Title
Auditory Brain-Stem and Middle-and Long-Latency Evoked Potentials in Coma

Permalink
https://escholarship.org/uc/item/6bs5106g

Journal
Archives of Neurology, 41(8)

ISSN
0003-9942

Authors
Rosenberg, C
Wogensen, K
Starr, A

Publication Date
1984

DOI
10.1001/archneur.1984.04050190041012

Peer reviewed
Auditory Brain-Stem and Middle- and Long-Latency Evoked Potentials in Coma

Carl Rosenberg, MD; Kenneth Wogensen, MD; Arnold Starr, MD

Twenty-five patients in coma, each with a Glasgow Coma Scale measure less than or equal to five, were studied within the first three days of hospitalization with auditory brain-stem and middle- and long-latency evoked potentials. Survival was related to the simultaneous preservation of long- and middle-latency and brain-stem evoked potentials. The preservation of just middle-latency and/or brain-stem components did not correlate with survival. However, if the group of patients in coma due to head trauma was analyzed separately, survival could be related to the results of the brain-stem evoked potentials. There was no relationship between survival and the results of the initial clinical neurological examination. In patients who survived, there was no pattern of evoked potential preservation that related to the quality of survival.

METHODS

Twenty-five comatose patients ranging in age from 14 to 84 years (mean, 43 years) were studied. The causes of coma were various, including anoxia (13 patients), trauma (six patients), vascular (three patients), hepatic failure (two patients), and acute hydrocephalus (one patient). All patients were examined neurologically with regard to respirations, pupillary responses, extracranial motility, and motor behavior. Their level of function was greatly depressed, as evidenced by their rating on the Glasgow Coma Scale of five or less. Auditory evoked potentials were recorded at least once in all of the patients at a mean of 3.4 days after the onset of the coma. In nine patients, the potentials were recorded a second time. Sixteen of the patients also had an EEG performed close to the time of the evoked potential studies.

Auditory evoked potentials were measured between an electrode on the vertex and another electrode on the ear ipsilateral to the ear stimulated. Monaural stimulation of both ears was performed. Duplicate averages were obtained to ensure the reliability of identifying the evoked potential components. An artifact reject algorithm was used to eliminate individual trials contaminated by high-amplitude muscle activity. Auditory brain-stem potentials were elicited by rarefaction clicks produced by activating earphones with a 100-µS pulse at an intensity of 100-dB peak sound pressure level (SPL) for wave I. The stimulus rate was 11.1/s and 2,000 trials made up the average. The recording filters were set from 30 to 300 Hz. Auditory middle-latency potentials were elicited with 1,000 presentations of a 30-ms duration 1,000-Hz tone burst (5-ms rise/fall times) at a rate of 11.1/s and an intensity of 71.5-dB SPL. The recording filters were set from 30 to 250 Hz. Auditory long-latency potentials were elicited with 100 trials of the same tone burst. The stimulus rate was 0.7/s, and the recording filters were set from 1 to 30 Hz.

Auditory brain-stem potentials were classified as abnormal if the following occurred: (1) the interpeak latencies were 2.6 SDs beyond the mean value (2.5 ms for I-III, 2.2 ms for III-V, and 4.5 ms for I-V); (2) waves I, III, or V were not present; or (3) the amplitude ratio of IV/V was less than 0.5. The auditory brain-stem potentials were classified as absent when there were no reproducible components beyond wave I. Middle-latency evoked potentials were classified as abnormal if the positive component, Pa, was beyond 40 µV (>2.5 SDs above the mean) and absent if components N1 and P2 were not reproducible. The evoked potentials were usually comparable from stimulation of each ear. In 18 patients, the brain-stem components were the same from stimulation of either ear; in 20 patients, the middle-latency potentials were the same from stimulation of either ear.

Accepted for publication Sept 11, 1983.

From the Department of Neurology, University of California, Irvine.

Reprint requests to Department of Neurology, California College of Medicine, University of California, Irvine, CA 92217 (Dr Starr).
ear, and in 22 patients, the long-latency components were the same from stimulation of either ear. The results from stimulation of the two ears were sorted as follows: normal indicated that the test results from both ears were normal; abnormal meant that the potentials from at least one of the ears were abnormal; and absent meant that no evoked potentials could be identified from both ears. The Figure contains examples of a set of auditory brain-stem and middle- and long-latency evoked potentials from both a normal subject and one of the patients in coma.

The incidence of survival among the 25 patients varied according to the cause of their illness: anoxia (three of 13 patients); trauma (four of six patients); vascular diseases (one of three patients); hepato­renal failure (one of two patients); and hydrocephalus (zero of one patient). There were three patients who recovered from coma but died of secondary problems and were thus classified as survivors: one with an anoxic insult who experienced a cardiopulmonary arrest while receiving dialysis after three weeks in a vegetative state; one with head trauma who died of pneumonia after recovering from coma to a vegetative state for one month’s duration; and one with a subarachnoid hemorrhage who survived one month in a vegetative state before dying of pneumonia.

RESULTS

All of the patients with long-latency components (n = 9) also had middle-latency and brain-stem components preserved. Six of these patients survived. There were five patients without long-latency components but with middle-latency and brain-stem potentials preserved, of whom two survived. In contrast, of the eight patients with only auditory brain-stem potentials present, just one survived, while none of the three patients without any of the evoked potentials survived. Combining the patients without any evoked potentials and those with only the brain-stem components into a single category and then comparing the difference in survival between the three patterns of evoked potential preservation disclosed a significant difference (Table 1; P < .01).

Analysis of the results in Table 1 yields the following conclusions: absence of auditory brain-stem potentials in a comatose patient is a reliable indicator that the patient will not survive (zero of three patients). However, the converse statement that the presence of just auditory brain-stem potentials predicts survival was not confirmed (one of eight patients). The correlation between the preservation of long-latency components and survival (six of nine patients) is only weakly positive. However, this correlation is improved if details of the hospital course of the three patients with preserved long-latency components who died are considered. In all three patients, the long-latency potentials were measured early during the evolution of their illness. The first patient had coma develop from hepa-
Evoked potentials present, two of three patients survived; middle-latency and brain-stem potentials preserved, two of three patients survived; only brain-stem components present, one of three patients survived. Furthermore, the correlation between the absence of long-latency evoked components and survival varied with the cause of coma: in anoxia, their absence was uniformly associated with death (nine patients), whereas their absence in trauma was uninformative (three of the six patients without long-latency components survived).

There was no correlation between the quality of survival and the presence or absence of the various evoked potentials. Of the nine survivors, two were functioning well, one was moderately disabled, and six were severely disabled or in a chronic vegetative state. While the two patients with a good outcome had long-latency components evident early in their illness, there were four patients with poor outcomes who also had long-latency components preserved.

When the results of the clinical examination were analyzed with regard to the patient's outcome, no relationship could be identified between survival from coma and the presence of pupillary responses, oculocephalic reflexes, preserved spontaneous respirations, or motor behavior (Table 2). The evoked potential results were then compared with the clinical findings from the neurological examination. The presence of both long- and middle-latency potentials was associated with intact pupillary responses (11 of 13 patients, P < .02) and oculocephalic reflexes (nine of 11 patients, P < .1). Middle-latency potentials in the absence of long-latency components did not correlate with the presence of intact pupillary responses. Finally, there were no substantial correlations between the presence or absence of any of the types of evoked potentials and the occurrence of spontaneous respirations. We were also unable to define a correlation between the degree of EEG abnormality and the patterns of preserved evoked potentials.

COMMENT

The results of this study of patients in coma due to various causes suggest that survival may be correlated with the pattern of preserved auditory evoked potentials. When long-, middle-, and short-latency brain-stem components were all preserved, there was a substantially better chance of survival (six of nine patients) than when only the brain-stem potentials alone were present (one of eight patients). This latter result conflicts with previously reported studies of patients in coma due to head trauma in which the presence of normal auditory brain-stem components did correlate with survival. However, when results from the present study are analyzed for only those patients in coma due to head trauma, the relationship between the preservation of an auditory brain-stem potential (five patients) and survival (four patients) also seems to hold. In contrast, in patients in coma due to anoxia, survival could not be related to the definition of brain-stem components (only three of 11 patients with auditory brain-stem components survived). Thus, both the cause of the coma as well as the pattern of auditory evoked potentials appear to influence the probability of survival.

The various auditory evoked potentials are generated at different levels of the nervous system: the short-latency components arise from activation of the auditory pathways within the cochlea and brain stem, whereas the middle- and long-latency components depend on the integrity of both primary and secondary auditory cortical regions in the temporal lobe. In head trauma, coma may result from functional disturbances localized to the diencephalon, with a good prognosis for recovery, ie, the cerebral concussion syndrome. The auditory brain-stem potentials in these individuals will most likely be normal, whereas the middle- and long-latency components could be affected. However, when trauma is severe, the brain stem can be directly involved with hemorrhage or secondarily affected by uncal herniation. In both of these instances, the prognosis for recovery is poor and the auditory brain-stem potentials will most likely be altered. In contrast, anoxia causes diffuse damage, first in the hippocampus, and next in the remainder of the cerebral cortex and brain stem, making it less likely that any one type of auditory evoked potential will be selectively spared as in trauma.

Somatosensory evoked potential components have also been shown to arise from several different levels of the neuraxis, including peripheral nerve, spinal cord, medullary lemniscus, thalamus, and cerebral cortex. De la Torre et al noted that in patients who did not recover from coma, there was both a delay of some of the components as well as a loss of the longest latency events. Hume et al found that the latency difference between the spinal cord (Nl13) and cerebral (N19) components correlated with recovery from coma only if the measures were made several weeks after the onset of the brain lesion. The present study agrees with that of Hume et al in that the results of auditory evoked potential tests performed early in the course of an evolving process may be misleading. Thus, both the origin of the condition causing the coma as well as the time of evoked potential testing are factors that will affect the predictive value of evoked potentials for survival.

The clinical examination and measures such as the Glasgow Coma Scale still provide the most reliable information for prognosis for survival in comatose patients. We do not advocate the routine use of evoked potentials to predict survival in comatose patients. However, in those patients in whom there is uncertainty, the use of evoked potential measures may supplement the clinical examination to increase the accuracy of predicting survival. Certainly, the patients included in the present study had a uniformly poor prognosis for survival.

Table 1. Survival From Coma and the Pattern of Preserved Auditory Evoked Potentials

<table>
<thead>
<tr>
<th>Cause</th>
<th>Long and Middle Latency and Brain Stem</th>
<th>Middle Latency and Brain Stem</th>
<th>Brain Stem</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>All causes</td>
<td>6/19</td>
<td>2/5</td>
<td>1/8</td>
<td>0/3</td>
</tr>
<tr>
<td>Anoxia</td>
<td>3/4</td>
<td>0/2</td>
<td>0/5</td>
<td>0/2</td>
</tr>
<tr>
<td>Trauma</td>
<td>1/1</td>
<td>2/3</td>
<td>1/1</td>
<td>0/1</td>
</tr>
<tr>
<td>Other</td>
<td>2/4</td>
<td></td>
<td>0/2</td>
<td></td>
</tr>
</tbody>
</table>

*Number of survivors/number tested.
†Vascular, hepatorenal, hydrocephalus.

Table 2. Survival From Coma and Neurological Findings

<table>
<thead>
<tr>
<th></th>
<th>Preserved</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pupillary reflex</td>
<td>7/13†</td>
<td>2/12</td>
</tr>
<tr>
<td>Respiration</td>
<td>6/17</td>
<td>1/8</td>
</tr>
<tr>
<td>Oculovestibular reflex</td>
<td>6/11</td>
<td>3/14</td>
</tr>
</tbody>
</table>

* Data for motor activity are as follows: normal, 0/2; decorticate or decerebrate, 6/10; and flaccid, 3/13.
†Number of survivors/number tested.
based on their Glasgow Coma Scale ratings of five or below. When the patients with preserved long-latency auditory evoked potentials were considered separately, their probability of survival was notably enhanced. In those patients, some aspects of auditory cortical function were preserved, perhaps reflecting a lesser degree of neural involvement when compared with the patients without long-latency evoked potential components. The pattern of evoked potential preservation was of no value in predicting the quality of survival from coma. This finding might have been anticipated, perhaps, since the auditory potentials studied reflect activity in the primary auditory pathway, structures not particularly involved in cognition, social interaction, or drives and motivations, factors that are relevant for effective social functioning. It may be that the development of techniques to study endogenous or cognitive evoked potentials will provide an opportunity to measure the development of some of the cognitive processes relevant for the quality of survival in patients recovering from coma.

This investigation was supported in part by grant NSI1876 from the National Institute of Communicative Disorders and Stroke.

References