
Lawrence Berkeley National Laboratory
LBL Publications

Title

Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore 
and Manycore Architectures

Permalink

https://escholarship.org/uc/item/6d9275tz

ISBN

978-3-319-32148-6

Authors

Druinsky, Alex
Ghysels, Pieter
Li, Xiaoye S
et al.

Publication Date

2016

DOI

10.1007/978-3-319-32149-3_12
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6d9275tz
https://escholarship.org/uc/item/6d9275tz#author
https://escholarship.org
http://www.cdlib.org/


Comparative Performance Analysis of
Coarse Solvers for Algebraic Multigrid on
Multicore and Manycore Architectures?

Alex Druinsky1, Pieter Ghysels1, Xiaoye S. Li1, Osni Marques1, Samuel
Williams1, Andrew Barker2, Delyan Kalchev2, and Panayot Vassilevski2

1 Lawrence Berkeley National Laboratory
2 Lawrence Livermore National Laboratory

Abstract. We study the performance of a two-level algebraic-multigrid
algorithm, with a focus on the impact of the coarse-grid solver on perfor-
mance. We consider two algorithms for solving the coarse-space systems:
the preconditioned conjugate gradient method and a new robust HSS-
embedded low-rank sparse-factorization algorithm. Our test data comes
from the SPE Comparative Solution Project for oil-reservoir simulations.
We contrast the performance of our code on one 12-core socket of a Cray
XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor.
To obtain top performance, we optimized the code to take full advantage
of fine-grained parallelism and made it thread-friendly for high thread
count. We also developed a bounds-and-bottlenecks performance model
of the solver which we used to guide us through the optimization effort,
and also carried out performance tuning in the solver’s large parameter
space. As a result, significant speedups were obtained on both machines.

Keywords: algebraic multigrid, HSS matrices, manycore machines

1 Introduction

We study the performance of a novel algebraic multigrid algorithm that was
recently introduced by Brezina and Vassilevski [4] for solving difficult elliptic
PDEs with a variable coefficient that can be resolved only using a fine-grained
discretization. We use the two-level variant of the method, implemented in the
serial C++ code SAAMGe [11, 12], and our focus is on the impact of the coarse-
grid solver on the performance of the algorithm. The coarse grid represents the
parallel bottleneck in the code, and therefore solving the corresponding systems
efficiently is crucial for the solver’s performance. Outside of the coarse grid,

? This material is based upon work supported by the US Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Computing Research (ASCR),
Applied Mathematics program under contract number DE-AC02-05CH11231. This
work was performed under the auspices of the DOE under Contract DE-AC52-
07NA27344, and used resources of the National Energy Research Scientific Comput-
ing Center, which is supported by ASCR under contract DE-AC02-05CH11231.



most of the work in SAAMGe is formulated in terms of sparse matrix-vector mul-
tiplications (SpMVs) that involve large matrices with regular sparsity structure.
Optimizing such SpMVs is a well-studied problem and optimized implementa-
tions are available for many architectures.

We consider two coarse-grid solvers. One is the preconditioned conjugate
gradient method (PCG), which we precondition using a single step of the Jacobi
iteration. Although careful optimization of PCG can make it a powerful coarse-
grid solver, using it when convergence is slow can be expensive due to its low
arithmetic intensity. As an alternative, we use STRUMPACK, a new HSS-embedded
low-rank sparse-factorization algorithm [10]. It has a higher arithmetic intensity,
and it is robust, meaning that it can be used as a direct solver.3 The use of
low-rank structure in the factorization reduces the amount of work, memory
space, and memory bandwidth that we expend, making the solver potentially
more efficient than earlier sparse-factorization algorithms.

There exist thorough studies of parallel-performance optimization and anal-
ysis of algebraic multigrid (AMG) [2,3,8,9]. Our paper differs from these studies
by focusing on the architecture level and performing detailed performance-bound
modeling, taking into account the arithmetic intensity of the different algorith-
mic components. We are the first to apply this methodology to AMG, and this
allows us to bridge the gap in the understanding of the limits of AMG perfor-
mance on individual multicore nodes with large core counts.

Our main contributions are the following. We make a comprehensive study
of the impact of the coarse-grid solver on the performance of a two-level AMG
solver. We perform extensive optimization on two multicore architectures, one
of which is the challenging Xeon Phi, characterized by having a large number
of relatively slow cores and a high memory latency. We incorporate a novel ran-
domized HSS-embedded sparse-factorization algorithm as the coarse-grid solver.
Finally, we develop and validate a bounds-and-bottlenecks Roofline model which
helps us to identify performance optimization opportunities on our target archi-
tectures and to characterize the limitations of our code.

2 Background

2.1 Test Problems and Machines

We use the oil-reservoir simulation benchmark spe (model 2) from the SPE
Comparative Solution Project [6]. Here, fluid flow in porous media is described
by the Darcy equation (in primal form):

−∇ · (κ(x)∇p(x)) = f(x) (1)

3 The STRUMPACK library can use the factorization either to solve the system directly, or
to precondition the flexible GMRES iteration [16]. In our study, we found that per-
formance is best if we tune STRUMPACK’s parameters so that GMRES is not required.
We expect this effect to be problem dependent. For details, see Sect. 4.



where p(x) is the pressure field and κ(x) is the permeability of the medium. The
model is described on a regular Cartesian grid of 60× 220× 85 cells. The coeffi-
cient κ(x) admits a wide range of variation between distinct horizontal layers of
the medium, which makes this a challenging problem to solve. Finite-element dis-
cretization of the problem produces a fine-grid matrix of order 1.2 million with a
regular sparsity structure and an average of 26.4 nonzero elements in each row.
From this matrix, the SAAMGe algorithm produces a coarse-grid matrix whose
dimensions and sparsity pattern depend on the algorithm’s parameters, as we
explain below.

We carried out our study on two machines at the National Energy Research
Scientific Computing Center in Oakland, CA. One machine is Edison, a Cray
XC30 machine of 5,600 Ivy Bridge EP nodes. The other is Babbage, a com-
modity Intel cluster in which each node contains two Xeon Phi Knights Corner
coprocessors. In the following, we refer to these machines as IVB-EP and KNC,
respectively. In this paper, we focus on one CPU socket of an IVB-EP node and
one KNC coprocessor. Each IVB-EP socket consists of 12 cores with a theoreti-
cal 230.4 peak gflop/s rate. A KNC coprocessor has 60 cores with a theoretical
1,010.9 peak gflop/s rate. Although KNC has more computational power and
memory bandwidth, it has slower cores, a wider SIMD architecture and more
primitive hardware stream prefetchers. As a result, SpMV-like operations are
much more difficult to optimize on KNC. The cache hierarchies of both ma-
chines are coherent and have the same net capacity—30 MB. However, whereas
IVB-EP provides a 30 MB unified L3 cache, KNC maintains 60 caches of 512 KB
each. This results in superfluous data movement and coherency transactions that
can impede the effective bandwidth on KNC. Furthermore, ineffective software
prefetching can highlight the fact that KNC’s memory latency can be an order of
magnitude higher than that of IVB-EP [13]. As a result, although KNC has 5×
the nominal bandwidth of IVB-EP, it can often be underutilized or squandered
given complex memory access patterns endemic in sparse methods.

2.2 Algebraic Multigrid

The SA-ρAMGe method that we study [4] works by forming a coarse-grid matrix
Ac and solving the problem iteratively by repeating the following steps:

1. Pre-smoothing: yk ← xk +M−1(b−Axk)
2. Coarse-grid correction: zk ← yk + PA−1

c PT (b−Ayk)
3. Post-smoothing: xk+1 ← zk +M−1(b−Azk)

Here, M−1 is a polynomial smoother and P is the so-called prolongation
operator. The operator P is formed by representing A as the sum of local stiff-
ness matrices (which requires knowledge of the finite-element discretization) and
computing the eigenvectors that correspond to the smallest eigenvalues of each
such matrix. We form the tentative prolongator P̄ , which is a rectangular block-
diagonal matrix whose diagonal blocks correspond to the local stiffness matrices
and consist of the eigenvectors that we computed. The ultimate prolongator has



the form P = SP̄ , where S is a matrix-polynomial smoother. The coarse-grid
matrix is obtained by forming the sparse-matrix product Ac = PTAP .

2.3 HSS Sparse Solver

PCG is relatively easy to implement and parallelize, but its convergence can be
slow for numerically difficult problems. Sparse-factorization methods can serve as
powerful alternatives. Here, we consider an HSS-embedded sparse-factorization
method that has asymptotically lower complexity than traditional factorizations.
The algorithm has a shared-memory parallel implementation in the package
STRUMPACK [10], which uses nested-dissection ordering and multifrontal factor-
ization. The sparse solver consists of the following steps: preprocessing (e.g.,
sparsity-preserving ordering by a graph-partitioning algorithm such as METIS,
and symbolic factorization), numerical factorization and solution.

HSS

dense

Fig. 1. A regular two-dimensional grid, partitioned using nested dissection (left) and
the corresponding separator tree (right). The nodes of the separator tree represent
frontal matrices. Only the nodes of the top levels are compressed using HSS.

The novelty is to represent the dense frontal matrix corresponding to a node
of the separator tree as a hierarchically-semiseparable (HSS) matrix [10,14,18].
The HSS structure exploits the data-sparsity of the dense matrix using low-
rank compression. Furthermore, the hierarchical partitioning of the matrix blocks
and the use of nested bases lead to factorization and solve algorithms that are
asymptotically faster than the classical ones and use less memory.

Figure 1 illustrates the nested-dissection procedure on a small regular mesh.
The blue points denote the root separator, splitting the domain in two uncon-
nected parts. The nested-dissection procedure is then repeated on both parts
recursively. Each of the separators corresponds to one frontal matrix, placed
in a data structure called the separator or elimination tree, illustrated in Fig-
ure 1 (right). The largest frontal matrices, corresponding to the top `s levels
of the elimination tree, are approximated as HSS matrices. The other smaller



frontal matrices are stored as full-rank dense matrices. The factorization is com-
puted by a bottom-up traversal of the elimination tree, computing a partial
factorization of each front and passing the Schur complement from child to par-
ent. The structure of an HSS matrix is also illustrated in Figure 1 (right). In an
HSS matrix, diagonal blocks are recursively partitioned until at the finest level
diagonal blocks are stored as full-rank dense matrices. Off-diagonal blocks are
represented as low-rank products Aij = UiBijV

∗
j +O(ε).

The STRUMPACK solver can be used as a preconditioner, where the quality of
the preconditioner is controlled by the accuracy of the low-rank approximations
in the HSS structure and by the number of HSS levels `s. The HSS approximation
accuracy can be controlled by a user specified tolerance ε. A single solve with
the STRUMPACK preconditioner is more expensive than a single PCG iteration,
but it is more effective for numerically challenging PDEs.

3 Code Optimizations

Obtaining top performance on a traditional multicore architecture such as the
IVB-EP is a well-studied problem, and therefore we focus in this section on the
performance optimizations that we conducted on KNC. The challenges on this
platform are due to a large core count, wide SIMD FPU and distributed coherent
L2 caches.

3.1 PCG Thread-Friendly Optimizations

In contrast with IVB-EP, a large proportion of the time on KNC is spent on solv-
ing coarse-grid systems, and this proportion is increasing as we use more threads.
Ultimately, using 180 threads, coarse-grid PCG accounts for more than 50% of
the total time on KNC. Furthermore, our study in Sect. 4 showed that AMG
performs best when the coarse-grid system is small, and so the optimizations
that we require are different from those that are typically done in large-scale
implementations.

The initial version of PCG in our code was implemented as a serial code that
launched parallel OpenMP kernels such as dot product, vector linear combination
and SpMV. Arranging the computation in this way incurs an overhead of entering
and exiting an OpenMP parallel region for each computational kernel. For this
reason, we introduced an alternative implementation, omp-for-all, in which the
whole iteration is nested inside a single OpenMP parallel region. This yielded
a speedup of 1.55 (using 180 threads).

We accomplished a further 1.69 speedup by introducing the omp-for-spmv
variant, in which all kernels are serial, except for SpMV, which is parallel. Our
explanation for the speedup in this case is that the coarse grid is represented by
a small matrix and therefore the overhead of parallelizing the dot-product and
vector-linear-combination kernels outweighs the benefits of such parallelization.

Finally, we also considered the omp-parallel-spmv variant, which we ob-
tained from the original code by replacing all parallel kernels with serial ones,



except for SpMV. Similarly to omp-for-spmv, in this version all kernels except
SpMV are serial and there is only one parallel region. However, in contrast with
omp-for-spmv, the parallel region here is inside the main loop and therefore
incurs an overhead in each iteration. This version is slightly slower than omp-
for-spmv, reaching 88% of omp-for-spmv’s performance using 180 threads.
Nevertheless, omp-parallel-spmv is competitive with omp-for-spmv and it
allows us to use an external library that implements the SpMV kernel, such as
the one proposed in [13].

3.2 HSS Thread-Friendly Optimizations

We now consider the use of STRUMPACK for solving coarse-grid systems. Table 1
and Fig. 2 show the running time of the algorithm.

Table 1. Runtime (seconds) of the HSS solver, broken down into the time dedicated
to ordering, symbolic factorization, numeric factorization and solve. The coarse-grid
matrix is of order 53,709 and has 24.8 million nonzeros, and was generated from a
fine-grid matrix of order 2.4 million. The HSS compression level is 1 and tolerance is
10−4, which corresponds to an HSS rank of 217.

Machine Factorization (s) Solve (s) Threads
ordering symbolic numeric

IVB-EP 0.44 0.34 5.6 0.23 12
KNC 3.4 0.83 19.1 0.56 60

The solve time on both machines is more than an order of magnitude faster
than factorization, which is for the better, because factorization is required only
once, whereas solve is required in each AMG iteration. On both machines, the
computation scales well, with the exception of ordering and symbolic factoriza-
tion on KNC, where performance stagnates early, at about 10 threads. These
steps involve purely combinatorial algorithms which are hard to parallelize on
a machine architecture optimized for a high flop rate. Parallel scaling on IVB-
EP is better than on KNC, with a speedup of 12 threads over one thread of
6.5× and 3.3× for factorization and solve, respectively, compared to speedups
of 12.8× and 7.6× using 60 threads on KNC.

The solver is implemented using OpenMP task parallelism, so that the nu-
meric-factorization phase is represented by a single parallel region, and therefore
the only barriers in the code correspond to dependencies between the tasks. We
took the following additional steps to improve performance on KNC. We replaced
the default memory allocator by the more scalable TBB [1] allocator. Tasks are
generated by recursive functions. We tuned the total number of tasks, i.e., the
task granularity, specifically for each machine. We replaced the SCOTCH graph
partitioner, which we were using for ordering the matrix, with METIS, and



1 2 4 8 16 32 60 120 240

1

2

4

8

16

32

64

128

symbolic

ordering

solve

factorization
ideal scaling

number of threads

runtime (s)

1 2 4 8 12

0.25

0.5

1

2

4

8

16

32

symbolic

ordering

solve

factorizationideal scaling

number of threads

runtime (s)

Fig. 2. Wall-clock time for solving the coarse-grid system on the Xeon Phi (left) and
the Ivy Bridge EP (right). We used the optimized version of STRUMPACK as described
in Sect. 3.2, and solved using three iterations of HSS-preconditioned GMRES.

thereby gained a 10× time savings in the ordering step on KNC.4,5 We disabled
a preprocessing step that performs permutation and scaling using the MC64
code [7]. This step is not required because our matrix is symmetric positive-
definite. Finally, we disabled code for counting the number of executed flops,
which we found was causing a 3× slowdown in the solve phase on KNC.

4 Performance Comparison

To complement our optimization effort, we conducted a comprehensive perfor-
mance assessment of the solvers from the architectural viewpoint (two machines)
as well as the algorithmic one (varying the algorithm’s parameters). In particu-
lar, we considered five parameters of SAAMGe, and explored the effect of chang-
ing these parameters within a five-dimensional space. For each parameter we
consider a range of values, as described in Table 2.6 There are altogether 216
configurations explored on each machine. We used 60 cores on KNC and 12 cores
on IVB-EP.

The following summarizes our findings. First, choosing the proper algorithm
parameters is crucial to achieve good performance. The difference in runtime

4 Based on this experience, we changed the STRUMPACK default to METIS.
5 The ordering phase consists of running METIS, applying the computed permutation

to the matrix and sorting the column indices within each row of the permuted matrix.
METIS runs serially, but the rest of the work is done in parallel.

6 We also used the following parameters to control the accuracy of the computed
solution. For the HSS algorithm, we used four levels of compression with compression
tolerance 10−4 and zero GMRES iterations. For PCG, we used relative tolerance
10−4. These were chosen so as to maximize performance without sacrificing accuracy.



Table 2. The parameters of the algorithm and the corresponding values that we ex-
plored. The number of elements per agglomerate determines the size of the local stiff-
ness matrices; νP and νM−1 are respectively the polynomial degrees of the interpolator
smoother S and the relaxation smoother M−1; and θ is the spectral tolerance, which
determines how many eigenvectors of each local stiffness matrix represent that matrix
in the tentative prolongator.

Parameter Values

coarse solver HSS, PCG
elements-per-agglomerate 64, 128, 256, 512
νP 0, 1, 2
νM−1 1, 3, 5
θ 0.001, 0.001 × 100.5, 0.01

can be as large as an order of magnitude among the 216 configurations. Taking
PCG on IVB-EP as an example, the fastest configuration took 9.6 seconds, while
the slowest took 168.1 seconds — more than a 17× difference. Second, on the
same machine, the HSS coarse-grid solver always won over PCG. For the best
configurations, HSS is 1.54× faster than PCG on IVB-EP and 1.34× on KNC.
Finally, with the best configurations, IVB-EP is 1.7× and 1.49× faster than
KNC using HSS and PCG, respectively.

5 Roofline Performance Model

We developed a bounds-and-bottlenecks Roofline model to drive the performance
optimization of our OpenMP code [17].7 The goal is to gain insight about the
machine’s performance bottlenecks and terminating performance optimization.
Here, we focus on the AMG solution cycle; modeling AMG setup is future work.

The model consists of formulas, one for each component of the algorithm,
expressing the number of bytes that we move between the levels of the memory
hierarchy and the number of flops that we carry out. To obtain runtime estimates
from this model, we divide the total memory traffic by the machine bandwidth,
and also divide the total number of flops by the machine flops rate. This yields
two lower bounds on the runtime: one that corresponds to memory bandwidth
being the bottleneck, and the other to the floating-point units.

Concurrent with traditional Roofline analysis, the inputs to our model are: 1)
The machine peak flop rate and its sustainable memory bandwidth, measured
using a modified STREAM benchmark [15]; 2) The dimensions of A and Ac,
denoted by n and nc, respectively; 3) The number of nonzeros in A, Ac and P ,
denoted by nza, nzc and nzp, respectively; 4) The number of AMG cycles; and
5) Parameters that are specific to the coarse solver: the average number of PCG
iterations per AMG cycle when we use PCG, and the memory size of the HSS
factors when we use HSS.

7 See also [5] for earlier work on such models.



5.1 The Model for the Combination of AMG with PCG

The model that we obtain for the version of the solver in which we use PCG to
solve coarse-grid systems is shown in Table 3. We used the following combination
of parameters: elements-per-agglomerate is set to 400, νM−1 = 3 and θ = 0.001.
The corresponding runtime bounds on IVB-EP are shown in Fig. 3.8

Table 3. The costs associated with each AMG cycle.

Stage Bytes Flops

pre- and post-smooth (3ν + 1)(12 nza + 3 · 8n) 2(3ν + 1)(nza + 2n)
restriction 12 nza + 12 nzp + 3 · 8n 2(nza + nzp)
one coarse solve (PCG/J)

multiply by Ac 12 nzc 2 nzc
preconditioner 2 · 8nc nc

vector operations 5 · 8nc 2 · 5nc

interpolation 12 nzp + 8n 2 nzp
stopping criterion 12 nza + 4 · 8n 2(nza + n)

1 2 4 8 12

8

16

32

64

128

memory bound

flops bound

actual

number of cores

runtime (s)

Fig. 3. Runtime bounds and actual runtime (seconds) of the AMG iteration on the
Ivy Bridge EP.

8 Roofline models often use a corrected machine gflop/s rate that accounts for an
imbalanced mix of multiply and add operations in the computation. We do not do
this here, because in our computation, multiplies and adds are almost perfectly bal-
anced. The only exception is multiplications by a diagonal matrix in the polynomial
smoother and the Jacobi preconditioner, but these multiplications correspond to a
small fraction of the work.



When 1 or 2 cores are used, our flops-based bound is within 1% and 7% of
actual runtime respectively. As the number of cores is increased, memory band-
width becomes the bottleneck. For 4, 8 and 12 cores, our memory-bandwidth-
based bound is within 23% of the actual runtime. We attribute the difference
to the extremely different memory access patterns in AMG compared to the
STREAM benchmark.

5.2 The Model for the Combination of AMG with HSS

Following the same practice as in Sect. 5.1, we conduct a performance-bound
analysis when HSS is used as the coarse solver. Comparing to Table 3, the costs
are the same for smoothing, restriction, interpolation, and termination. The
difference is in the coarse solve, where the code needs to stream through the
factored matrix. For our test cases, the factors are larger than the largest cache
of the machines. Therefore, we assume that the factors are read from DRAM.
Table 4 shows the performance upper bound based on the DRAM sustained
bandwidth. On IVB-EP, the best configuration is: elements-per-agglomerate =
256, νM−1 = 1 and θ = 0.01. On KNC, the best configuration is: elements-per-
agglomerate = 256, νM−1 = 3 and θ = 0.01. The bandwidth-based performance
bound is quite accurate on IVB-EP, yielding an estimate within a gap of 31%
of the actual time. Among all the stages, the best match between model and
reality is the smoothing step—about an 18% gap. The worst gap corresponds to
the coarse solve—about 55%.

On the other hand, the estimated time on KNC is far less than the actual
time, implying that the memory bandwidth is severely underutilized. Attributing
this significant performance difference to either architecture or model is an area
of continued investigation.

Table 4. Runtime bounds and actual runtime (seconds) of the AMG iteration. HSS is
used as coarse-grid solver. The column “R/I” represents the combined restriction and
interpolation steps. “Stopping” refers to the evaluation of the stopping criterion.

Memory bandwidth model
machine smoothing R/I HSS stopping total

IVB-EP model 3.2 1.5 0.9 0.41 6.0
(12-core) actual 3.8 2.0 1.4 0.88 7.9

KNC model 1.8 0.22 0.13 0.09 2.25
(60-core) actual 7.4 0.86 1.9 1.0 10.7

6 Conclusion

We proposed a series of optimizations to improve the performance of the coarse-
grid solver. The optimizations aim to expose fine-grained parallelism, exploit



high memory bandwidth, and reduce OpenMP overheads. These led to a 2.6×
reduction of the AMG solve time on a 60-core Xeon Phi KNC machine. We expect
these optimizations to be effective on other manycore architectures as well. We
also compared the performance of PCG with STRUMPACK when the two algorithms
are used as coarse-grid solvers. We found that PCG is at a disadvantage because
of its slow convergence. HSS usually leads to a faster AMG cycle, up to 2× faster
than PCG. We expect the relative performance of PCG and HSS to depend on
the problem. If the problem is such that the AMG parameters can be tuned so as
to produce a well-conditioned coarse-grid matrix, then PCG could outperform
HSS. Additionally, we explored the parameter space of our AMG algorithm and
found high variation in performance. This makes the algorithm a good candidate
for an autotuning approach. Our roofline model yields a bound that is within 23%
(for PCG) and 31% (for HSS) of the actual performance on the Ivy Bridge EP.
The gap is much more significant on the Xeon Phi KNC, which indicates that the
bottleneck on that machine is not the memory bandwidth or the FPU but rather
the high memory latency. More effective prefetching could hide this latency,
but achieving this is challenging because of the relatively primitive hardware
prefetchers on that machine, and because of the irregular memory access pattern
in our coarse-grid solvers. We are exploring this optimization.

Finally, the only aspect of performance that we considered in our study was
time to solution. This is the objective that users care most about. Nevertheless,
in future work it would also be valuable to consider other parameters, such as
the financial cost of the hardware and its energy efficiency.

Acknowledgments

We thank the anonymous referees for their many comments that greatly helped
to improve the paper.

References

1. Intel threading building blocks, https://www.threadingbuildingblocks.org

2. Baker, A.H., Schulz, M., Yang, U.M.: On the performance of an algebraic multigrid
solver on multicore clusters. In: Proc. of VECPAR ’10. pp. 102–115 (2011)

3. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Trans. Graph. 22(3), 917–924 (Jul 2003)

4. Brezina, M., Vassilevski, P.S.: Smoothed aggregation spectral element agglomera-
tion AMG: SA-ρAMGe. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-
Scale Scientific Computing, LNCS, vol. 7116, pp. 3–15. Springer (2012)

5. Callahan, D., Cocke, J., Kennedy, K.: Estimating interlock and improving balance
for pipelined architectures. J. Parallel Distrib. Comput. 5(4), 334–358 (1988)

6. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: Comparison
of upscaling techniques. SPE Reserv. Eval. Eng. 4(4), 308–317 (2001)

7. Duff, I.S., Koster, J.: The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl. 20, 889–901 (1999)



8. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Mod-
eling the performance of an algebraic multigrid cycle on HPC platforms. In: Proc.
of ICS ’11. pp. 172–181 (2011)

9. Gahvari, H., Gropp, W., Jordan, K.E., Schulz, M., Yang, U.M.: Modeling the
performance of an algebraic multigrid cycle using hybrid MPI/OpenMP. In: Proc.
of ICPP ’12. pp. 128–137 (2012)

10. Ghysels, P., Li, X.S., Rouet, F.H., Williams, S., Napov, A.: An efficient multi-core
implementation of a novel HSS-structured multifrontal solver using randomized
sampling. SIAM J. Sci Comput. (2014), preprint

11. Kalchev, D., Ketelsen, C., Vassilevski, P.S.: Two-level adaptive algebraic multigrid
for a sequence of problems with slowly varying random coefficients. SIAM J. Sci
Comput. 35(6), B1215–B1234 (2013)

12. Kalchev, D.: Adaptive Algebraic Multigrid for Finite Element Elliptic Equations
with Random Coefficients. Master’s thesis, Sofia University, Bulgaria (2012)

13. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proc. of ICS ’13. pp. 273–282
(2013)

14. Martinsson, P.: A fast randomized algorithm for computing a hierarchically
semiseparable representation of a matrix. SIAM J. Matrix Anal. Appl. 32(4), 1251–
1274 (2011)

15. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE TCCA Newsletter pp. 19–25 (1995)

16. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci
Comput. 14(2), 461–469 (1993)

17. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

18. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically
semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953–976 (2010)




