Title
Electrical resistivity and effect of pressure on the thermal expansion of a single crystal of YbCu2Si2

Permalink
https://escholarship.org/uc/item/6cs2b6w0

Authors
Uwatoko, Y
Oomi, G
Thompson, JD
et al.

Publication Date
1993-05-01

DOI
10.1016/0921-4526(93)90645-M

License
CC BY 4.0

Peer reviewed
Electrical resistivity and effect of pressure on the thermal expansion of a single crystal of YbCu$_2$Si$_2$

Y. Uwatokoa, G. Oomia, J.D. Thompsonb, P.C. Canfieldb and Z. Fiskb

aDepartment of Physics, Faculty of General Education, Kumamoto University, Kumamoto 860, Japan
bPhysics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Electrical resistivity $\rho(T)$ and thermal expansion $\Delta l/l$ were measured for the intermediate valence compound (IVC) YbCu$_2$Si$_2$ and its counterpart LuCu$_2$Si$_2$ between 4.2 K and 300 K. It was found that the thermal expansion coefficient $\alpha(T)$ has a negative minimum around 31 K ($= T_{\text{m}}$) at atmospheric pressure and T_{m} decreases with increasing pressure at the rate $\partial T_{\text{m}}/\partial P = -0.45$ K/kbar.

1. Introduction

Ytterbium (Yb) intermetallic compounds show a wide variety of interesting physical properties such as heavy fermion behavior, intermediate valence, etc. [1]. Yb compounds are considered to be hole analogues to heavy fermion Ce compounds, because the valence of Yb$^{3+}$ has a hole relative to the fully occupied 4f shell Yb$^{2+}$. YbCu$_2$Si$_2$ crystallizes in the tetragonal body-centered ThCr$_2$Si$_2$-type structure [2] and is characterized as an intermediate valence compound reflecting the strong hybridization between the 4f localized electrons and the conduction band electrons [3]. YbCu$_2$Si$_2$ is shown to be a nonmagnetic compound down to 0.05 K [4] with a large γ-value of 210 mJ/mol K2 [5]. It is well known that the hybridization is very sensitive to external forces such as pressure, temperature and magnetic field. It is worthwhile to investigate the physical properties of YbCu$_2$Si$_2$ at high pressure because considerable change in the electronic structure is expected.

In this paper, we report the measurement of the electrical resistivity $\rho(T)$ and thermal expansion $\Delta l/l(T)$ of a single crystal of YbCu$_2$Si$_2$ up to 20 kbar in order to study the effect of pressure on the electronic state of Yb compounds.

2. Experimental

Details of the sample preparation and characterization were reported previously [5]. The electrical resistivity was measured by the standard four-probe method in the temperature range from 4.2 to 300 K at atmospheric pressure. The thermal expansion was measured by means of the standard strain gauge method (Kyowa Dengyo, KFL02-C1-11, gauge factor 2.03) in the temperature range from 4.2 to 300 K under high pressure up to 20 kbar. The sample was placed in a Cu–Be cylinder vessel (8 mm plain diameter) and loaded by a 20 ton hydraulic press using a W-C piston. A 1:1 mixture of Fluorinert, FC70 and FC77, was used as a pressure transmitting medium. The pressure inside the cylinder was kept constant throughout the experiment by controlling the oil pressure of the hydraulic press. Temperature was measured with a calibrated Cu(Fe)-Chromel thermocouple. Details of the high-pressure apparatus were reported previously [6].

3. Results and discussion

3.1. Electrical resistivity ρ of single crystals of YbCu$_2$Si$_2$ and LuCu$_2$Si$_2$

Figure 1 shows the temperature dependence of the electrical resistivity $\rho(T)$ of YbCu$_2$Si$_2$ and LuCu$_2$Si$_2$ in the current along the a-axis. Here $\rho(T)$ of YbCu$_2$Si$_2$ increases with increasing temperature up to around
100 K and becomes nearly constant above 150 K. No maximum is observed in \(\rho(T) \). This result is in good agreement with recent studies by Müller et al. [7]. The \(\rho(T) \) of LuCu\(_2\)Si\(_2\) was measured to estimate the phonon contribution in the \(\rho(T) \) of YbCu\(_2\)Si\(_2\), because the 4f shell of nonmagnetic Lu has 14 electrons. The \(\rho(T) \) of LuCu\(_2\)Si\(_2\) shows a smooth variation against temperature, which is the same as that of normal metal. The magnetic contribution to \(\rho(T) \), \(\rho_{\text{mag}}(T) \), is defined as \(\rho_{\text{mag}}(T) = \rho(\text{YbCu}_2\text{Si}_2) - \rho(\text{LuCu}_2\text{Si}_2) \). This \(\rho_{\text{mag}}(T) \) exhibits a broad maximum at \(T = 112 \) K and \(\ln T \) dependence above 200 K, which is characteristic behavior due to Kondo scattering of conduction electrons as observed in many Ce compounds [8]. There is no \(T^2 \)-dependence in the \(\rho_{\text{mag}}(T) \) at low temperature. This suggests that YbCu\(_2\)Si\(_2\) does not behave as a Fermi liquid in the temperature range of the present work (\(T > 4.2 \) K).

3.2. Effect of pressure on the thermal expansion coefficients of YbCu\(_2\)Si\(_2\)

The thermal expansion of YbCu\(_2\)Si\(_2\) is shown in fig. 2 as a function of temperature at various pressures. Linear thermal expansion \(\Delta l/l(T) \) at atmospheric pressure is found to decrease with increasing temperature up to around 50 K and then begins to increase above 70 K after showing a minimum at 60 K (= \(T_{\text{min}} \)). This anomalous temperature dependence of \(\Delta l/l(T) \) may originate from instability in the valence of Yb at low temperature such as IVC YbCuAl [3,9]. The minimum value of \(\Delta l/l(T) \) at \(T_{\text{min}} \) decreases with increasing pressure.

In order to obtain the linear thermal expansion coefficient, \(\alpha(T) = (1/l)(\Delta l/l)(dT) \), the \(\Delta l/l(T) \) curve was differentiated by temperature. The thermal ex-

Fig. 1. Temperature dependence of the electrical resistivity of YbCu\(_2\)Si\(_2\) and LuCu\(_2\)Si\(_2\) single crystals. \(\rho_{\text{mag}} \) is also shown as a function of temperature.

Fig. 2. Temperature dependence of the linear thermal expansion \(\Delta l/l \) in YbCu\(_2\)Si\(_2\) single crystal at various pressures.

Fig. 3. Thermal expansion coefficients of YbCu\(_2\)Si\(_2\) defined as \(\alpha = (1/l)(\Delta l/l)(dT) \).
approximately linear fashion at a rate $\frac{\partial T_{\text{min}}}{\partial P} = -0.45 \text{ K/kbar}$. T_{min} may be related to the Kondo temperature T_K [11]. By assuming that T_{min} is approximately proportional to T_K, the value of the pressure derivative of T_K is estimated to be $(1/T_K)\frac{\partial T_K}{\partial P} = (1/T_{\text{min}})\frac{\partial T_{\text{min}}}{\partial P} = -1.45 \times 10^{-2} \text{ kbar}^{-1}$. The absolute value of $(1/T_K)(\frac{\partial T_K}{\partial P})$ is of the same order magnitude as that of the intermediate valence compound CePd$_3$ [12]. The negative pressure derivative of T_{min} or T_K of YbCu$_2$Si$_2$, which is in sharp contrast with the case of Ce compounds, may be one of the distinctive characteristics of Yb compounds.

The pressure dependence of $\Delta l/l$ along the a-axis of YbCu$_2$Si$_2$ is shown in fig. 5 up to 10 kbar at room temperature. The a-axis decreases linearly with increasing pressure. The linear compressibility along the a-axis is $\kappa_a = 4.18 \times 10^{-4} \text{ kbar}^{-1}$, which is the same order of magnitude as those of Ce compounds [12]. The Grüneisen parameter Γ_a for the a-axis may be defined as $\Gamma_a = -\frac{\partial \ln(T_{\text{min}})}{\partial \ln V} = \frac{1}{\kappa_a} \frac{\partial T_{\text{min}}}{\partial P}$ [13]. Γ_a is estimated as -35, which is the same as that of YbCuAl, $\Gamma = -35$ [3], and comparable to $\Gamma_a = -29$ estimated [5] from the low temperature T^2-coefficient of resistivity of YbCu$_2$Si$_2$.

4. Conclusions

Thermal expansion coefficient $\alpha(T)$ of YbCu$_2$Si$_2$ has a negative minimum around 31 K ($= T_{\text{min}}$) at atmospheric pressure and T_{min} decreases with increasing pressure with the rate $\frac{\partial T_{\text{min}}}{\partial P} = -0.45 \text{ K/kbar}$. The Grüneisen parameter Γ_a is estimated to be -35. The negative pressure dependence of T_K and the Grüneisen parameter Γ_a of YbCu$_2$Si$_2$ may be some of the distinctive characteristics of Yb compounds.

Acknowledgement

This work was supported in part by the Toshiharu Miyajima Memorial Foundation in Yatsushiro, Kumamoto.

References