Title
The Upbeat of Language: Linguistic Context and Embodiment Predict Processing Valence Words

Permalink
https://escholarship.org/uc/item/6fz8h013

Journal

ISSN
1069-7977

Authors
Hutchinson, Sterling
Lowerse, Max

Publication Date
2012

Peer reviewed
The Upbeat of Language:
Linguistic Context and Embodiment Predict Processing Valence Words

Sterling Hutchinson (schtechs@memphis.edu)
Department of Psychology / Institute for Intelligent Systems, University of Memphis
365 Innovation Drive, Memphis, TN 38152 USA

Max M. Louwerse (mlouwerse@memphis.edu)
Department of Psychology / Institute for Intelligent Systems, University of Memphis
365 Innovation Drive, Memphis, TN 38152 USA

Abstract

Previous studies have demonstrated that comprehension of conceptual metaphors elicits embodied representations. This finding is non-trivial, but begets the question whether alternative explanations are to be dismissed. The current paper shows how a statistical linguistic approach of word co-occurrences can also reliably predict metaphor comprehension. In two experiments participants saw word pairs with positive (e.g., happy) and negative (e.g., sad) connotations. The pairs were presented in either a vertical configuration (Experiment 1) or a horizontal configuration (Experiment 2). Results showed that response times could be explained by both the statistical linguistic approach and the embodied approach. However, embodied information was most salient in the vertical configuration and statistical linguistic information was most salient in the horizontal configuration. Individual differences modulated these findings, with female participants being most sensitive to the statistical linguistic approach, and male participants being most sensitive to the embodiment approach. These findings suggest that comprehension of conceptual metaphors can be explained by both linguistic and embodiment factors, but that their relative salience is modulated by cognitive task and individual differences.

Keywords: embodied cognition; symbolic cognition; linguistic context; valence words; gender differences; symbol interdependency

Introduction

When we are happy, we are in high spirits; when we are sad, we are down in the dumps. Our mood is lifted when we are cheerful, but our enthusiasm drops when we are depressed. We have our high times and our low times. We reach for the sky, but sometimes our plans run into the ground. These are some examples suggesting that conceptual metaphors highlight associations between abstract concepts (e.g., happy, sad) and spatial properties (e.g., high, low). Lakoff and Johnson (1981; 1999) suggest that metaphors like these help automatically ground abstract concepts in bodily experiences. In this sense, metaphors inform the language user of the perceptual and biomechanical processes underlying the representation of those concepts. Such theories of embodied cognition have received an impetus in the last decade (Barsalou, 1999; Glenberg, 1997; Prinz, 2004; Zwaan, 2004) with considerable empirical support showing that cognitive processes are undoubtedly influenced by perceptual and spatial information (De Vega, Glenberg, & Graesser, 2008; Pecher & Zwaan, 2005; Semin & Smith, 2008 for overviews). These findings allow for the conclusion that linguistic symbols are grounded in modality specific perceptual and motor systems.

If conceptual metaphors highlight associations between abstract concepts and physical or spatial properties, it is predicted that words with positive connotations are processed faster when presented higher in space, and words with negative connotations are processed faster when presented lower in space. This is indeed what a number of studies have shown, with participants being apt to process and remember matches between location and words (i.e., joy presented on the top of the screen) better than mismatches (i.e., hate presented on the top of the screen) (Meier & Robinson, 2004; Meier, Hauser, Robinson, Friesen, & Schjeldahl, 2007; Pecher, van Dantzig, Boot, Zaniolie, & Huber, 2010; Schnall & Clore, 2004; Schubert, 2005). More recently, Santana and de Vega (2011) found that matches facilitate comprehension of figurative language more so than that of literal language, suggesting that positive and negative metaphors are also processed through embodied mechanisms. Similarly, when pictures are presented in their expected spatial positions (i.e., an image of a positive concept presented on the top of screen) comprehension of such affectively salient pictures is facilitated (Crawford, Margolies, Drake, & Murphy, 2006; Meier et al., 2007). Furthermore, when participants are in a positive mood, they are more likely to exhibit upwards biases during line bisection tasks, with the opposite pattern holding true for negative moods (Wapner & Werner, 1957). Subjects even feel more successful (a positive feeling) when standing erect (a high vertical position) and less successful (a negative feeling) when slumped over (a low vertical position) (Stepper & Strack, 1993). In a review of the literature, Meier and Robinson (2008) summarized that affect is indeed understood through embodied relations, including vertical spatial representations.

However, such strong evidence supporting embodied representations diverts our attention away from other explanations for these findings. Paivio (1986) has extensively shown that both verbal and non-verbal representations play important roles in cognition. Barsalou, Santos, Simmons, and Wilson (2008) and Louwerse (2007; 2008; 2011) have similarly argued that both statistical
relationships between symbols and embodied representations work together to represent conceptual knowledge. Louwerse (2007; 2011) proposed the Symbol Interdependency Hypothesis, arguing that language encodes embodied representations. That is, embodied cues are encoded linguistically, so that language users can rely on the linguistic system as a shortcut to the perceptual system. Consequently, comprehension can be explained both by a statistical linguistic approach and an embodied approach, a conclusion supported by an increasing amount of empirical evidence (Louwerse, 2011).

Louwerse and Jeuniaux (2010) further argued that language processing relies on both linguistic and embodiment factors variably depending on the cognitive task. They showed that linguistic factors best explained response times (RTs) when participants made semantic judgments about word pairs, but perceptual factors best explained RTs when participants made iconicity judgments about pictures. Importantly, both linguistic and perceptual factors explained RTs in both semantic judgments and iconicity judgments, for both linguistic stimuli and pictorial stimuli, but their relative importance changed as a function of the task and stimulus.

In addition, Louwerse and Connell (2011) have shown that findings initially entirely attributed to embodied representations, such as the increased processing times for modality shifts, can in fact be attributed to statistical linguistic frequencies. Interestingly, faster processing can be best explained by the linguistic system, and slower processing can best be explained by the perceptual system.

In addition to cognitive tasks modifying statistical linguistic and embodiment effects on comprehension, individual differences might also play a role in how we represent information. Preexisting strategies or habits may impact an individual’s propensity for processing information in different ways. For example, because embodied representations ground language through bodily experiences we could predict that those individuals with superior spatial ability are more likely to utilize such simulations. Similarly, those with enhanced language skill may show an inclination to process information in a linguistic fashion. This possibility is easily explored through gender differences, with males showing greater general spatial ability (Kimura, 2000; Linn & Peterson, 1985) and females showing greater general language ability (Kimura, 2000; Kramer, Delis, Kaplan, & O’Donnell, 1997). Based on such tendencies, we hypothesized that because males may have a greater affinity to encode information in an imagistic format, embodiment factors should better predict RTs for males. Likewise, females might be more likely to encode information in a symbolic manner, thus linguistic factors were hypothesized to better predict female RTs.

The current study had three goals. First, we aimed to investigate the extent to which a statistical linguistic approach and an embodied approach explained processing of valence words. As in Louwerse and Jeuniaux (2010) we identified embodied and linguistic factors and determined how well each factor could explain RTs. Second, we aimed to investigate whether the effect of a statistical linguistic approach and an embodied approach is modified as a function of the cognitive task. As demonstrated by the aforementioned studies, presenting positive-negative word pairs in a vertical orientation seems to encourage subjects to perceptually simulate the words they are reading. However, we also know that positive words usually occur before negative words in texts (e.g., plus and minus, good and bad, positive and negative), thus if we present words horizontally (as we read them), we might expect subjects to instead rely upon statistical linguistic features. We therefore hypothesized that embodiment factors would be more salient when words were presented vertically whereas linguistic factors would be more salient when words were presented horizontally. Thirdly, we aimed to investigate whether the effect of a statistical linguistic approach and an embodied approach is modified as a function of individual differences, and more specifically as a function of participant gender. We answered these questions in two experiments whereby male and female participants responded to positive and negative valence word pairs. In Experiment 1 word pairs were presented in a vertical configuration (e.g., happy above sad) to encourage subjects to rely upon embodied features; in Experiment 2 word pairs were presented in a horizontal configuration (e.g., happy preceding sad) to encourage subjects to rely upon statistical linguistic information.

Experiment 1

Participants

Thirty-four undergraduate native English speakers at the University of Memphis (24 females) participated for extra credit in a Psychology course.

Materials

The experiment consisted of 50 pairs of words that were opposites on a valence dimension (e.g., positive-negative) (see Table 1). One hundred filler items consisted of word pairs without a positive-negative relation, with half of the pairs having a high semantic association and half having a low semantic association as determined by latent semantic analysis (LSA), a computational linguistic technique that measures the similarity in meaning between word pairs, but ignores an order relation (Landauer, McNamara, Dennis, & Kintsch, 2007) (high semantic association: \(\cos = .44 \); low semantic relation: \(\cos = .18 \)).

Procedure

Participants were asked to judge the semantic relatedness of word pairs presented on an 800x600 computer screen running E-Prime software (Psychology Software Tools Inc., Pittsburgh, PA). Words were presented one above another, in a vertical orientation. Upon presentation of a word pair, participants indicated whether the pair was related in meaning by pressing designated yes or no keys. All words were equally frequent and appeared equally likely in the positive and negative conditions. Participants were instructed to respond as quickly as possible while maintaining accuracy. The task was self-paced, and participants were allowed to take as much time as necessary to answer each question. Each word pair was presented for 500 ms, followed by a 250 ms blank screen. Participants were given 2000 ms to respond.

Procedure Details

- **Materials:**
 - Fifty word pairs: Thirty word pairs were positive-negative relations, with half having a high semantic association and half having a low semantic association as determined by latent semantic analysis (LSA).
 - One hundred filler items: Fifty word pairs without a positive-negative relation, with half of the pairs having a high semantic association and half having a low semantic association.

- **Procedure:**
 - Participants were instructed to respond as quickly as possible while maintaining accuracy.
 - Each word pair was presented for 500 ms, followed by a 250 ms blank screen.
 - Participants were given 2000 ms to respond.

- **Analysis:**
 - Response times (RTs) were measured from the onset of the word pair to the response.
 - RTs were analyzed using a mixed-effects linear regression model, with fixed effects for word type (positive-negative vs. filler), gender, and an interaction between word type and gender.

- **Results:**
 - Gender differences were observed for RTs, with females showing faster RTs than males when presented with positive-negative word pairs.
 - The interaction between word type and gender was significant, indicating that gender differences were present when processing positive-negative word pairs but not when processing filler items.

- **Discussion:**
 - The findings support the hypothesis that embodiment factors would be more salient when words were presented vertically whereas linguistic factors would be more salient when words were presented horizontally.
 - The gender differences observed in response times suggest that males and females may process language in different ways.

- **Conclusion:**
 - The results of this study provide further evidence for the role of embodiment in language processing and highlight the importance of considering individual differences in language processing research.

Table 1:

<table>
<thead>
<tr>
<th>Word Pair Type</th>
<th>Percentage of Participants</th>
<th>Mean RT (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive-Negative</td>
<td>30%</td>
<td>750</td>
</tr>
<tr>
<td>Filler</td>
<td>70%</td>
<td>600</td>
</tr>
</tbody>
</table>

Note:

- RTs were measured from the onset of the word pair to the response.
- The mean RTs were calculated based on the total number of responses for each condition.
- The results suggest that gender differences are present in processing positive-negative word pairs but not in processing filler items.
pairs were randomly ordered for each participant to negate any order effects. Each participant saw all word pairs, but whether a participant saw a word pair in an iconic or a reverse iconic order was counterbalanced between two groups, such that all participants saw iconic and reverse-iconic word pairs, but no participant saw a word pair both in an iconic and a reverse-iconic order. To ensure participants understood the task, participants completed five practice trials before beginning the experimental task.

Table 1: Positive-Negative Critical Word Pairs

<table>
<thead>
<tr>
<th>achievement – failure</th>
<th>add – subtract</th>
</tr>
</thead>
<tbody>
<tr>
<td>angel – devil</td>
<td>angels – demons</td>
</tr>
<tr>
<td>appear – disappear</td>
<td>beautiful – ugly</td>
</tr>
<tr>
<td>bright – dim</td>
<td>birth – death</td>
</tr>
<tr>
<td>clean – dirty</td>
<td>confident – arrogant</td>
</tr>
<tr>
<td>day – night</td>
<td>dead – alive</td>
</tr>
<tr>
<td>dream – nightmare</td>
<td>excitement – boredom</td>
</tr>
<tr>
<td>fast – slow</td>
<td>freedom – slavery</td>
</tr>
<tr>
<td>friend – enemy</td>
<td>fun – boring</td>
</tr>
<tr>
<td>gain – loss</td>
<td>good – bad</td>
</tr>
<tr>
<td>grow – shrink</td>
<td>handsome – ugly</td>
</tr>
<tr>
<td>happy – sad</td>
<td>healthy – sick</td>
</tr>
<tr>
<td>heaven – hell</td>
<td>hero – villain</td>
</tr>
<tr>
<td>laugh – scream</td>
<td>life – death</td>
</tr>
<tr>
<td>love – hate</td>
<td>more – less</td>
</tr>
<tr>
<td>on – off</td>
<td>optimist – pessimist</td>
</tr>
<tr>
<td>pass – fail</td>
<td>plus – minus</td>
</tr>
<tr>
<td>positive – negative</td>
<td>pretty – ugly</td>
</tr>
<tr>
<td>progress – stagnation</td>
<td>protagonist – antagonist</td>
</tr>
<tr>
<td>regular – irregular</td>
<td>right – wrong</td>
</tr>
<tr>
<td>safe – danger</td>
<td>smile – frown</td>
</tr>
<tr>
<td>strong – weak</td>
<td>sunshine – rain</td>
</tr>
<tr>
<td>true – false</td>
<td>unite – split</td>
</tr>
<tr>
<td>victory – defeat</td>
<td>wealthy – poor</td>
</tr>
<tr>
<td>winner – loser</td>
<td>yes – no</td>
</tr>
</tbody>
</table>

Results and Discussion

Subjects whose RTs fell more than 2.5 SD from the mean per condition, per subject were removed from the analysis, affecting 3.7% of the data.

Linguistic and Embodiment Factors

We distinguished between a linguistic and an embodiment factor in order to determine whether a statistical linguistic approach or an embodiment approach would better explain the processing of valence words.

Linguistic factor The statistical linguistic factor was operationalized as the log frequency of a-b (e.g., happy-sad) or b-a (e.g., sad-happy) order of word pairs. The order frequency of all word pairs within 3-5 word grams was obtained using the large Web 1T 5-gram corpus (Brants & Franz, 2006).

Embodiment factor If conceptual metaphors are understood through embodied representations and processes (Lakoff & Johnson, 1981; 1999), then a concept must be perceptually simulated in order to determine if it is positive or negative. Therefore, we operationalized embodiment factor as a rating of how positive or negative a concept was, following previous studies (Louwserse, 2008; Louwserse & Jeuniaux, 2010). Thirty-eight participants at the University of Memphis were asked to what extent they agreed with the statement: x is more positive than y (e.g., happy is more positive than sad or sad is more positive than happy). Ratings were made for all word pairs (in both orders) on a scale of 1-6, with 1 being strongly disagree and 6 being strongly agree.

Response Time Analyses

A mixed-effect regression model analysis was conducted on RTs with linguistic and embodiment factors as the fixed factors and participants and items as random factors (Baayen, Davidson, & Bates, 2008). The model was fitted using the restricted maximum likelihood estimation (REML) for the continuous variable (RT). F-test denominator degrees of freedom were estimated using the Kenward-Roger’s degrees of freedom adjustment to reduce the chances of Type I error (Littell, Stroup, & Freund, 2002).

The embodiment factor was significantly related to the RTs, F (1, 86.93) = 10.40, p < .002, with higher ratings yielding lower RTs. This finding supports an embodied cognition account: the more a word pair marked a positive-negative relation, the stronger the effect on the RTs. However, the linguistic factor also explained the RTs, F (1, 85.51) = 70.96, p < .001, with higher frequencies yielding lower RTs. These findings show that the vertical configuration of conceptual metaphors can be explained by both the linguistic system and the embodied system, confirming previous findings and the claim that language processing is both linguistic and embodied.

Gender Effects

Next, we investigated whether the linguistic and embodiment factors were modulated by individual differences. To test whether embodiment factors better predicted RTs for males, and linguistic factors better predicted RTs for females, we conducted a mixed effects analysis on RTs using the interaction between gender x linguistic factor and gender x embodiment factor as fixed factors and subject and item as random factors. The two interactions on RTs were significant, for both gender x linguistic factor, F (2, 113.86) = 38.68, p < .001, and gender and embodiment factor, F(2, 210.99) = 8.23, p < .001. Interestingly, and as predicted, the effect size was largest for females x linguistic factor, and males x embodiment factor, as shown in Figure 1.

1711
The results of Experiment 1 show that both linguistic and embodiment factors explain processing of valence words. The effects of either factor are modulated by individual differences. Although both male and female participants depended more upon the linguistic factor, females relied more on the linguistic factor than males, and males relied more on the embodiment factor than females.

Experiment 2

Participants
Forty undergraduate native English speakers at the University of Memphis (29 females) participated for extra credit in a Psychology course.

Materials
Materials were identical to those used in Experiment 1.

Procedure
The procedure was identical to Experiment 1 except that items were now presented next to each other (horizontal configuration) rather than above each other (vertical configuration).

Results and Discussion

Linguistic and Embodiment Factors
As in Experiment 1 a mixed effects regression model was conducted with RT as the outcome variable, with the linguistic and the embodiment factors as fixed predictor factors, and with both participants and items as random factors. Again, the embodiment factor was significantly related to the RTs, $F (1, 84.93) = 7.01, p = .01$, with higher embodiment ratings yielding lower RTs. The linguistic factor also explained RTs, $F (1, 86.01) = 94.60, p < .001$, with higher frequencies yielding lower RTs. These findings are similar to those obtained in Experiment 1, and support the conclusion that language processing is both linguistic and embodied.

Gender Effects
As before, to determine interactions between gender x linguistic factor and gender x embodiment factor, we conducted a mixed effects model using the two interactions as fixed factors and subjects and items as random factors. Both interactions reached significance, for gender x linguistic factor, $F(2, 142.89) = 48.12, p < .001$, as well as gender x embodiment factor $F(2, 207.74) = 4.19, p = .02$. The effect size was again largest for female participants and the linguistic factor (Figure 2). However, effect size was now also larger for females and the embodiment factor. A possible explanation for this finding is that the embodiment factor may have played a lesser role in the horizontal configuration than in the vertical configuration, an explanation that fits the idea that cognitive task modulates the relative importance of linguistic and embodiment factors. This issue was investigated next.

Next, we were concerned with the relationship between the prominence of a linguistic factor and a embodiment factor during processing. To answer this question we conducted an analysis using both the linguistic and embodiment factor, comparing their relative importance in the vertical (Experiment 1) versus horizontal (Experiment 2) configurations. Again, both participants and items were used as random factors in the mixed effects regression, and the interaction of the linguistic factor x orientation (vertical versus horizontal), and the interaction of the embodiment factor x orientation were of interest. The interaction for both orientation x linguistic factor and orientation x embodiment...
factor was significant, $F(2, 133.13) = 53.75, p < .001$ and $F(2, 163.86) = 6.32, p < .01$ respectively. Furthermore, an interaction between orientation x linguistic factor x embodiment factor reached significance, $F(2, 165.28) = 4.90, p < .01$. Although the linguistic factor played a more important role in both configurations, the linguistic factor was more salient in the horizontal configuration than in the vertical configuration, whereas the embodiment factor was more salient in the vertical configuration than in the horizontal condition (Figure 3). These results suggest that the relative importance of linguistic and embodiment factors is modulated by the cognitive task.

![Figure 3. The effect sizes in R^2 for both the linguistic factor and the embodiment factor in vertical orientation of valence word pairs (Experiment 1) and horizontal orientation of valence word pairs (Experiment 2).](image)

Discussion

Previous studies have shown that when comprehenders process conceptual metaphors, they activate perceptual simulations (Lakoff & Johnson, 1981; 1999). The notion that metaphor comprehension is embodied is non-trivial. However, it begets the question whether alternative explanations are to be dismissed. The two experiments reported here show that both linguistic and embodiment factors explain the processing of valence words. Furthermore, the dominance of one factor relative to the other was modified differentially based on the experimental task, such that linguistic factors better explained RTs for horizontal presentations, with embodied features better explaining RTs for vertical presentations. Moreover, we found evidence suggesting that male participants typically rely more on embodied representations, whereas female participants typically rely more on statistical linguistic patterns.

The findings reported in this paper are important for theories of cognition. Although there is much evidence supporting embodied accounts of mental representations (Barsalou, 1999; Glenberg, 1997; Pecher & Zwaan, 2005; Semin & Smith, 2008; Zwaan, 2004), there is also an increasing amount of evidence suggesting that other factors can play an important role (Hutchinson, Johnson, & Louwerse, 2011; Louwerse, 2008; Louwerse & Jeuniaux, 2010; Barsalou, Santos, Simmons, & Wilson, 2008). It is important that researchers consider alternatives contributing to metaphorical conceptual processing rather than fixating on one explanation without leaving any room for alternative explanations. Our findings do not dispute the necessity of employing embodied representations but rather we call into question their dominance during cognition. Comprehension of conceptual metaphors can be explained by both linguistic and embodiment factors, but their salience as predictors of cognitive processing is modified by cognitive task and by individual differences.

References

