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Abstract – An intelligent energy management approach for a 
solar powered EV charging station with energy storage has been 
studied and demonstrated for a level 2 charger at the University 
of California-Davis West Village. The approach introduces solar 
PV electrical energy forecasting and EV charging demand 
projection to optimize the energy management of the charging 
station. The percentage of cloud cover is extracted from a 
weather forecast website for estimating the available PV 
electrical energy. A linear fit of the historical EV charging load 
from the same day of the week over the previous six weeks is 
employed for extracting the charging pattern of the workplace 
EV charging station. Both simulations and actual operation show 
that intelligent energy management for a charging station with a 
buffer battery can reduce impacts of the EV charging system on 
utility grids in terms of peak power demand and energy exchange, 
reduce grid system losses, and benefit the charging station owner 
through the Time-of-Use rate plans. 

Abstract –charging station; energy management; optimization; 
demand projection 

I. INTRODUCTION 

With rapid adoption of electric vehicles and mass 
installation of solar PV power systems, especially in high PV 
and EV penetration areas, electric vehicle charging, especially 
fast charging, and solar power availability pose a challenge for 
the utility grid, which lacks the capacity to deliver high power 
and store surplus solar electricity. It may not be economical to 
upgrade the distribution infrastructure in the early stage to 
handle this higher power demand and surplus solar energy. An 
approach enabling high penetration of EV charging and solar 
electricity into the present distribution infrastructure, while 
maintaining or improving PV system value, utility system 
reliability, and a steady power supply for EV charging during 
utility outages is to utilize solar powered charging stations 
equipped with battery storage. Very few solar powered EV 
charging stations with battery buffers have been demonstrated 
and none of them have included the effects of solar PV 
electricity estimation and load demand projection in their 
energy management strategies.  

For present solar-powered charging stations with a buffer 
battery, the battery is always fully charged or is immediately 
recharged after each charging event to a fixed SOC from solar 

power and/or the grid in a maximum duration of several hours. 
The solar powered charging stations with energy storage can 
reduce peak power demand from the grid, but can consistently 
require high power to recharge them without considering solar 
power availability and the variability of the expected charging 
load demand. In the proposed energy management, instead of 
always keeping battery fully charged, the charge level of the 
buffer battery is varied according to solar PV electricity 
forecasting and EV charging demand projections, which can 
maximize usage of solar energy for EV charging and 
minimize impacts of solar availability and electric vehicle 
charging on the utility grid. This can also simplify utility grid 
management from the load side in the initial stages of solar 
PV system and EV introduction.  

II. CHARGING SYSTEM DESIGN 

The charging system has a 5 kW PV array, a 6.6 kW level 
2 charging unit, a 35 kWh lithium iron phosphate battery pack, 
and a 10 kW load response bi-directional inverter, as shown in 
Fig. 1. The bi-directional inverter controls power flow 
between the different units. It has two DC ports which are 
connected to the PV panel and battery storage and two AC 
ports tied to the utility grid and EV charger, respectively. PV 
power can be used to charge the EV, be stored in the battery, 
and/or be fed to the grid. The energy stored in the battery can 
be used to charge an EV or fed to the grid. The PV panels, 
battery storage, and the grid can provide power for charging 
the EV.  

An intelligent control system consisting of an on-site 
controller and a supervisory computer was introduced to 
communicate with the bi-directional inverter over the Modbus 
and the battery management system over the CANBUS. The 
on-site controller monitors the solar PV power, the battery 
status, the EV charging load, and the grid status to manage 
power flow between different components depending on the 
status of the system. Weather information from a weather 
forecast website is extracted to estimate the available PV 
electricity. Actual EV charging load data are collected and 
used to extract use patterns of the station for projecting the EV 
charging demand. Based on the estimated PV electricity and 
projected EV charging demand, an optimal battery SOC is 
calculated for charging the battery during off-peak periods if 
needed. Fig. 2 shows the block diagram of the control system. 
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Fig. 1.  Charging station system 

 
Fig. 2.  Charging System Block Diagram 

III. OPTIMIZATION OF ENERGY MANAGEMENT 

A. Power Flow Control Strategy 
The control strategy for maximizing PV energy used for 

EV charging and reducing grid peak power demand has been 
developed. According to the availability of grid power, grid-
tied operating and stand-alone operating modes have been 
designed for the charging station. The system operating modes 
can be automatically switched. In the grid-tied operational 
mode, when an EV is plugged into the charger, PV power is 
used to charge the EV if it is available. If more power is 
needed, the remaining power is provided by the battery or/and 
the utility grid. If no electric vehicle is plugged-in, PV energy 
is stored in the battery and if the battery is completely charged, 
excess PV power is fed into the utility grid. During off-peak 
hours, grid power is used to bring the battery state-of-charge 
up to an optimal level if the battery charge is low. The optimal 
battery SOC is calculated based on the PV electricity 
estimation and the EV charging demand projections. Energy is 
never fed to the grid from the battery in the present system due 

to high EV charging requirements and low PV availability. In 
the stand-alone mode, grid power is not available. The system 
supplies power to charge EVs and power critical loads that 
cannot be supplied directly from the utility grid. Hence if PV 
is available, it will power the EV charger supplemented if 
needed by energy from the battery. If excess energy is 
available, the remaining PV power will be stored in the battery. 
By using the battery storage, the system is able to provide a 
reliable and constant power source from inherent intermittent 
solar PV power. 

B. Solar PV Electricity Forecasting 
Solar power forecast information is essential for efficient 

use and management of the solar electricity. The solar power 
output depends on the incoming solar insolation and the solar 
panel characteristics. The incoming solar insolation varies 
spatially and temporally. The solar insolation on the assigned 
solar panel for a clear sky was calculated as a function of the 
day of year and the time of day, multiplied by the cosine of the 
angle between the normal to the panel and the direction of the 
sun from it.  

The actual solar insolation on the solar panel varies with 
the change of the state of the sky. Various complicated 
numerical weather forecast models have been developed for 
evaluating solar radiation for the management of the electric 
grid [1-3]. Solar energy forecasting for an EV charging station 
equipped with limited energy storage is different from that for 
the management of the electric grid. In this study, only the 
most common indicator of the state of the sky, percent cloud 
cover, is taken into account in calculating the solar electricity. 
To simplify the forecasting, the percentage of cloud cover is 
regarded as the percentage attenuation of solar insulation 
compared to that for a clear sky on the solar panel. The 
estimated solar PV electricity generation can be obtained by 
summing up the actual solar insolation over time multiplied by 
the panel area and the PV conversion efficiency. This is 
described in equation (1).  

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴𝐴𝐴 ∫(1 − 𝑐𝑐)𝐺𝐺(𝑑𝑑, 𝑡𝑡)𝑑𝑑𝑑𝑑  (1) 

where 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃  (Wh/m2) is the daily solar PV electricity, A (m2) is 
the area of the solar panel, η is the PV panel conversion 
efficiency.  c represents the fraction of the cloud cover, and 
G(d,t) (W/m2) is the solar insolation received by the PV panel 
on a specific day for a clear sky. G(d,t) is a 2-D array, indexed 
by the day of the year and the time of the day.  

The weather information in the XML format is obtained 
from OpenWeatherMap website. The weather data for every 
three hours in XML format is streamed and the cloud cover is 
extracted to predict the solar insolation.  

C. EV Charging Demand Projection 
EV charging load forecasting is vitally important for the 

economic operation and optimum control of a solar powered 
battery buffered EV charging station. Electric demand 
forecasting is mature for the electric utility industry. Various 
short-term, medium, and long-term load forecasting 
approaches have been widely used for planning and operating 
utility grids [4-6]. Most methods use statistical techniques 
based on historical data including load, weather, date, and 
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time factors. However, EV charging as a highly variable load 
is dependent on driving pattern, charging habit, and time 
factors including the day of the week and holidays. The 
traditional load forecasting methods may not be suitable for 
forecasting EV charging load demand. It is not possible to 
accurately predict the EV charging events/power at a 
particular time, but for a community-used work place charging 
station, the number of EVs and the charging habit are 
relatively stable and average usage can be predicted. Hence 
the probability of EV charging and aggregated electricity 
demand on a certain day can be forecasted utilizing recent 
historical charger use data.  

In order to simplify the EV charging load forecasts and to 
avoid the use of the unavailable information, a statistical 
model that determines the load model parameters from the 
historical use data of the latest six week period has been 
developed. Aggregated EV charging demand on a certain day 
is projected by using similar-day-of-week approach, which is 
based on collecting and searching historical EV charging data 
for the same day of the week as the forecast day. The linear fit 
of historical EV charging usage data using the least squares 
method is employed to project the charger demand for each 
day of the week. The general least squares method is used to 
fit the historical data of charge station usage to a straight line 
of the general form in equation (2) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏   (2) 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃  (kWh/day) is the projected EV charging load for 
the week n.  n is an integer representing the week number in 
the sequence of week data for a particular day of the week.  a 
is slope and b is intercept of the fitted model for week n=0. 
The values of a and b are the best fit of the historical charger 
use data for each day of the week using usage data for the past 
six weeks. The slope of the linear model reflects the trend of 
charging demand over the last six weeks. The projected 
demand for the charging station is determined by setting n=7 
in the best fit equation for each day of the coming week. 

D. Optimization of Battery SOC 
Since most EV charging for a workplace station occurs in 

the relatively early morning and PV energy production is 
weak during this period, the available energy from the battery 
should be sufficient to meet the projected EV charging 
demand to avoid EV charging from the grid during peak hours. 
Hence the battery SOC to start the day should be maintained 
at a level dependent on the difference between the estimated 
PV energy generation and the projected EV charging demand 
for that day. If the current SOC is less than the projected SOC 
needed to meet the charge station demand, the battery should 
be charged from the grid during the off-peak hours. The 
targeted SOC to start the day is given by the following 
equation (3). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑃𝑃

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆
   (3) 

𝛥𝛥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃  

�𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃 ≥  𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 
𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
� 

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 : projected solar electricity (kWh) during the next day 
𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 : projected EV charging demand (kWh) during the next 
day 
𝛥𝛥𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃 − 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 : Projected energy deficit and surplus 
(positive: deploying; negative: charging) 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸: Total battery storage capacity (kWh) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: Minimum SOC (%) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: Maximum SOC (%) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: Mean SOC (%) in the morning without over-night 
charging 
𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃: Projected target of SOC to start the day 
𝑘𝑘 : Correction factor to account for losses in the battery and 
electronics (k>1) 

IV. SIMULATIONS AND SYSTEM OPERATION 

A. Simulation Results 
To understand the impact of the solar PV system and EV 

charging on utility grids, the solar PV powered EV charging 
systems with a buffer battery has been simulated. The PV 
power and the EV charging demand were constructed to 
represent the actual operating conditions of the present 
charging station, as shown in Fig. 3. The battery capacity is 35 
kWh with the SOC operational window of 0.4-1.0. The PV 
output power through a day is represented by a sin curve 
between 10 am and 6 pm with the peak power of 3.6 kW. 
Since most EVs have either a 6.6 kW or a 3.3/3.6 kW onboard 
charger and EV owners charge their EVs when batteries fall to 
less than half their full charge, the EV charging load of 6.6 
kW for 2-2.5 hours or 3.3 kW for 4 hours is used in the 
simulation. These input assumptions are close to the actual 
operating conditions of our station, which makes comparison 
of the simulation results with actual operation of the charging 
station straight-forward.  

 

 
Fig. 3.  Simulation inputs of PV power and EV charging load 
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Fig. 4.  PV powered EV charging station without a buffer battery 

 

 

 

 
Fig. 5.  Charging station with buffer battery (recharged after each charging) 

Two energy management approaches for PV powered EV 
charging stations with a buffer battery have been simulated. 
One approach is to recharge the battery immediately to a 
prescribed level within 2-3 hours after each EV charging event. 
A charging power of 5 kW and a fixed target SOC of 0.8 are 
used in the simulation. The other approach is to charge the 
battery to the optimal SOC during off-peak hours. The optimal 
SOC is calculated based on PV electricity estimation and EV 
load projection. Charging happens during off-peak hours from 
midnight to 7 am. The charging power is calculated by 
dividing the recharge energy by the charging time. 
Considering the efficiency of the bi-directional inverter, a 
minimum charging power of 3 kW is applied. For all scenarios, 
the grid power and the cumulative electricity exchange 
between the charging system and the utility grid are plotted for 
evaluating the impact of various charging stations on the 
utility grid. 

Fig. 4 shows the calculated grid power and cumulative grid 
energy for a PV powered charging station without energy 
storage. The shaded areas in the grid power chart represent 
summer off-peak periods (9:30 pm – 8:30 am). Positive values 
mean power/electricity consumption from the grid and 
negative means power/electricity fed into the grid. The EV 
charging for a workplace happens in the early morning and 
much of the PV electricity is available in the afternoon.  
Hence most of the PV energy may not be directly used for EV 
charging. 

The simulation results for a charging station with a buffer 
battery which is immediately recharged after each charging 
event has been simulated. The battery is charged up to the 
SOC of 0.8 after each EV charging within 2-3 hours. The 
simulation shows that battery recharging happens during 
partial-peak or on-peak periods. Compared to the PV powered 
charging station without energy storage, the power demand 
spikes from the grid were only slightly reduced. However, the 
energy exchange between the charging system and the utility 
grid was reduced by a factor of 2, as shown in Fig. 5. 
Considering the California average transmission and 
distribution losses of 5.4-6.9%, PV powered charging station 
with a buffer battery can significantly reduce electrical system 
losses. 

The PV powered charging station with optimal battery 
SOC management was simulated using the same simulation 
inputs.  Fig. 6 gives the simulated grid power, battery SOC, 
and the cumulative grid electricity. The blue dotted line 
represents the optimal battery target SOC, which is updated at 
midnight according to the simulation input. The system 
compares the actual battery SOC with the target SOC to 
decide if recharging the battery is needed during off-peak 
periods. Compared to the charging station without optimal 
battery management, the peak power demand was reduced by 
a factor of 2. The battery recharging power demand was 
shifted away from the on-peak time periods to the off-peak 
time periods. Since all business customers will transition 
eventually to time-of-use rate plans as required by the 
California Public Utilities Commission, the charging station 
with intelligent energy management will benefit from less 
energy use during peak periods when time-of-use rates are 
higher. 
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B. System Operation 

The control and monitoring software for the charging 
station was developed using LabVIEW software. The software 
accomplishes the following four major functions: monitoring, 
control, protection, and optimization. The on-site controller 
was integrated with the charging station and used to execute 
the control strategy and optimize the energy storage.  

 

 

 
Fig. 6.  Charging station with intelligent energy management 

The charging station was operated for six days with the 
battery being recharged during off-peak time when the SOC 
became low.  Fig. 7 shows the measured PV power and EV 
charging load. The actual grid power is given in Fig. 8. The 
grid power for the charging system without a buffer battery is 
calculated according to the measured PV power and charging 
load, and also plotted in Fig. 8 for comparison. The results 
show that for a workplace charging station, solar PV power 
cannot be directly used for EV charging and the charging 
station with the buffer battery can significantly reduce the 
peak power demand. The cumulative grid electricity is given 
in Fig. 9. Compared to the charging station without a buffer 
battery, the energy exchange between the charging system and 
the grid was reduced by a factor of 2. 

The charging station was run continuously for a time 
without optimization of battery storage to collect data for the 

EV charging load projection. Then the intelligent energy 
management was activated.  Fig. 10 shows the estimated PV 
electricity and the actual PV electricity generation. Most of the 
time, the estimated PV electricity is 14-17% higher than the 
actual PV electricity generation, which may be caused by the 
actual conversion efficiency of the panels being lower than 
claimed on their datasheet or by the hazy conditions due to 
forest fires nearby. On several cloudy days, the estimated PV 
electricity is far lower than the actual generation, which was 
caused by the inaccurate cloud cover information. 

 

 
Fig. 7.  Measured PV power and EV charging load 

 
Charging station without a buffer battery 

 
Charging station with a buffer battery 

Fig. 8.  Grid power for the charging system with and without a buffer battery 
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Fig. 9.  Battery power and SOC and cumulative grid electricity 

 

 
Fig. 10.  Estimation of PV electricity generation 

 

 
Fig. 11.  EV charging load projection 

The measured EV charging load and the projected load on 
a daily basis are plotted in Fig. 11. The projected EV charging 
load approximately reflects the actual charging load variation. 
The actual and projected load for Sunday and Monday are also 
given on a weekly basis in Fig. 11. The projected EV charging 
load approximately matched the trend lines of the actual load. 
Since the current charging station has only one outlet, the 
uncertainty and contingency will affect the result of the load 
demand projection.  

 
Fig. 12.  Optimization of battery SOC target 

 

 
Fig. 13.  Measured EV load, PV power, and grid power 

The battery SOC target was optimized based on the 
estimated PV electricity and the projected EV charging load. 
The battery is recharged during off-peak time periods if the 
battery SOC is less than the optimal SOC target. Fig. 12 
shows the estimated PV electricity, the projected EV load, and 
the optimized SOC target on a daily basis. The results of 
continuous operation are shown in Fig. 13. The charging 
system was activated on 9/1, the EV was charged from the 
grid. On 9/2 the on-site controller took control of the charging 
system and on 9/16 the function of optimizing energy storage 
was turned on. The EV charging load, the PV power, and the 
grid power are plotted in Fig. 12. The demonstration of the 
station shows the intelligent energy management can almost 
eliminate the charging station peak power demand for EV 
charging from the utility grid.  

V. CONCLUSIONS 

The intelligent energy management was proposed to 
reduce grid peak power demand and maximize PV electricity 
for EV charging. The battery SOC target was optimized based 
on the estimated PV electricity and the projected EV charging 
load. An on-site controller was introduced and integrated with 
a workplace level 2 charging station at UC Davis West Village. 
The control interfaces for executing the control strategy, 



IEEE International Electric Vehicle Conference 2014, Florence, Italy, December 17-19, 2014 
 

filtering weather information, estimating PV power, projecting 
EV charging load, and optimizing the battery SOC were 
developed using LabVIEW. The charging system is routinely 
used by 2-3 EV users. 

Both simulations and actual operation show that at a 
workplace charging station most of the time EV charging 
occurs in the early morning before solar energy is available 
and PV power cannot be used directly for EV charging. An 
EV charging station equipped with a buffer battery and with 
intelligent energy management can lower the station’s peak 
power demand and reduce the energy exchange with the utility 
grid by a factor of 2-3. The battery recharging power demand 
was shifted away from the on-peak time periods to the off-
peak time periods, which will benefit the charging station 
owner from less energy use during peak periods when time-of-
use rates are higher. 

The estimated PV electricity based on the extracted 
weather information reflects the actual PV electricity 
generation. More complicated PV electricity forecasting 
models with more accurate hour-by-hour weather information 
could improve the accuracy of the estimated PV electricity. 
The linear fit of the historical EV charging load data for each 
day of the week for the latest six-week period seems 
appropriate for extracting the charging pattern of a workplace 
EV charging station. Since the EV charging data from one 
charging outlet is contingent, charging data from multiple 
charging outlets will deliver high EV load prediction accuracy. 
The intelligent energy management strategy used in this 
project is best suited for charging station systems having one 
large energy storage battery and multiple charging outlets, 
such as workplace or commercial charging station systems. 
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