Lawrence Berkeley National Laboratory
Recent Work

Title
SINGULARITIES IN THE PERTURBATIVE QCD TREATMENT OF THE PHOTON STRUCTURE FUNCTIONS

Permalink
https://escholarship.org/uc/item/6bk8t8t8

Author
Rossi, G.

Publication Date
1983-03-01
SINGULARITIES IN THE PERTURBATIVE QCD TREATMENT OF THE PHOTON STRUCTURE FUNCTIONS

Giuseppe Rossi

March 1983
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
In the ordinary perturbative QCD treatment [1, 2] two types of terms contribute to the photon structure functions in the Bjorken limit. Hadronlike terms exhibit the same dependence on the momentum transfer q^2 as hadronic deep inelastic scattering structure functions, whereas pointlike terms are described by a series in integer powers of the effective strong coupling constant $a(q^2)$. For $F^Y_2(x, q^2)$ this is summarized by the expression

$$F^Y_2(n, q^2) = \int_0^1 dx x^{-1} F^Y_2(x, q^2) = \frac{\alpha_{em}}{\ln \frac{\Lambda}{\mu}} \left\{ a_0 a(n) + b(n) + \sum_{\ell=1}^{\infty} f_\ell(n) + \sum_{\ell=0}^{\infty} h_\ell g(n) a^{d_i+\ell} \right\}$$

$$i = +, -, NS \quad (1)$$

here α_{em} is the fine structure constant, g_0 is the one loop coefficient of the perturbative expansion of the β function:

$$\beta(g) = -g_0 \frac{g^3}{16\pi^2} - g_4 \frac{g^5}{(16\pi^2)^2} - \ldots. \quad (2)$$

The exponents d_i are given by

$$d_i = \lambda_i / 2g_0 \quad i = +, -, NS$$

where λ_i are the eigenvalues of the hadronic one loop anomalous dimension matrix: numerical values for d_i^n are reported in Table 1. The normalization is the same as that of Ref. [3]. The first three terms in the r.h.s. of (1) give the pointlike contribution: they are
proportional to the reduced matrix element between photon states of
the photon operators \(0^N_y\) \(<\gamma|0^N_y|\gamma> = 1\) in leading order in \(\alpha_{Em}\) and
can be calculated by present methods in perturbative QCD. In parti-
cular the quantities \(a(n)\) and \(b(n)\) were first obtained by the authors
of Ref. [1] and [2] respectively, while the quantities \(r_{\lambda}(n)\) have not
yet been calculated. The quantities \(h_{\lambda,\varepsilon}(h)\) which enter the hadronlike
contribution are not calculable by present methods; each of them
contains a part proportional to the reduced matrix elements between
real photon states of the quark or gluon operators \(0^N_y, 0^N_G, 0^N_{NS}\) and
a part proportional to \(<\gamma|0^N_y|\gamma>\).

It has often been emphasized in the literature that the photon
structure functions differ from those encountered in hadronic deep
inelastic scattering in that both their \(x\) and \(Q^2\) dependence are calcu-
lable in perturbative QCD: of course, this is true only if the
hadronlike contributions in (1) can be neglected in comparison to
the pointlike terms or at least if their relevance is confined to a
limited range of \(x\). One can see from (1) and from the values of \(d^{n}_{1}\)
given in Table 1 that even if contributions of order higher than \(n\)
are neglected (next to leading level) some of the hadronic terms are
relevant at small \(x\). The expressions for \(a(n)\) and \(b(n)\) given in
Ref. [2] are singular (simple poles) at those values of \(n\) where \(d^{n}_{-} = -1\)
\(d^{n}_{NS} = -1\) and where \(d^{n}_{-} = 0, d^{n}_{NS} = -1\), \(d^{n}_{NS} = 0, d^{n}_{NS} = -1\) respectively;
those among these poles which occur at the largest value of \(n\) deter-
mine the \(x \rightarrow 0\) behavior of the inverse Mellin transform of \(a(n)\) and
\(b(n)\):

\[
\alpha(x) \propto \left(\frac{1}{x} \right)^{n + 1.596}
\]

\[
b(x) \propto \left(\frac{1}{x} \right)^{n + 2}
\]

(where \(a(n) = \int_{0}^{1} dx x^{n-1} a(x)\), \(b(n) = \int_{0}^{1} dx x^{n-1} b(x)\)). The purpose
of this letter is to point out that this behavior is general, namely
that at \(x \rightarrow 0\), \(r_{\lambda}(x) \propto (1/x)^{n_{\lambda}}\) where \(n_{\lambda}\) is the value of \(n\) at which
\(d^{n}_{-} = 1\); since at each order the exponent \(n_{\lambda}\) grows larger (see Table 1)
one has to deal with increasingly severe singularities; these singu-
larities are unphysical and are cancelled by corresponding singularities
in the hadronlike contribution. It should be emphasized that one is
dealing here with power singularities: unlike the logarithmic singular-
larities which occur in the photon structure functions at \(x = 1\), the
effect of more and more severe power singularities at each order in
\(\alpha(Q^2)\) cannot be significantly damped by the additional powers of
\(\alpha(Q^2)\) at any experimentally foreseeable \(Q^2\). As a result the pertur-
bative expansion for the calculable part alone fails to converge
in the low \(x\) range. In fact, since \(n_{\lambda}\) increases rapidly as one goes
to higher orders, at each successive order larger and larger values
of \(x\) (those controlled by \(n_{\lambda} n_{\lambda}\)) will be affected: one should
expect that for these values of \(x\) the QCD prediction for the calcula-
table part will differ significantly from the complete result;
correspondingly, hadronlike contributions which ensure the cancellation
of the singularities will become more important at each successive
order.
A hint of this behavior is provided by Ref. [3]. These authors consider the photon structure functions in the kinematical region $\lambda^2 \ll p^2 \ll Q^2$ where $-p^2$ is the momentum squared of the target photon. p^2 can be used to fix the renormalization point and the structure functions are fully calculable in this region; they are found to be free of power singularities.

In Bjorken limit $p^2 = 0$ one has for the nonsinglet part of the photon structure function $F_2(n, Q^2)$

$$F_2^{\pi}(n, Q^2) = \left[\frac{\alpha_s}{4\pi} A_0^{\pi}(\Omega_0) M_0^{\pi}(\tilde{g}_0^2, \tilde{g}_0^2) + X_0^{\pi}(\tilde{g}_0^2, \tilde{g}_0^2, \alpha_{\text{EM}}) \right] C_{\pi}(1, \tilde{g}_0^2)$$

(4)

here \tilde{g}_0^2 and \tilde{g}_0^2 are the remormalized strong coupling constant at Q^2 and at the subtraction scale Q_0^2 respectively ($\alpha(Q^2) = \tilde{g}_0^2/4\pi$), $A_0^{\pi}(Q_0^2)$ is the reduced matrix element of the fermion nonsinglet operator between real photon states and

$$M_0^{\pi}(\tilde{g}_0^2, \tilde{g}_0^2) = \exp \int_{\tilde{g}_0^2} d\tilde{g}_0 \frac{N_{\pi}(\tilde{g}_0)}{\beta(\tilde{g}_0)}$$

(5)

$$X_0^{\pi}(\tilde{g}_0^2, \tilde{g}_0^2, \alpha_{\text{EM}}) = \int_{\tilde{g}_0^2} d\tilde{g}_0 \frac{K_{\pi}(\tilde{g}_0, \alpha_{\text{EM}})}{\beta(\tilde{g}_0)} M_0^{\pi}(\tilde{g}_0^2, \tilde{g}_0^2)$$

(5')

The anomalous dimensions $\gamma_{\pi}^{\pi}(\tilde{g}_0^2)$ and $K_{\pi}^{\pi}(\tilde{g}_0^2, \alpha_{\text{EM}})$ and the coefficient function $c_{\pi}^{\pi}(1, \tilde{g}_0^2)$ are calculable in perturbation theory:

$$\gamma_{\pi}^{\pi}(\tilde{g}_0^2) = \frac{\tilde{g}_0^2}{16\pi^2} \gamma_{\pi}^{\pi} + \frac{\tilde{g}_0^2}{(16\pi^2)^2} \gamma_{\pi}^{\pi} + \ldots$$

(6)

$$K_{\pi}^{\pi}(\tilde{g}_0^2, \alpha_{\text{EM}}) = \frac{\alpha_{\text{EM}}}{4\pi} \left[- K_{\pi}^{\pi} - \frac{\tilde{g}_0^2}{16\pi^2} K_{\pi}^{\pi} + \ldots \right]$$

(6')

$$C_{\pi}(1, \tilde{g}_0^2) = 1 + \frac{\tilde{g}_0^2}{16\pi^2} \beta_{\pi}^{\pi} + \ldots$$

(6'')

Values for the coefficients in the expansions (2) and (6) can be found in Ref. [2]. One can expand the integrand in (5) to obtain

$$\frac{\gamma_{\pi}(\tilde{g}_0^2)}{\beta(\tilde{g}_0^2)} = \frac{1}{\tilde{g}_0^2} \sum_{\ell=0}^{\infty} \Gamma_{\pi}(n) \left(\frac{\tilde{g}_0^2}{16\pi^2} \right)^\ell$$

(7)

with

$$f(n, \tilde{g}_0^2) = \exp \sum_{\ell=1}^{\infty} \frac{\Gamma_{\pi}(n)}{2\ell} \left(\frac{\tilde{g}_0^2}{16\pi^2} \right)^\ell$$

Next expanding the integrand in (5')
\[K'_{\text{NS}}(q_0, \alpha_{\text{end}}) = \frac{4n\alpha_{\text{end}}}{\beta(q_0)} \sum_{n=0}^{\infty} \Omega_m(n) \left(\frac{q^2_0}{16n^2} \right)^m \]

\[(\Omega_0(n) = K'_{\text{NS}}/\beta, \ldots) \quad \text{one gets} \]

\[X_{\text{NS}}(\tilde{q}_0, \tilde{q}_0, \alpha_{\text{end}}) = \frac{4n\alpha_{\text{end}}}{\beta(q_0)} \left(\frac{q^2_0}{16n^2} \right)^m \sum_{m=0}^{\infty} \Omega_m(n) \left(\frac{q^2_0}{16n^2} \right)^m \frac{\tilde{q}_0^2 \tilde{q}_0^2 - 2\tilde{q}_0^2 - 3}{q^2_0} \]

\[A_{\text{NS}}(q_0) = \frac{1}{4n} \left(\frac{q^2_0}{16n^2} \right)^m + \sum_{m=0}^{\infty} \Omega_m(n) \left(\frac{q^2_0}{16n^2} \right)^m \]

(8)

Here \(J(n) \) is an arbitrary integration constant and

\[\Pi_m(n) = \frac{1}{2} \frac{\Omega_m(n)}{d_{\text{NS}} + 1 - m} \]

(9)

Inserting (7), (8) and (9) in (4) one has

\[F_{2}^{\text{NS}}(n, q^2_0) = \frac{4n\alpha_{\text{end}}}{\beta(q_0)} \left(\frac{q^2_0}{16n^2} \right)^m \sum_{m=0}^{\infty} \Omega_m(n) \left(\frac{q^2_0}{16n^2} \right)^m \frac{\tilde{q}_0^2 \tilde{q}_0^2 - 2\tilde{q}_0^2 - 3}{q^2_0} \]

(10)

\[\text{The first term in the r.h.s. of (11) contributes to the quantities } \]

\[a(n), b(n) \text{ and } r_\ell(n) \text{ in (1). One can see from (10) that at each } \]

\[\text{order in perturbation theory a new singularity is generated and that } \]

\[\text{this singularity is absent from the complete result since } \]

\[\lim_{n \to 0} \frac{1}{n} \left(\frac{\tilde{q}_0^2 - \tilde{q}_0^2}{\tilde{q}_0^2} \right) = - \ln \left(\frac{\tilde{q}_0^2}{\tilde{q}_0^2} \right) \]

Similar conclusions can easily be drawn for the singlet sector, although the treatment of this case is somewhat more involved. The argument applies also to the longitudinal structure function \(F_L^L(x, Q^2) \).

Formally one can use some arbitrary subtraction procedure to eliminate from (11) the singularities and the \(Q_0^2 \) dependence: for example

\[F_{2}^{\text{NS}}(n, q^2_0) = \alpha_{\text{end}} C_{\text{NS}} \left(\frac{q^2_0}{16n^2} \right)^m \left[\frac{\Omega_m(n)}{\beta(q_0)} \left(\frac{q^2_0}{16n^2} \right)^m \right] + \tilde{A}_{\text{NS}}(n) \left(\frac{q^2_0}{16n^2} \right)^m \]

(11)

(a different subtraction procedure to regularize the singularity

at \(d_{\text{NS}} = 0 \) has been presented in Ref. [4]). The constant \(\tilde{A}_{\text{NS}}(n) \)

appearing in (12) must be determined from experiments in the usual fashion of hadronic deep inelastic scattering: their value depends on the order at which one performs the perturbation expansion. In leading order (12) becomes

\[F_{2}^{\text{NS}}(n, q^2_0) = \alpha_{\text{end}} C_{\text{NS}} \left(\frac{q^2_0}{16n^2} \right)^m \left[\frac{\Omega_m(n)}{\beta(q_0)} \left(\frac{q^2_0}{16n^2} \right)^m \right] + \tilde{A}_{\text{NS}}(n) \left(\frac{q^2_0}{16n^2} \right)^m \]

At this order only the region of very small \(x \) is affected: the main effect is the elimination of spikes of the form \((1/x)^{m-1} \) and \((1/x)^{n-1} \) which are present, for example, in the plots for

\[h_{\text{NS}}(x), h_{\text{S}}(x) \text{ and } f(x) \text{ of Ref. [5]. In next to leading order the } \]

subtractions eliminate the unphysical negative result of the form
reported in [6] for \(P_2(x, Q^2) \) in the range \(x \leq 0.25 \). One can expect that at the next order \(\mathcal{O}(\alpha) \) the results obtained for the pointlike part will be significantly modified by the hadronlike contribution in the whole range controlled by \(n \leq 5.3 \) (i.e. \(x \leq 0.8 \)).

Vector meson dominance arguments have often been used in the literature (see for example [1, 6]) to give estimates of the hadronic terms in (1). In view of the previous discussion it is apparent that such estimates can account for only part of the hadronlike contribution. In particular the detailed singularity structure due to the perturbation expansion cannot be reproduced by the VMD model. In effect the authors of Ref. [6] fail to obtain a physical (non negative) result by adding VMD contribution to the singular pointlike next to leading order result.

In summary, the singularities examined here set considerable limitations on the calculability of the \(x \) behavior of the photon structure function in Bjorken limit: at each successive order the unphysical singular behavior of the calculable part becomes more severe and this implies that hadronlike contributions whose effect must be evaluated experimentally affect larger and larger values of \(x \).

As mentioned before the structure functions appear to be free of these difficulties in the kinematical region \(A^2 < p^2 < Q^2 \) studied by the authors of Ref. [3]. In this region the hadronlike contributions can be calculated and the additional scale \(p^2 \) can be used to fix the renormalization point so that the calculability of the \(x \) behavior is not subject to the limitations discussed above: this region may therefore provide a cleaner and more significant test of the theory.

ACKNOWLEDGMENTS

I wish to thank Prof. William R. Frazer and Dr. Ian Hinchliffe for helpful conversations. I am also grateful to Prof. G. F. Chew and the staff of the Theory Group at LBL for their hospitality. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

REFERENCES

Table 1. Values of the quantities d_{NS}^n, d_-^n, d_+^n (4 flavors)

<table>
<thead>
<tr>
<th>n</th>
<th>d_{NS}^n</th>
<th>d_-^n</th>
<th>d_+^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.427</td>
<td>0</td>
<td>0.747</td>
</tr>
<tr>
<td>3</td>
<td>0.667</td>
<td>0.609</td>
<td>1.386</td>
</tr>
<tr>
<td>4</td>
<td>0.837</td>
<td>0.817</td>
<td>1.852</td>
</tr>
<tr>
<td>5</td>
<td>0.971</td>
<td>0.960</td>
<td>2.192</td>
</tr>
<tr>
<td>6</td>
<td>1.080</td>
<td>1.074</td>
<td>2.460</td>
</tr>
</tbody>
</table>

$d_{NS}(n = 0.3099) = -1$, $d_-(n = 1.596) = -1$

$d_{NS}(n = 1) = 0$, $d_-(n = 2) = 0$

$d_{NS}(n = 5.250) = 1$, $d_-(n = 5.326) = 1$, $d_+(n = 2.386) = 1$

$d_{NS}(n = 26.58) = 2$, $d_-(n = 26.59) = 2$, $d_+(n = 4.402) = 2$
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.