.org/10.1899/08-017.1](https://doi.org/10.1899/08-017.1)  
**CrossRef**  
**View Record in Scopus**

J.W. Bridge *High Resolution In-Situ Monitoring of Hyporheic Zone Biogeochemistry* (2005), pp. 1-44 
UK Environment Agency Science Report SC030155/SR3  
**CrossRef**  
**View Record in Scopus**

P. Brunet, R. Clément, C. Bouvier *Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) – a case study in the Cevennes area, France* 
J. Hydrol., 380 (1–2) (2010), pp. 146-153  
[https://doi.org/10.1016/j.jhydrol.2009.10.032](https://doi.org/10.1016/j.jhydrol.2009.10.032)  
**Article**  
**Download PDF**  
**View Record in Scopus**

M. Brunke, T. Gonser *The ecological significance of exchange processes between rivers and groundwater* 
[https://doi.org/10.1046/j.1365-2427.1997.00143.x](https://doi.org/10.1046/j.1365-2427.1997.00143.x)  
**View Record in Scopus**

UK Environment Agency Science Report SC050070
View Record in Scopus

K.E. Butler, J. Nadeau, R. Parrott, A. Daigle. Delineating recharge to a river valley aquifer by riverine seismic and EM methods
http://library.seg.org/doi/abs/10.4133/JEEG9.2.95
CrossRef

M.B. Cardenas, M.S. Markowski. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river
https://doi.org/10.1021/es103438a
CrossRef View Record in Scopus

https://doi.org/10.3997/1873-0604.2013002
View Record in Scopus

https://doi.org/10.1002/2012WR013085
CrossRef View Record in Scopus

Eng. Geol., 193 (2015), pp. 412-420
https://doi.org/10.1016/j.enggeo.2015.05.015
Article Download PDF View Record in Scopus


Christensen and Sørensen, 1998

Christiansen et al., 2011

Christiansen et al., 2016

Christiansen et al., 2014

Colombero et al., 2014
https://doi.org/10.1016/j.jappgeo.2014.03.020
Article Download PDF View Record in Scopus

L06402
https://doi.org/10.1029/2006GL029014
CrossRef View Record in Scopus

https://doi.org/10.1002/hyp.10056
CrossRef

https://doi.org/10.1190/1.1442303
CrossRef View Record in Scopus

Cook and Herczeg, 2000


Coscia et al., 2011

https://doi.org/10.1190/1.3553003
CrossRef View Record in Scopus

Coscia et al., 2012

Crook et al., 2008
N. Crook, J. Zarnetske, R. Haggerty, D.A. Robinson, A. Binley, R. Knight, J. Zarnetske, R.Haggerty
Electrical resistivity imaging of the architecture of substream sediments
W00D13

Daily et al., 2004
W. Daily, A. Ramirez, A. Binley
Remote monitoring of leaks in storage tanks using electrical resistance tomography: application at the Hanford site

Daily et al., 2005
W. Daily, A. Ramirez, A. Binley, D. LaBrecque
Electrical resistance tomography-theory and practice

Day-Lewis and Lane, 2004
F.D. Day-Lewis, J.W. Lane
Assessing the resolution-dependent utility of tomograms for geostatistics

Day-Lewis et al., 2006
F.D. Day-Lewis, E.A. White, C.D. Johnson, J.W. Lane, M. Belaval
Continuous resistivity profiling to delineate submarine groundwater discharge—examples and limitations

De Smedt et al., 2016
P. De Smedt, S. Delefortrie, F. Wyffels
Identifying and removing micro-drift in ground-based electromagnetic induction data

Doetsch et al., 2012a
J. Doetsch, N. Linde, M. Pessognelli, A.G. Green, T. Günther
Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization
https://doi.org/10.1016/j.jappgeo.2011.04.008

Doetsch et al., 2012b
J. Doetsch, N. Linde, T. Vogt, A. Binley, A.G. Green
Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring
https://doi.org/10.1190/geo2012-0046.1

Dorn et al., 2011
C. Dorn, N. Linde, T.Le Borgne, O. Bour, L. Baron
Single-hole GPR reflection imaging of solute transport in a granitic aquifer
https://doi.org/10.1029/2011GL047152.1

Doro et al., 2013
K.O. Doro, C. Leven, O.A. Cirpka
Delineating subsurface heterogeneity at a loop of River Steinlach using geophysical and hydrogeological methods
https://doi.org/10.1007/s12665-013-2316-0

Dudley-Southern and Binley, 2015
M. Dudley-Southern, A. Binley
Temporal responses of groundwater–surface water exchange to successive storm events
https://doi.org/10.1002/2014WR016259

Elliott and Brooks, 1997
H. Elliott, N.H. Brooks
Transfer of nonsorbing solutes to a streambed with bed forms: theory

Elwaseif et al., 2017
A matlab-based frequency-domain electromagnetic inversion code (FEMIC) with graphical user interface
EMTOMO 2013
EMTOMOEM4Soil: Software for Electromagnetic Tomography

Everett and Meju, 2005
M.E. Everett, M.A. MejuElectromagnetic induction
Y. Rubin, S.S. Hubbard (Eds.), Hydrogeophysics, 2, Springer, Netherlands (2005), pp. 157-183
https://doi.org/10.1080/00107516108202659
CrossRefView Record in Scopus

Findlay et al., 1993
S. Findlay, D. Strayer, C. Goumbala, K. GouldMetabolism of streamwater dissolved organic carbon in the shallow hyporheic zone
https://doi.org/10.4319/lo.1993.38.7.1493
CrossRefView Record in Scopus

Findlay, 1995
S. FindlayImportance of surface-subsurface exchange in stream ecosystems: the hyporheic zone
https://doi.org/10.4319/lo.1995.40.1.0159
CrossRefView Record in Scopus

Fitterman, 2015
D.V. FittermanTools and techniques: active-source electromagnetic methods
https://doi.org/10.1016/B978-0-444-53802-4.00193-7

Fleckenstein et al., 2010
J.H. Fleckenstein, S. Krause, D.M. Hannah, F. BoanoGroundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics
https://doi.org/10.1016/j.advwatres.2010.09.011
ArticleDownload PDFView Record in Scopus

Flores Orozco et al., 2011
A. Flores Orozco, K.H. Williams, P.E. Long, S.S. Hubbard, A. KemnaUsing complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer
Freeze and Witherspoon, 1967
R.A. Freeze, P.A. Witherspoon Theoretical analysis regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation
CrossRef View Record in Scopus

Froese et al., 2005
D.G. Froese, D.G. Smith, D.T. Clement Characterizing large river history with shallow geophysics: Middle Yukon River, Yukon Territory and Alaska
Geomorphology, 67 (3–4) (2005), pp. 391-406
Article Download PDF View Record in Scopus

Gallardo and Meju, 2004
L.A. Gallardo, M.A. Meju Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints
https://doi.org/10.1029/2003JB002716
View Record in Scopus

Gandy et al., 2007
C.J. Gandy, J.W.N. Smith, A.P. Jarvis Attenuation of mining-derived pollutants in the hyporheic zone: a review
https://doi.org/10.1016/j.scitotenv.2006.11.004
Article Download PDF View Record in Scopus

Garré et al., 2011
S. Garré, M. Javaux, J. Vanderborght, L. Pagès, H. Vereecken Three-dimensional electrical resistivity tomography to monitor root zone water dynamics
Vadose Zone J., 10 (1) (2011), pp. 412-424
CrossRef View Record in Scopus

Glover, 2015
P.W.J. Glover Geophysical properties of the near surface earth: electrical properties
https://doi.org/10.1016/B978-0-444-53802-4.00190-1
Article Download PDF View Record in Scopus

Gomez-Velez and Harvey, 2014
J.D. Gomez-Velez, J.W. Harvey A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins
**González-Pinzón et al., 2015**
https://doi.org/10.1086/679738
**Gooseff, 2010**
M.N. Gooseff *Defining hyporheic zones– advancing our conceptual and operational definitions of where stream water and groundwater meet*  
**Greswell, 2005**
R.B. Greswell *High-resolution In Situ Monitoring of Flow Between Aquifers and Surface Waters*  
(2005), pp. 1-44  
UK Environment Agency Science Report SC030155/SR4
**Günther and Rucker, 2006**
T. Günther, C. Rucker *A new joint inversion approach applied to the combined tomography of DC resistivity and refraction data*  
**Hare et al., 2015**
D.K. Hare, M.A. Briggs, D.O. Rosenberry, D.F. Boutt, J.W. Lane *A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water*  
J. Hydrol., 530 (2015), pp. 153-166  
https://doi.org/10.1016/j.jhydrol.2015.09.059
**Harrington et al., 2014**
G.A. Harrington, W. Payton Gardner, T.J. Munday *Tracking groundwater discharge to a large river using tracers and geophysics*  
Ground Water, 52 (6) (2014), pp. 837-852  
https://doi.org/10.1111/gwat.12124
**Harvey et al., 1987**
J.W. Harvey, P.F. Germann, W.E. Odum *Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes*
**Harvey et al., 1996**

J.W. Harvey, B.J. Wagner, K.E. Bencala *Evaluating the reliability of stream tracer approach to characterize stream-subsurface water exchange*


**Harvey and Fuller, 1998**

J.W. Harvey, C.C. Fuller *Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance*


[https://doi.org/10.1029/97WR03606](https://doi.org/10.1029/97WR03606)

**Harvey et al., 2012**


[https://doi.org/10.1029/2012JG002043](https://doi.org/10.1029/2012JG002043)

**Harvey and Gooseff, 2015**

J.W. Harvey, M.N. Gooseff *River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins*


[https://doi.org/10.1002/2015WR017617](https://doi.org/10.1002/2015WR017617)

**Hayashi and Rosenberry, 2002**

M. Hayashi, D.O. Rosenberry *Effects of ground water exchange on the hydrology and ecology of surface water*


[CrossRef](https://doi.org/10.1002/gw.300400307)

**He et al., 2014**

He X., J. Koch, T.O. Sonnenborg, F. Jorgensen, C. Schamper, J.C. Refsgaard *Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data*


[https://doi.org/10.1002/2013WR014593](https://doi.org/10.1002/2013WR014593)

[CrossRef](https://doi.org/10.1002/2013WR014593)
Henderson et al., 2010
Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA
https://doi.org/10.1007/s10040-009-0498-z
CrossRef
View Record in Scopus

Heppell et al., 2014
Interpreting spatial patterns in redox and coupled water-nitrogen fluxes in the streambed of a gaining river reach
Biogeochemistry, 117 (2) (2014), pp. 491-509
https://doi.org/10.1007/s10533-013-9895-4
CrossRef
View Record in Scopus

Herckenrath et al., 2013
D. Herckenrath, G. Fiandaca, E. Auken, P. Bauer-Gottwein
Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data
https://doi.org/10.5194/hess-17-4043-2013
CrossRef
View Record in Scopus

Hering et al., 2010
The European water framework directive at the age of 10: a critical review of the achievements with recommendations for the future
https://doi.org/10.1016/j.scitotenv.2010.05.031
Article
Download PDF
View Record in Scopus

Hester et al., 2017
E.T. Hester, M.B. Cardenas, R. Haggerty, S.V. Apte
The importance and challenge of hyporheic mixing
https://doi.org/10.1002/2016WR020005
CrossRef
View Record in Scopus

Hester et al., 2013
E.T. Hester, Young K.I., M.A. Widdowson
Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions
Hinnell et al., 2010
*Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion*

Holliger, 2008
K. Holliger
*Groundwater geophysics: from structure and porosity towards permeability?*

Hoversten et al., 2006
*Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data*

Huang et al., 2017
Huang J., E. Scudiero, W. Clary, D.L. Corwin, J. Triantafilis
*Time-lapse monitoring of soil water content using electromagnetic conductivity imaging*
Soil Use Manag., 33 (2017), pp. 191-204

Hubbard and Linde, 2011
S.S. Hubbard, N. Linde
*Hydrogeophysics*

Huisman et al., 2003
J.A. Huisman, S.S. Hubbard, J.D. Redman, A.P. Annan
*Measuring soil water content with ground penetrating radar: a review*
Vadose Zone J., 2 (2003), pp. 476-491

Huisman et al., 2010
*Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion*


A. JafarGandomi, A. Binley. *A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets*. J. Appl. Geophys., 96 (2013), pp. 38-54. [link](https://doi.org/10.1016/j.jappgeo.2013.06.004) [Article] [Download PDF] [View Record in Scopus]


Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data

T.C. Johnson, R.J. Versteeg, A. Ward, F.D. Day-Lewis, A. Revil
Geophysics, 75 (4) (2010), pp. WA27-WA41

Monitoring groundwater–surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

T.C. Johnson, L.D. Slater, D. Ntarlagiannis, F.D. Day-Lewis, M. Elwaseif
https://doi.org/10.1029/2012WR011893

Near-surface geophysics at the Hanford nuclear site, the United States

T.C. Johnson, D.F. Rucker, D.R. Glaser
https://doi.org/10.1016/B978-0-444-53802-4.00205-0

Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise

https://doi.org/10.5194/hess-16-1845-2012

The water framework directive: a new directive for a changing social, political and economic European framework

M. Kaika
https://doi.org/10.1080/0965431032000070802

Measuring methods for groundwater, surface water and their interactions: a review

E. Kalbus, F. Reinstorf, M. Schirmer
https://doi.org/10.1002/hyp
CrossRef View Record in Scopus

https://doi.org/10.1002/rra
CrossRef View Record in Scopus

View Record in Scopus

CrossRef View Record in Scopus

https://doi.org/10.3997/1873-0604.2012027
View Record in Scopus

Article Download PDF View Record in Scopus
CrossRef View Record in Scopus

CrossRef View Record in Scopus

CrossRef View Record in Scopus


CrossRef View Record in Scopus

View Record in Scopus


https://doi.org/10.1016/B978-0-12-374739-6.00047-6


Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)


https://doi.org/10.1016/j.crte.2009.07.010

Kuras et al., 2009

S. Lambot, M. Antoine, I. van den Bosch, E.C. Slob, M. Vanclooster

Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties

Vadose Zone J., 3 (4) (2004), pp. 1072-1081

https://doi.org/10.2136/vzj2004.1072

Lambot et al., 2004

S. Lambot, E.C. Slob, M. Vanclooster, H. Vereecken

Closed loop GPR data inversion for soil hydraulic and electric property determination


https://doi.org/10.1029/2006GL027906

Lambot et al., 2006

K. Lansdown, C.M. Heppell, M. Trimmer, A. Binley, A.L. Heathwaite, P. Byrne, Zhang H.

The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments


https://doi.org/10.1002/2014JG002874

Lansdown et al., 2015

L.G. Larsen, J.W. Harvey, M.M. Maglio

Dynamic hyporheic exchange at intermediate timescales: testing the relative importance of evapotranspiration and flood pulses minutes hours days weeks months years decades


https://doi.org/10.1002/2013WR014195

Larsen et al., 2014

Lautz and Siegel, 2006
L.K. Lautz, D.I. Siegel Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D
https://doi.org/10.1016/j.advwatres.2005.12.003
Download PDF View Record in Scopus

View Record in Scopus

P. Leroy, A. Revil Spectral induced polarization of clays and clay-rocks
View Record in Scopus

D.P. Lesmes, K.M. Frye Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone
J. Geophys. Res.: Solid Earth, 106 (B3) (2001), pp. 4079-4090
CrossRef View Record in Scopus

Lin H. Earth's critical zone and hydropedology: concepts, characteristics, and advances
CrossRef View Record in Scopus

N. Linde, A. Binley, A. Tryggvason, L.B. Pedersen, A. Revil Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data
W12404
https://doi.org/10.1029/2006WR005131
View Record in Scopus

N. Linde, A. Revil Inverting self-potential data for redox potentials of contaminant plumes
L14302
https://doi.org/10.1029/2007GL030084
CrossRef View Record in Scopus
Linde et al., 2015
N. Linde, P. Renard, T. Mukerji, J. Caers **Geological realism in hydrogeological and geophysical inverse modeling: a review**
[View Record in Scopus](https://doi.org/10.1002/2015WR017635)

Loheide and Lundquist, 2009
S.P. Loheide, J.D. Lundquist **Snowmelt-induced diel fluxes through the hyporheic zone**
[https://doi.org/10.1029/2008WR007329](https://doi.org/10.1029/2008WR007329)

Loke et al., 2013
M.H. Loke, J.E. Chambers, D.F. Rucker, O. Kuras, P.B. Wilkinson **Recent developments in the direct-current geoelectrical imaging method**
[https://doi.org/10.1016/j.jappgeo.2013.02.017](https://doi.org/10.1016/j.jappgeo.2013.02.017)
[Article Download PDF](https://doi.org/10.1016/j.jappgeo.2013.02.017)
[View Record in Scopus](https://doi.org/10.1016/j.jappgeo.2013.02.017)

Loke et al., 2015
M.H. Loke, P.B. Wilkinson, J.E. Chambers, S.S. Uhlemann, J.P.R. Sorensen **Optimized arrays for 2-D resistivity survey lines with a large number of electrodes**
[https://doi.org/10.1016/j.jappgeo.2014.11.011](https://doi.org/10.1016/j.jappgeo.2014.11.011)
[Article Download PDF](https://doi.org/10.1016/j.jappgeo.2014.11.011)
[View Record in Scopus](https://doi.org/10.1016/j.jappgeo.2014.11.011)

Malard et al., 2002
F. Malard, K. Tockner, M. Dole-Olivier, J.V. Ward **A landscape perspective of surface–subsurface hydrological exchanges in river corridors**
[https://doi.org/10.1046/j.1365-2427.2002.00901.x](https://doi.org/10.1046/j.1365-2427.2002.00901.x)
[CrossRef](https://doi.org/10.1046/j.1365-2427.2002.00901.x)
[View Record in Scopus](https://doi.org/10.1046/j.1365-2427.2002.00901.x)

Malzone et al., 2016
J.M. Malzone, S.K. Anseeuw, C.S. Lowry, R. Allen-King **Temporal hyporheic zone response to water table fluctuations**
[https://doi.org/10.1111/gwat.12352](https://doi.org/10.1111/gwat.12352)
[CrossRef](https://doi.org/10.1111/gwat.12352)
[View Record in Scopus](https://doi.org/10.1111/gwat.12352)

Mansoor et al., 2006
N. Mansoor, L. Slater, F. Artigas, E. Auken **High-resolution geophysical characterization of shallow-water wetlands**
[https://doi.org/10.1190/1.2210307](https://doi.org/10.1190/1.2210307)
[CrossRef](https://doi.org/10.1190/1.2210307)
[View Record in Scopus](https://doi.org/10.1190/1.2210307)
Mansoor and Slater, 2007

N. Mansoor, L. Slater Aquatic electrical resistivity imaging of shallow-water wetlands
https://doi.org/10.1190/1.2750667
CrossRef View Record in Scopus

Marzadri et al., 2013a

A. Marzadri, D. Tonina, A. Bellin Effects of stream morphodynamics on hyporheic zone thermal regime
https://doi.org/10.1002/wrcr.20199
CrossRef View Record in Scopus

Marzadri et al., 2013b

A. Marzadri, D. Tonina, A. Bellin Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime: Implication for dissolved oxygen dynamics
https://doi.org/10.1016/j.jhydrol.2013.10.030
Article Download PDF View Record in Scopus

Marzadri et al., 2017

A. Marzadri, M.M. Dee, D. Tonina, A. Bellin, J.L. Tank Role of surface and subsurface processes in scaling N2O emissions along riverine networks
CrossRef View Record in Scopus

Meier et al., 2014

https://doi.org/10.1190/geo2014-0001.1
CrossRef View Record in Scopus

Menichino et al., 2014

G.T. Menichino, A.S. Ward, E.T. Hester Macropores as preferential flow paths in meander bends
https://doi.org/10.1002/hyp.9573
CrossRef View Record in Scopus

Menichino and Hester, 2014
https://doi.org/10.1002/2013WR014758
CrossRef View Record in Scopus

Menke, 2012

Mermillod-Blondin et al., 2015
https://doi.org/10.1002/eco.1530
CrossRef View Record in Scopus

Michot et al., 2003
https://doi.org/10.1029/2002WR001581

Miled and Miller, 2007
https://doi.org/10.1088/0266-5611/23/6/007

Miller et al., 2014
https://doi.org/10.1016/j.jhydrol.2014.03.046
Article Download PDF View Record in Scopus

Minsley, 2007
B. Minsley. Modelling and Inversion of Self-Potential Data
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (2007)

Montaron, 2009
Moysey et al., 2005
S. Moysey, K. Singha, R. Knight. A framework for inferring field-scale rock physics relationships through numerical simulation.
https://doi.org/10.1029/2004GL022152

Musgrave and Reeburgh, 1982

Mwakanyamale et al., 2012
https://doi.org/10.1190/geo2011-0407.1

Nabighian and Macnae, 1991

Nagorski and Moore, 1999
https://doi.org/10.1029/1999WR900204

Naudet et al., 2003
V. Naudet, A. Revil, J. Bottero, P. Bégassat. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater.
https://doi.org/10.1029/2003GL018096

Naudet et al., 2004

Nenna and Knight, 2013

Newbold et al., 1982

Newell et al., 2015

Nyquist et al., 2008

Ogilvy et al., 2009

Oldenborger et al., 2016

Oldenburg and Li, 1999
Packman and MacKay, 2003

A.I. Packman, J.S. MacKay Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution
https://doi.org/10.1029/2002WR001432

Paine, 2003

J.G. Paine Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods
https://doi.org/10.1029/2001WR000710

Parsekian et al., 2011

A.D. Parsekian, X. Comas, L. Slater, P.H. Glaser Geophysical evidence for the lateral distribution of free phase gas at the peat basin scale in a large northern peatland
https://doi.org/10.1029/2010JG001543

Parsekian et al., 2015

A.D. Parsekian, K. Singha, B.J. Minsley, W.S. Holbrook, L. Slater Multiscale geophysical imaging of the critical zone
https://doi.org/10.1002/2014RG000158

Pastick et al., 2013

N.J. Pastick, M.T. Jorgenson, B.K. Wylie, B.J. Minsley, Ji L., M.A. Walvoord, B.D. Smith, J.D. Abraham, J.R. Rose Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska

Phelps et al., 2014

G. Phelps, C. Ippolito, Lee R., J. Spritzer, Yeh Y. Investigations into Near-real-time Surveying for Geophysical Data Collection Using an Autonomous Ground Vehicle
(2014), pp. 1-12

Pidlisecky et al., 2011

CrossRef View Record in Scopus

Power et al., 1999

Prendergast and Gavin, 2014

Article Download PDF View Record in Scopus

Refsgaard et al., 2014

Article Download PDF View Record in Scopus

Revil, 2005

View Record in Scopus

Revil et al., 2008

Revil et al., 2010

Revil, 2012


View Record in Scopus

Richards et al., 2017


ArticleDownload PDFView Record in Scopus

Rizzo et al., 2004


View Record in Scopus

Robinson et al., 2012


ArticleDownload PDFView Record in Scopus

Rosenberry and LaBaugh, 2008


D.S. Sassen, S.S. Hubbard, S.A. Bea, Chen J., N. Spycher, M.E. Denham Reactive facies: an approach for parameterizing field-scale reactive transport models using geophysical methods  
W10526  
https://doi.org/10.1029/2011WR011047  
CrossRef View Record in Scopus

M. Sato, H.M. Mooney The electrochemical mechanism of sulfide self-potentials  
Geophysics, 25 (1) (1960), pp. 226-249  
https://doi.org/10.1190/1.1438689  
CrossRef View Record in Scopus


View Record in Scopus

View Record in Scopus

View Record in Scopus

View Record in Scopus

View Record in Scopus

M. Sophocleous Interaction between groundwater and surface water: the state of the science
Hydrogeol. J., 10 (1) (2002), pp. 52-67
https://doi.org/10.1007/s10040-001-0170-8
CrossRef
View Record in Scopus

A. Soueid Ahmed, A. Jardani, A. Revil, J.P. Dupont Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data
CrossRef
View Record in Scopus

A. Soueid Ahmed, A. Jardani, A. Revil, J.P. Dupont Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests
CrossRef
View Record in Scopus

J.A. Stanford, J.V. Ward The hyporheic habitat of river ecosystems
https://doi.org/10.1038/335064a0
CrossRef
View Record in Scopus

J.A. Stanford, J.V. Ward An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor
https://doi.org/10.2307/1467685
CrossRef

D.W. Steeples Shallow seismic methods
Y. Rubin, S.S. Hubbard (Eds.), Hydrogeophysics, 2, Springer, Netherlands (2005), pp. 215-251
CrossRef
View Record in Scopus

J.B. Stoll Unmanned aircraft systems for rapid near surface geophysical measurements
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, UAV-g2013, Rostock, Germany (2013), pp. 391-394
XL-1/W2
CrossRef
View Record in Scopus

Stonedahl et al., 2010
S.H. Stonedahl, J.W. Harvey, A. Wörman, M. Salehin, A.I. Packman, A multiscale model for integrating hyporheic exchange from ripples to meanders
W12539
https://doi.org/10.1029/2009WR008865
View Record in Scopus

Stonedahl et al., 2013
S.H. Stonedahl, J.W. Harvey, A.I. Packman, Interactions between hyporheic flow produced by stream meanders, bars, and dunes
https://doi.org/10.1002/wrcr.20400
CrossRef
View Record in Scopus

Stonestrom and Constantz, 2003

Swarzenski et al., 2007
P.W. Swarzenski, F.W. Simonds, T. Paulson, S. Kruse, Geochemical and geophysical examination of submarine groundwater discharge and associated nutrient loading estimates into Lynch Cove, Hood Canal, WA
http://pubs.er.usgs.gov/publication/70031439
CrossRef
View Record in Scopus

Tarantola, 2005
A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation
https://doi.org/10.1137/1.9780898717921

Telford et al., 2010
W.M. Telford, R.E. Geldart, R.E. Sheriff, Applied Geophysics

Terry et al., 2017
N. Terry, F.D. Day-Lewis, J.L. Robinson, L.D. Slater, K. Halford, A. Binley, J. Lane, D. Werkema, Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool
Groundwater, 6 (2017), pp. 1-6
https://doi.org/10.1111/gwat.12522
CrossRef

Tonina and Buffington, 2007
D. Tonina, J.M. Buffington, Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modeling

https://doi.org/10.1029/2005WR004328

D. Tonina, J.M. Buffington_Hyporheic exchange in mountain rivers I: mechanics and environmental effects_
Geogra. Compass, 3 (3) (2009), pp. 1063-1086

CrossRef View Record in Scopus

Topp et al., 1980

Toran et al., 2013b
L. Toran, B. Hughes, J. Nyquist, R. Ryan_Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone_
Ground Water, 51 (4) (2013), pp. 635-640

https://doi.org/10.1111/j.1745-6584.2012.01002.x

View Record in Scopus

Toran et al., 2012
L. Toran, B. Hughes, J. Nyquist, R. Ryan_Using hydrogeophysics to monitor change in hyporheic flow around stream restoration structures_

https://doi.org/10.2113/gseegeosci.18.1.83

CrossRef View Record in Scopus

Toran et al., 2013a
L. Toran, J.E. Nyquist, Fang A.C., R.J. Ryan, D.O. Rosenberry_Observing lingering hyporheic storage using electrical resistivity: variations around stream restoration structures, Crabby Creek, PA_

https://doi.org/10.1002/hyp.9269

CrossRef View Record in Scopus

Tóth, 1963
J. Tóth_A theoretical analysis of groundwater flow in small drainage basins_

CrossRef View Record in Scopus

Triska et al., 1989
F.J. Triska, V.C. Kennedy, R.J. Avanzino, G.W. Zellweger, K.E. Bencala_Retention and transport of nutrients in a third-order stream in Northwestern California: hyporheic processes_

http://www.jstor.org/stable/1938120

CrossRef View Record in Scopus
Triska et al., 1993
F.J. Triska, J.H. Duff, R.J. Avanzino
The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial aquatic interface
Hydrobiologia, 251 (1–3) (1993), pp. 167-184
https://doi.org/10.1007/BF00007177
CrossRef
View Record in Scopus

Tso et al., 2017
Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys
Advance online publication

Uhlemann et al., 2016
Integrated time-lapse geoelectrical imaging of wetland hydrological processes
https://doi.org/10.1002/2015WR017932
CrossRef
View Record in Scopus

Uhlemann et al., 2017
Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia
Advance online publication
https://doi.org/10.1016/j.jseaes.2017.07.043

Valett et al., 1993
H.M. Valett, C.C. Hakenkamp, A.J. Boulton
Perspectives on the hyporheic zone: integrating hydrology and biology
http://www.jstor.org/stable/1467683 12
CrossRef
View Record in Scopus

van der Kruk, 2015
J. van der Kruk
Tools and techniques: ground-penetrating radar
https://doi.org/10.1016/B978-0-444-53802-4.00195-0
ArticleDownload PDFView Record in Scopus

Viezzoli et al., 2010

Vinegar and Waxman, 1984

Von Gunten et al., 1991

Voytek et al., 2016

Wallin et al., 2013

Ward et al., 2010a

Ward et al., 2010b

Ward et al., 2013

Ward, 2016

Waxman and Smits, 1968

Webb et al., 2000

Webster et al., 1996

Weller et al., 2013
Weller et al., 2015a
A. Weller, L. Slater, A. Binley, S. Nordsiek, S. Xu*Permeability prediction based on induced polarization: insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range
https://doi.org/10.1190/geo2014-0368.1
CrossRef

Weller et al., 2015b
A. Weller, L. Slater, J.A. Huisman, O. Esser, F. Haegel*On the specific polarizability of sands and sand-clay mixtures
https://doi.org/10.1190/GEO2014-0509.1
CrossRef

Weller and Slater, 2015
A. Weller, L.D. Slater*Induced polarization dependence on pore space geometry: empirical observations and mechanistic predictions
https://doi.org/10.1016/j.jappgeo.2015.09.002
ArticleDownload PDFView Record in Scopus

Whitehead and Hudenholtz, 2014a
K. Whitehead, C.H. Hudenholtz*Remote sensing of the environment with small unmanned aircraft systems (UASs) part 1: a review of progress and challenges
CrossRef

Whitehead et al., 2014b
CrossRef

Wilkinson et al., 2006
P.B. Wilkinson, P.I. Meldrum, J.E. Chambers, O. Kuras, R. Ogilvy*Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations
CrossRef

Wilkinson et al., 2010

Wilkinson et al., 2012

Williams et al., 2012a

Williams et al., 2012b
B.A. Williams, M.D. Thompson, S.F. Miller. Interpretation and Integration of Seismic Data in the Gable Gap. CH2M Hill Plateau Remediation Company (2012)

Williams et al., 2012c

Williams et al., 2012d

Williams et al., 2005

Wilson et al., 2016

Winter, 1976

Winter et al., 1998

Wishart et al., 2006

Wishart et al., 2008

Woessner, 2000

Wojnar et al., 2013

Wondzell et al., 2010

Worrall et al., 1999
Wynn and Sherwood, 1986

J.C. Wynn, S.I. Sherwood The self-potential (SP) method: an inexpensive reconnaissance and archaeological mapping tool
J. Field Archaeol., 11 (2) (1986), pp. 195-204
https://doi.org/10.1179/jfa.1984.11.2.195

Xie et al., 2016

J. Hydrol., 535 (2016), pp. 135-147
https://doi.org/10.1016/j.jhydrol.2016.01.071

Yoshikawa and Hinzman, 2003

K. Yoshikawa, L.D. Hinzman Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska
https://doi.org/10.1002/ppp.451

Zarroca et al., 2014

M. Zarroca, R. Linares, V. Rodellas, J. Garcia-Orellana, C. Roqué, J. Bach, P. Masqué Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, 224Ra and 222Rn
https://doi.org/10.1002/hyp.9793

Zhang and Revil, 2015

Zhang J., A. Revil 2D joint inversion of geophysical data using petrophysical clustering and facies deformation
https://doi.org/10.1190/geo2015-0147.1

Zhou and Greenhalgh, 2000

Zhou B., S.A. Greenhalgh Cross-hole resistivity tomography using different electrode configurations
https://doi.org/10.1046/j.1365-2478.2000.00220.x

Zhou et al., 2014
https://doi.org/10.1093/gji/ggu001
CrossRef View Record in Scopus

Zimmer and Lautz, 2014

https://doi.org/10.1002/hyp.9778
CrossRef View Record in Scopus