Title
A theoretical analysis of local thermal equilibrium in fibrous materials

Permalink
https://escholarship.org/uc/item/6bn8s504

Journal
Thermal Science, 19(1)

ISSN
0354-9836

Authors
Tian, M
Pan, N
Qu, L
et al.

Publication Date
2015

DOI
10.2298/TSCI120607018T

Peer reviewed
A THEORETICAL ANALYSIS OF LOCAL THERMAL EQUILIBRIUM IN FIBROUS MATERIALS

by

Mingwei TIAN a, b*, Ning PAN c, d, Lijun QU a, b, Xiaoqing GUO a, b, and Guangting HAN b

a College of Textile and Clothing, Qingdao University, Qingdao, China
b Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, China
c Institute of Physics of Porous Soft Matters, Donghua University, Shanghai, China
d Biological and Agricultural Engineering Department, University of California, Davis, Cal., USA

Original scientific paper
DOI: 10.2298/TSCI120607018T

The internal heat exchange between each phase and the local thermal equilibrium scenarios in multi-phase fibrous materials are considered in this paper. Based on the two-phase heat transfer model, a criterion is proposed to evaluate the local thermal equilibrium condition, using derived characteristic parameters. Furthermore, the local thermal equilibrium situations in isothermal/adiabatic boundary cases with two different heat sources (constant heat flux and constant temperature) are assessed as special transient cases to test the proposed criterion system, and the influence of such different cases on their local thermal equilibrium status are elucidated. In addition, it is demonstrated that even the convective boundary problems can be generally estimated using this approach. Finally, effects on local thermal equilibrium of the material properties (thermal conductivity, volumetric heat capacity of each phase, sample porosity, and pore hydraulic radius) are investigated, illustrated, and discussed in our study.

Key words: porous fibrous media, local thermal equilibrium, boundary conditions, material property and structure

Introduction

It is universally acknowledged that Fourier's law can be treated as the classical fundamental theory of heat conduction for single-phase material in thermal equilibrium, and it may however not be automatically applied to multi-phase heat transfer problems. Multi-phase materials, such as foam metal, fibrous material, catalytic reactors and other mixtures, consist of different phase components whose properties are in general discrepant significantly. In other words, the heat transfer ability of each phase and hence its corresponding thermal status differ from each other, rendering the system more prone to be in thermal non-equilibrium, especially at the local levels. Therefore the original Fourier's law is in general not applicable to such issue.

Over the past decades, many studies have been done to remedy this problem. Cattaneo [1] and Vernotte [2] established the thermal wave equation to define the non-Fourier's problems...
and proposed the relaxation time to determine the finite velocity of the heat flow. Tzou [3] modified the thermal wave equation and proposed the phase-lag concept to describe the lagging behavior of heat conduction from macro- to micro-scales. Amiri and Vafai [4] then applied the phase-lag theory to establish the governing equations for two-phase porous media and analyzed the boundary and inertia effects. Nield et al. [5] presented an analytic solution for the forced convection in a saturated porous medium limited by a parallel-plane channel. Besides, Kuznetsov et al. [6] established that the temperature difference between the fluid and solid phases forms a thermal wave localized in space and derived an analytical solution for this wave.

Through extensive research, it has become clear now that the key issue in dealing with heat transfer in multi-phase materials is to determine if there is a local thermal equilibrium (LTE) established among the different phases, for at such a LTE condition, the local temperatures of the adjacent phases are nearly equal to each other and the lag time becomes negligible so that the Fourier's law is valid again for the entire system. Otherwise, the material is considered at Local thermal non-equilibrium (LTNE) such that the local discrepancy in thermal state between different phases cannot be neglected.

As such, researchers have developed several criteria to assess the LTE situation using specific multiphase models. For instance, Minkowycz et al. [7] derived a dimensionless parameter, Sp, to estimate the LTE conditions. Moreover, Lee and Vafai [8] classified the heat transfer characteristics into three regimes, each dominated by one of the three distinctive heat transfer mechanisms, so as to deal with them separately. Yang et al. [9] investigated the gradient bifurcation between the fluid phase and solid matrix to determine the LTE behavior. Vadasz [10] calculated the phase temperatures in both steady and transient conditions using analytical methods and demonstrated that a system will always be in LTE under the steady-state, and turns to LTNE during the transient process. Zhao et al. [11], Shi and Yu [12], Li and He [13], Li [14], He et al. [5], Fan et al. [16], and Yang et al. [17] introduced some alternative fractal approaches to such problems. In addition, some works tackled other related yet more specific issues like the forced convective incompressible flow through porous beds [18], local thermal non-equilibrium with internal heat generation [19], porous medium in heat exchanger [20, 21], and the heat exchange between human tissues and blood flow [22, 23]. Most of these investigations focused on analyzing and determining what thermal state a specific porous material is in (LTE or LTNE). However given the significance of LTE related issues in heat transfer processes, it is our opinion that more detailed investigations on the problems are desirable for better understanding of the phenomenon.

The objective of this work is to first develop a more thorough understanding of the internal heat transfer in fibrous materials, the temperature distributions in both fiber and air phases and the relations between them by employing an analytical method [7], then to propose a new and hopefully more effective criterion to assess the system LTE status. After the assessment system is developed, actual problems with two bounds (isothermal and adiabatic) heated by two different heat sources (constant heat flux and constant temperature) are examined, as testing cases for our approach to study their influences. Also it is demonstrated that the LTE conditions of these two bounds can be used to deal with convection boundary cases. Finally some numerical studies are conducted, dealing with the effects of the thermal properties, material structure of porous materials on the LTE behavior.

Heat conduction by two-phase fibrous materials

Fibrous materials as typical two-phase porous media are composed of fibers and air, if neglecting the moisture contained [24]. A scanning electron microscope example of such a po-
rous structure is shown in fig. 1 [25] where the fibers are interlaced in the system. When the sample is exposed to a thermal agitation, the internal heat transfer and energy exchange between the two phases occur.

When the porous structure is assumed structurally isotropic and the thermophysical properties are independent of temperature, the governing equation for each phase can be obtained from the energy conservation based on the local volume average theory [4, 26]:

\[
\varepsilon \rho C_a \frac{\partial T_a(x, t)}{\partial t} + \rho C_s UT_s = - \nabla q_a(x, t) + h_e a_{sf} (T_f - T_a) \quad (1a)
\]

\[
(1 - \varepsilon) \rho C_f \frac{\partial T_f(x, t)}{\partial t} = - \nabla q_f(x, t) - h_e a_{sf} (T_f - T_a) \quad (1b)
\]

where \(T_a(x, t)\) and \(q_a(x, t)\) are the volume averaged temperature and heat flux for the air phase over a representative localized volume, while \(T_f(x, t)\) and \(q_f(x, t)\) are for the fiber phase; \(\rho C_a\) and \(\rho C_f\) are the volumetric heat capacity of air and fiber, respectively and \(\varepsilon\) is the porosity of the system; other parameters listed in the equation are: \(h_e\) is the interstitial heat transfer coefficient between the two phases, \(U\) – the fluid velocity vector and \(a_{sf}\) the specific surface area of the material pores.

Summing eq. (1a) and (1b) up and considering the influence of the volumetric heat source \(S(x, t)\) results in:

\[
\varepsilon \rho C_a \frac{\partial T_a(x, t)}{\partial t} + \rho C_s UT_s + (1 - \varepsilon) \rho C_f \frac{\partial T_f(x, t)}{\partial t} = - \nabla q(x, t) + S(x, t) \quad (1c)
\]

where \(q(x, t) = q_a(x, t) + q_f(x, t)\) is the total heat transfer through the representative localized volume.

Assuming the heat released from the fibers is totally absorbed by its surrounding air phase at a local level, the energy conservation \(Q = Cm\Delta T\) yields the relation:

\[
\rho C_s \Delta V_p \frac{\partial T_a(x, t)}{\partial t} = h_e \Delta A_p [T_f(x, t) - T_a(x, t)] \quad (2a)
\]

or converting into:

\[
T_f(x, t) - T_a(x, t) = \frac{\Delta V_p \rho C_a}{h_e \Delta A_p} \frac{\partial T_a(x, t)}{\partial t} = \frac{r_h \rho C_s}{h_e} \frac{\partial T_a(x, t)}{\partial t} \quad (2b)
\]

where \(\Delta V_p\) and \(\Delta A_p\) are the volume and the surface area of a mean pore and their ratio \(\Delta V_p/\Delta A_p\) is termed as the pore hydraulic radius \(r_h\). If the local heat exchange between the two adjacent phases is not sufficient due to their property disparities, the local temperature discrepancy appears in the representative localized volume, and the system is thus considered at local thermal non-equilibrium (LTNE) condition.

At the LTNE conditions, the Fourier equation \(q(x, t) = -k_s \nabla T(x, t)\) does not hold any more, but some works [3, 7] have established the modified equation of Fourier equation under the LTNE conditions as:
where $k_e = e k_a + (1-e) k_f$ is the equivalent thermal conductivity for the multi-phase material where k_a and k_f correspond to the air and fiber phases. In addition, two lag times (τ_q and t_t) can be interpreted as τ_q - the relaxation time resulted from the fast-transient effect due to thermal inertia of heat flux and is named the heat flux phase-lag and can be expressed as $\tau_q \approx \rho C_r C_l A V / A^2 f$ [27], whereas t_t - the parameter describing the time delay in temperature gradient across the differential phase and $e = \rho C_r C_l / h_e$ as shown in eq. (2b).

In the present work, several typical boundary conditions (B.C.) in porous material applications are discussed, shown in fig. 2 corresponding to the mathematical forms in tab. 1. Both B.C.1 and B.C.2 are the representative cases under the constant heat sources, while B.C.3 and B.C.4 are heated by the constant temperature sources in fig. 2. Their initial conditions are all set as the same temperature T_0. The processes of solving the above governing equations under the B.C.1-4, respectively, are provided in the Appendix by employing an analytical method [7], where the dimensionless temperature distributions for each phase have been obtained.

Table 1. four different boundary conditions

<table>
<thead>
<tr>
<th>x = 0</th>
<th>x = L</th>
<th>Initial condition</th>
<th>t = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_a = T_f = T_0$</td>
</tr>
<tr>
<td>$\frac{\partial T_a}{\partial x} = \frac{\partial T_f}{\partial x}$</td>
</tr>
</tbody>
</table>

A criterion of local thermal equilibrium in fibrous materials

Once obtaining the temperature distribution for each phase, we can facilely obtain the local discrepancy between the contacting phases in the localized representative volume. This discrepancy solely determines the internal LTE behavior, i.e., the bigger the discrepancy, the deeper the system into the LTNE condition. The local discrepancy $\Delta \theta$ between the dimensionless temperature distributions of the two phases can be expressed as:

$$\Delta \theta = \theta_a - \theta_f$$

where θ_a and θ_f are the dimensionless temperatures for the air and fiber phases derived from Appendix. Therefore, the porous material can be treated as in the LTE conditions once this discrepancy $\Delta \theta < \Delta \theta_{cv}$, i.e., becoming smaller than a critical value $\Delta \theta_{cv} (= 0.0001$ in our study).
In our discussions below, the isothermal case B.C.1 is chosen as an example to study the local discrepancy D_q between the thermal states of the two phases. The sample thickness L and heat source flux q_0 are set at 0.01 m and 100 W/m2, the fiber volumetric heat capacity ρC_f is \(5 \times 10^5\) J/m3K and the properties of the air phase are given as $k_a = 0.025$ W/mK and $\rho C_a = 1.21 \times 10^3$ J/m3K from ref. [28, 29]. Other parameters at the default values are in tab. 2.

Table 2. The properties used in computation

<table>
<thead>
<tr>
<th>Physical property</th>
<th>Fiber phase</th>
<th>Pore hydraulic radius r_h [m]</th>
<th>Fiber phase</th>
<th>Porosity ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0.10</td>
<td>5.0×10^{-4}</td>
<td>1.0 $\times 10^5$</td>
<td>0.80</td>
</tr>
<tr>
<td>Range</td>
<td>0.05–2.50</td>
<td>5.0×10^{-5}–1.0×10^{-3}</td>
<td>2.0 $\times 10^3$–1.0×10^6</td>
<td>0.05–0.95</td>
</tr>
</tbody>
</table>

The local discrepancy curves $\Delta \theta$ in fig. 3, illustrate the phase-lag in temperature of the sample against time, at different locations x. The curves exhibit a similar trend, increasing from the origin, reaching the peaks and then falling off to zero. We can then define two time markers (t_{\min} and t_{\max}) between the curves using the critical value $\Delta \theta_{cv}$, so as to symbolize the entry and exit moments of the LTNE condition. The net length between these two moments ($\Delta t = t_{\max} - t_{\min}$) represents the duration stayed in the LTNE condition. Thus the two time points (t_{\min} and t_{\max}) and the duration (Δt) can be used logically as the parameters to assess the LTE condition of a porous system. Here, intrinsically, Δt, the duration of LTNE, characterizes the effective transit period of the entire heat transfer process, and the rest time can be treated as in the LTE state, including the steady-state period and the residual transient period, with negligible marginal local discrepancy $\Delta \theta < \Delta \theta_{cv}$.

These two time markers are clearly functions of many related variables:

\[
\begin{align*}
\begin{cases}
 t_{\min} & = f_1 \left(k_f, \rho C_f, \varepsilon, r_h, \frac{\partial T_u}{\partial t}, T_{st}^u \right) \\
 t_{\max} & = f_2 \left(k_f, \rho C_f, \varepsilon, r_h, \frac{\partial T_u}{\partial t}, T_{st}^u \right)
\end{cases}
\end{align*}
\]

where T_{st}^u is the steady-state temperature in each boundary case made available in Appendix. That is, these two parameters are not only related to the intrinsic properties of the material system (fiber phase thermal conductivity k_v, volumetric heat capacity ρC_v, porosity ε, and pore hydraulic radius r_h) but also to the temperature slope $\partial T_u/\partial t$ and T_{st}^u.

Returning to fig. 3 where four curves of the same sample are shown, corresponding to different locations in the sample $x = 0.0007$ m, 0.0023 m, 0.0069 m, and 0.0090 m, respectively, in B.C.1 model, the dotted horizontal line is the critical value $\Delta \theta_{cv} = 0.0001$. It is clear first that in the same sample but at the locations sufficiently further away from the heat source ($x \geq 0.0069$ m), the system is always at the LTE condition throughout the time based on the criterion $\Delta \theta < \Delta \theta_{cv}$ so that the local temperature discrepancy between the air and solid fiber can be neglected. It is only at the locations within $x < 0.0069$ m that LTNE becomes a concern – the
closer the location, i.e., a smaller \(x \), the earlier for the location to enter LTNE state. In other words, during a thermal transfer process in a porous material with constant heat source, only the parts close enough to the heat source experience the local thermal non-equilibrium state.

Thermal responses at different boundary conditions

In this section, the equilibrium status of both boundary (isothermal/adiabatic), and heat source conditions (constant heat flux/temperature) listed in fig. 2 are discussed so as to exhibit the differences between them. We then found out from our calculations that not only such differences are huge, but they depend on the fiber thermophysical properties \((k_f \text{ and } \rho C_f) \) and sample structure properties \((\varepsilon) \) as well. Nonetheless a complete graphic illustration of such influence of different boundary conditions, at all possible ranges of the properties, is too complex to present in one drawing, we only provided a few special cases with some fixed properties in figs. 4 and 5, just to show the differences. Whereas simpler cases hence with more comprehensive illustrations are shown in figs. 7 in 3-D plotting where one can get the sense of the difficulties involved.

The distributions of \(t_{\text{min}}, t_{\text{max}}, \text{ and } D_t \) for B.C.1~4 are illustrated in figs. 4 and 5 using the boundary conditions listed in tab. 1 and the data in tab. 2. Conditions B.C.1 and 2 are both heated by the same constant heat flux source \((q_0 = 100 \text{ W/m}^2) \), while B.C.3 and 4 by the constant temperature source \((T_h = 10 \text{ °C}) \). The initial temperature of these four cases are all set as \(T_0 = 0 \text{ °C} \).

First, in both B.C.1 and 2 cases in fig. 4(a) and (b), \(t_{\text{min}}, t_{\text{max}}, \text{ and } D_t \) simultaneously increase against the distance \(x \), meaning that at locations further away from the heat source \((x = 0) \), the entry \((t_{\text{min}}) \) and exit \((t_{\text{max}}) \) moments to LTNE stage are both delayed, and the duration \((\Delta t) \) in LTNE is extended.

From fig. 4(a) and (b), we can also conclude that the isothermal case B.C.1 possesses a greater \(t_{\text{min}} \) but smaller \(t_{\text{max}} \) than the adiabatic case B.C.2, resulting in a much shorter duration \(\Delta t \). The differences are attributed to the nature of the boundary settings: at the isothermal condition B.C.1 with a higher heat leaking from the other end, the sample is only able to retain a lower temperature level, unlike the adiabatic B.C.2 surface where no heat leaks out at all.

Whereas for B.C.3 and 4 boundary conditions with constant heat temperature source \((T_h = 10 \text{ °C}) \), assuming the source located at \(x = 0.01 \text{ m} \), at that point both the fiber and air phases
possess the same temperature \((T_f = T_a = T_h) \) and thus always at LTE condition. Once moving away from the heat source however, seen from fig. 5(a), the samples enter the LTNE state. Overall, the isothermal case B.C.3 stays in the LTNE state shorter, indicated by a smaller \(\Delta t \) value in fig. 5(a), but enters and leaves the LTNE state earlier, by smaller \(t_{\text{min}} \) and \(t_{\text{max}} \) values in fig. 5(b), than the adiabatic B.C.4 case. The results can be explained in thermal physics terms. Since the isothermal B.C.3 surface leaks more heat than the B.C.4 case, it thus requires greater heat supply from the heat source to maintain its constant temperature \((T_h) \) at the other end. Such heat has to be transferred through the same material over the same distance from the heat source, the heat transfer rate in B.C. 3 has to be higher so that both the entry time \((t_{\text{min}}) \) and exit time \((t_{\text{max}}) \) of LTNE in B.C.3 are earlier than those in B.C.4, leading to overall a smaller duration \(\Delta t \) than in B.C.4.

Furthermore, as the thermal responses of samples under convection boundaries are considered to be all within the isothermal and adiabatic boundary conditions \[30\], the LTE state for such convection cases can also be estimated here based on the two extreme cases. That is, the isothermal and adiabatic boundaries can be viewed as the special cases of all the convection boundary cases, with the maximum and minimum convection coefficients, respectively. For all convection situations \(t_{\text{min}}, t_{\text{max}} \) and \(\Delta t \) are located between these two bounds as indicated in figs. 4(b) and 5(b), where region A are the corresponding LTNE entry moments \((t_{\text{min}}) \), and Region B are the estimated exit moments \((t_{\text{max}}) \) for all the convection cases.

The boundary conditions of actual fibrous materials are more complex than the cases dealt with here, e.g., with different initial conditions of internal phases, samples with three or more phases, and multi-dimension heat transfer, etc., and their corresponding LTE status will be more erratic. But the approach proposed in this paper can still be useful as an approximate and simply way to study the LTE behaviors of these complex cases.

Effects of several key parameters on the sample LTE behavior

In this section, the influences of the fiber thermophysical properties \((k_f \) and \(\rho C_f) \) and sample porosity \(\varepsilon \) and pore hydraulic radius \(r_h \) on the system parameters \((t_{\text{min}}, t_{\text{max}}, \text{and } \Delta t) \) are discussed, again using B.C.1 as the example. The ranges of the related parameters in our compu-
tation are from tab. 2: when dealing with one parameter, others will always take the default values, and the heat source flux q_0 is fixed at 100 W/m2.

Influence of the fiber thermal conductivity

The fiber thermal conductivity k_f within the range in tab. 2 is used to calculate the results drawn in fig. 6. The value of Δt decreases with the increased k_f in fig. 6(a), and the other two parameters (t_{min} and t_{max}) in fig. 6(b) exhibit the similar trend. The influence of sample location x as seen from the curves is also quite simple.

Thermal conductivity by definition is the specific amount of the heat that passes the cross-section of an object. Since in B.C.1 case with constant heat supply for the porous sample, the sample with bigger k_f can thus transfer heat more quickly to the entire sample, so its temperature rises earlier and the slope becomes steeper, leading to a smaller entry time (t_{min}). However, as this high transfer ability will also leak more heat to the external environment more quickly and thus more difficult to maintain the temperature, it leads to an end moment (t_{max}) earlier than the sample with smaller k_f. In other words, the fiber thermal conductivity is an important factor in affecting the LTE conditions, the higher the k_f value, the earlier LTNE appears, but overall the shorter LTNE period for the sample. Also, remembering what demonstrated in the section *A criterion of local thermal equilibrium in fibrous materials*, the curves of t_{min} and t_{max} here can be used as the limiting cases for the convection problems.

Influence of fiber volumetric heat capacity

The influence of fiber volumetric heat capacity ρC_f is given in fig. 7, in 3-D due to the complicities caused by having to include the sample location x as well. It is shown in fig. 7(a) that, location x exerts a significant impact on the LTNE duration Δt: when the location in the sample is sufficiently further away from the heat source ($x \gg 0$), the sample will not experience the LTNE state at all as long as the sample volumetric heat capacity ρC_f is not too small. However, at other location x, the influence of ρC_f on Δt shows a parabola pattern: Δt increases from zero to a maximum and then drops back to near zero as ρC_f decreases from its maximum to close to 0.
Correspondingly, the influences of both position x and ρC_f on the entry time t_{\min} in fig. 7(b) are very similar to fig. 7(a) on Δt. Whereas the profiles on the exit time t_{\max} is such that combined with those for t_{\min} an unsymmetrical tubular 3-D hyper-plane is formed where two parabola curved planes for t_{\min} and t_{\max} connected at a critical line, meaning the entry and exit moments converge ($t_{\min} = t_{\max}$) and the LTNE duration degenerates to zero. Note the 3-D connecting critical line is projected into the 2-D line in fig. 7(b).

The influence of sample porosity

Porosity ε, a key parameter of material structure, is specified in this section and its relationship with the characteristic parameters is plotted in fig. 8. Porosity ε is defined as the fraction of the volume of voids over the total volume. In a porous material, increasing ε or the air volume fraction shifts the thermal response of the material towards more dominance by the air phase which possesses significantly smaller thermal conductivity and volumetric heat capacity than the fiber phase. Hence, heated by the constant heat flux in B.C.1, the samples with greater porosity holding more air will experience a quicker temperature rise and reach the steady-state condition earlier, i.e., the corresponding times t_{\min} and t_{\max} both arrive earlier and the duration Δt tends to be smaller, as illustrated in figs. 8(a) and (b).

Figure 7. Effect of the fiber volumetric heat capacity ρC_f on the parameters, (a) for Δt and (b) for t_{\min} and t_{\max}

Figure 8. Effect of porosity ε on the parameters, (a) for Δt and (b) for t_{\min} and t_{\max}
The influence of sample pore hydraulic radius

Pore hydraulic radius \(r_h \) plays an important role in \(\Delta t \), and also impacts on \(t_{\text{min}} \) and \(t_{\text{max}} \) from fig. 9(a) and (b). \(\Delta t \) and \(t_{\text{max}} \) are both proportionate to the \(r_h \) while \(t_{\text{min}} \) with the inversely-proportional relationship. A bigger \(r_h = \Delta V_p/\Delta A \), means that the specific contacting surfaces between local air and fiber phase are smaller, so the heat exchange may be more inefficient, according to eq. (2), then the time of local discrepancy increasing to the critical value \(\Delta \theta_{cv} \) becomes earlier and decreasing to \(\Delta \theta_{cv} \) becomes later, so \(t_{\text{min}} \) and \(t_{\text{max}} \), respectively, become smaller and bigger with a larger \(r_h \). We also can find that \(t_{\text{min}} \) and \(t_{\text{max}} \) overlap at the critical line, which means that the LTNE can be avoided once the \(r_h \) is small enough.

![Figure 9. The effect of \(r_h \) on the parameters, (a) for \(\Delta t \) and (b) for \(t_{\text{min}} \) and \(t_{\text{max}} \)](image)

Conclusions

By using the heat transfer theory for fibrous porous materials, we calculated the local discrepancy of adjacent two phases (air/fiber) to establish a criterion; this criterion can be used to determine the LTE condition for porous media, using three characteristic parameters, the entry and exit moments of LTNE \(t_{\text{min}} \) and \(t_{\text{max}} \), and the duration in LTNE stage \(\Delta t \).

Four common boundary conditions were employed to study the influence of boundary conditions. Heated by the same constant heat flux source, the isothermal case possessed a bigger \(t_{\text{min}} \) and smaller \(t_{\text{max}} \) than the adiabatic case, so the former enters LTNE later and stays there for a short period \(\Delta t \) than the latter. Under the constant temperature source, the isothermal model is in and out of the LTNE stage earlier than the adiabatic one, resulting an overall shorter duration \(\Delta t \).

The isothermal and adiabatic boundaries can be viewed as the special cases of all the convection boundary cases, with the maximum and minimum convection coefficients, respectively. For all convection situations \(t_{\text{min}} \), \(t_{\text{max}} \), and \(\Delta t \) are located between these two bounds. In other words, the LTNE behavior of convection boundaries could be generally estimated from the region rounded by the two bounds (isothermal/adiabatic).

As to the influences of the fiber thermophysical properties \((k_f \text{ and } \rho C_P)\) and material porosity \(\epsilon \) and pore hydraulic radius \(r_h \) on thermal behaviors of porous media, increasing any one of \(k_f, \rho C_P, \) and \(\epsilon \) will reduce and even eliminate the region of LTNE status in the case (isothermal with constant heat flux) conditions. Our theoretical approach can be extended to assess the LTE conditions of some other complex, dynamic, and multiscale cases.
Acknowledgment

Financial support of this work was provided by Natural Science Foundation of China via grant no. 51306095 and 51273097 and Taishan scholars construction engineering of Shandong province.

Nomenclature

\(\Delta A_p \) – pore surface area, \([m^2]\)

\(a_{sf} \) – specific surface area of porous materials, \([m^3]\)

\(F_n(x) \) – eigenfunction

\(h_c \) – interstitial heat transfer coefficient, \([Wm^{-1}K^{-1}]\)

\(k \) – thermal conductivity, \([Wm^{-1}K^{-1}]\)

\(L \) – porous material thickness, \([m]\)

\(N_n \) – norm

\(q(x, t) \) – heat flux, \([Wm^{-2}]\)

\(r_h \) – hydraulic radius, \(\Delta V_p/\Delta A_p\), \([m]\)

\(t_{min} \) – entry moment to the LTNE condition, \([s]\)

\(t_{max} \) – exit moment to the LTNE condition, \([s]\)

\(\Delta t \) – duration of the LTNE condition, \([s]\)

\(T(x, t) \) – temperature distribution, \([K]\)

\(T_0 \) – initial temperature, \([K]\)

\(T^* \) – steady-state temperature, \([K]\)

\(U \) – velocity vector of fluid, \([ms^{-1}]\)

\(\Delta V_p \) – volume of a mean pore, \([m^3]\)

\(x \) – space co-ordinate in x-direction, \([m]\)

Greek symbols

\(\varepsilon \) – porosity of porous material \(\varepsilon = V_f/V \)

\(\theta \) – dimensionless temperature

\(\gamma_n \) – eigenvalue

\(\rho C \) – heat capacity/unit volume, \([Jm^{-3}K^{-1}]\)

\(\tau_i \) – lag time of the temperature gradient \([s]\)

\(\tau_q \) – lag time of the heat flux \([s]\)

\(\tau_c \) – \(= (1-\varepsilon)(\rho C)\tau_i/\rho C\)

Subscripts

\(a \) – air phase

\(f \) – fiber phase

\(e \) – effective property

Appendix

This appendix details the solution of the governing equations eqs. (1)-(3) under four different boundary conditions listed in tab. 1 and fig. 2. The temperature distribution of each model can be derived as follow based on the analytical approach [7]. In the present work, the boundary conditions are considered as the non-flow or negligible flow cases, therefore the natural convection can be ignored generally [31, 32] if there is no flow blow-in from the boundaries.

The air phase solution of \(B.C.1 \) can be solved as:

\[
T_a = \sum_{\eta=0} q_0 \cos \left[\frac{(2n+1)\pi x}{2L} \right] \left(-2\omega_n + (\omega_n + a_n)e^{(\alpha_n-a_n)t} (\omega_n - a_n)e^{-(\alpha_n+a_n)t} \right) \quad (A.1a)
\]

The fiber phase temperature distribution can be solved from the relation defined in eq. (2), in addition, the interstitial heat transfer \(h_c \) can be replaced as \(h_c = \frac{\mathrm{Nu}_h k}{r_h} \), the Nusselt number \(\mathrm{Nu}_h \) is about 1 and \(t_q \) is set as zero, in the no flow case of ref. [7], so:

\[
T_f = T_a + \frac{r_h \rho C_a}{h_c} \frac{\partial T_a}{\partial t} = T_a + \frac{r_h^2 \rho C_a}{\mathrm{Nu}_h k} \sum_{\eta=0} q_0 \cos \left[\frac{(2n+1)\pi x}{2L} \right] \left(e^{(\alpha_n-a_n)t} - e^{-(\alpha_n+a_n)t} \right) \rho C L (\tau_q + \tau_c) \omega_n \quad (A.1b)
\]

We then obtain the dimensionless temperature distribution of each phase:

\[
\theta_a = \frac{T_a - T_0}{T^*} \quad \theta_f = \frac{T_f - T_0}{T^*} \quad (A.1c)
\]

where symbols
\[
a_n = \gamma_n - \beta_n, \quad \omega_n \sqrt{\beta_n^2 - \lambda_n^2}, \quad \beta_n = \gamma_n \left[1 - \frac{1}{2} \frac{\tau_1}{\tau_q + \tau_e} - \frac{1}{2} \frac{\tau_2}{(\tau_q + \tau_e)} \right] \lambda_n = \gamma_n \sqrt{1 - \frac{\tau_1}{\tau_q + \tau_e}}
\]
and
\[
T_{st} = \sum_{n=0}^{\infty} \frac{q_0}{\rho C_n} \cos \left(\frac{n \pi x}{2L} \right) \frac{1}{\omega_n^2 - a_n^2} - 2 \omega_n \frac{\rho C_n (\tau_q + \tau_e) \omega_n}{(\tau_q + \tau_e) \omega_n}
\]
is the final steady-state temperature after non-linearly rise of the transient stage. The parameters \(F_n(x), N_n, \) and \(\gamma_n\) can be acquired and yielded in tab. A.1 under different boundary conditions.

<table>
<thead>
<tr>
<th>Table A.1. Calculated parameters for each boundary condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C.1 (F_d(x) = \cos(2n + 1) \pi x / 2L) (\gamma_n = (2n + 1) \pi / 2L \kappa / \rho C) (N_n = L/2)</td>
</tr>
<tr>
<td>B.C.2 (F_d(x) = \cos(n \pi x / L)) (\gamma_n = (n \pi / L)^2 \kappa / \rho C) (N_n = L) (n = 0) (N_n = L/2) (n > 0)</td>
</tr>
<tr>
<td>B.C.3 (F_d(x) = \sin(n \pi x / L)) (\gamma_n = (n \pi / L)^2 \kappa / \rho C) (N_n = L/2)</td>
</tr>
<tr>
<td>B.C.4 (F_d(x) = \cos(2n + 1) \pi x / 2L) (\gamma_n = (2n + 1) \pi / 2L \kappa / \rho C) (N_n = L/2)</td>
</tr>
</tbody>
</table>

Furthermore, the derivation of others three models (B.C.2–4) can be found as follow.

B.C.2.

The temperature distribution of air phase and fiber phase can be obtained:
\[
T_a = \frac{q_0}{\rho CL} \left\{ -1 + \frac{(\omega_n + a_n) t e^{-(\omega_n + a_n) t}}{\omega_n + a_n} + \sum_{n=1}^{\infty} \frac{q_0}{\rho CL} \cos \left(\frac{n \pi x}{L} \right) \frac{1}{(\tau_q + \tau_e) \omega_n (\omega_n^2 - a_n^2)} \left(\omega_n - a_n \right) + \frac{1}{\omega_n^2 - a_n^2} \right\}
\]
\[
T_f = T_a + \frac{r_f^2 \rho C_n}{\nu_n \kappa_n} + \frac{q_0}{\rho CL} \left(1 - e^{-(\omega_n + a_n) t} \right) \sum_{n=1}^{\infty} \frac{q_0}{\rho CL} \cos \left(\frac{n \pi x}{L} \right) \left(e^{-(\omega_n + a_n) t} - e^{-(\omega_n + a_n) t} \right) \frac{1}{(\tau_q + \tau_e) \omega_n (\omega_n^2 - a_n^2)} \right\}
\]

The dimensionless temperature distribution:
\[
\theta_a = \frac{T_{sat} - T_a}{T_{sat}}, \quad \theta_f = \frac{T_{fstd} - T_f}{T_{fstd}}
\]

where
\[
T_{sat} = \frac{q_0}{\rho CL} \left\{ -1 + \frac{(\omega_n + a_n) t}{\omega_n + a_n} + \sum_{n=1}^{\infty} \frac{1}{(\tau_q + \tau_e) \omega_n (\omega_n^2 - a_n^2)} \right\}
\]
The dimensionless temperature distribution:

\[
T_{fi} = \frac{q_0}{\rho C L} \left[\frac{r^2 (\rho C)^a}{\text{Nu}_{\text{rh}} k_a} + \frac{1 + (\omega_n + a_n) \tau}{\omega_n + a_n} \sum_{n=1}^{\infty} \frac{(-2\omega_n) \cos\left(\frac{n\pi x}{L}\right)}{\omega_n \left(\omega_n^2 - \omega_n a_n^2\right)} \right]
\]

are the linear temperatures arising during the quasi-steady stage of air and fiber phase, respectively.

B.3

\[
T_a = \frac{T_h x}{L} + \sum_{n=1}^{\infty} \frac{2(-1)^n T_h \sin\left(\frac{n\pi x}{L}\right)}{n\pi} \left\{ \left(\omega_n + a_n\right) e^{\left(\omega_n - a_n\right)\tau} - \left(2\omega_n^2 - \omega_n a_n^2\right) e^{\left(\omega_n + a_n\right)\tau} \right\}
\]

\[
T_f = T_a + \frac{r^2 \rho C_a}{\text{Nu}_{\text{rh}} k_a} \sum_{n=1}^{\infty} \frac{2(-1)^n T_h \sin\left(\frac{n\pi x}{L}\right)}{n\pi} \left\{ \left(\omega_n^2 - a_n^2\right) e^{\left(\omega_n - a_n\right)\tau} - \left(2\omega_n^2 - a_n^2\right) e^{\left(\omega_n + a_n\right)\tau} \right\}
\]

The final temperature value of this model is \(T_f(x) = T_h x/L\), so the dimensionless temperature distribution:

\[
\theta_a = \frac{T_h x - T_h L}{T_h x}, \quad \theta_f = \frac{T_h x - T_f L}{T_h x}
\]

B.4

\[
T_a = T_h - \sum_{n=1}^{\infty} \frac{2(-1)^n T_h \cos\left(\frac{(2n+1)\pi x}{2L}\right)}{(2n+1)\pi} \left\{ \left(\omega_n + a_n\right) e^{\left(\omega_n - a_n\right)\tau} + \left(\omega_n - a_n\right) e^{\left(\omega_n + a_n\right)\tau} \right\}
\]

\[
T_f = T_a + \frac{r^2 \rho C_a}{\text{Nu}_{\text{rh}} k_a} \sum_{n=1}^{\infty} \frac{2(-1)^n T_h \cos\left(\frac{(2n+1)\pi x}{2L}\right)}{(2n+1)\pi} \left\{ \left(\omega_n^2 - a_n^2\right) e^{\left(\omega_n - a_n\right)\tau} - \left(2\omega_n^2 - a_n^2\right) e^{\left(\omega_n + a_n\right)\tau} \right\}
\]

The dimensionless temperature distribution:

\[
\theta_a = \frac{T_h - T_a}{T_h}, \quad \theta_f = \frac{T_h - T_f}{T_h}
\]

References

Paper submitted: June 7, 2012
Paper revised: January 7, 2013
Paper accepted: March 5, 2013