Title
CHEMICAL SEPARATION OF RUTHERFORDIUM

Permalink
https://escholarship.org/uc/item/6q4343fp

Authors
Silva, Robert
Harris, James
Nurmia, Matti
et al.

Publication Date
1970-07-01
CHEMICAL SEPARATION OF RUTHERFORDIUM

Robert Silva, James Harris, Matti Nurmia, Kari Eskola and Albert Ghiorso

July 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CHEMICAL SEPARATION OF RUTHERFORDIUM

Robert Silva, James Harris, Matti Nurmla, Kari Eskola and Albert Ghiorso

Lawrence Radiation Laboratory
University of California
Berkeley, California

Introduction

As current evidence (1,2,3) supports the original prediction that element 103 is the last member of the actinide series (4), element 104 would be expected to fall into the group IVB elements of the periodic table, i.e., to be eka-hafnium. The element is predicted to have a valence and ionic radius similar to Zr and Hf (5,6) and to exhibit similar chemical properties.

Russian researchers have concentrated their efforts to separate element 104 from the actinides on rapid gas phase techniques based on the predicted large differences in the relative volatilities of the chlorides (7,8). There is, however, some uncertainty in the assignment of the spontaneous fission activity ($T_{1/2} \approx 0.5$ sec.) used in these experiments (8,9,10).

The recent discovery of an isotope of element 104, 261Rf (11,12), with half-life of ~ 70 seconds and alpha particle energies of 8.25-8.40 MeV, has made it possible to carry out more conventional aqueous chemical separations using ion-exchange techniques. Previous studies with actinide

*This research was done under the auspices of the U. S. Atomic Energy Commission.

†Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tenn. 37830.

‡On leave of absence from the Department of Physics, University of Helsinki, Finland.
elements (13,14) show that cation exchange columns using chelating agents as eluants can provide rapid chemical separations on one atom at a time and yield sources suitable for alpha energy analysis. The experiments described in this work represent a further development of this method to test the above predictions.

Experimental

The 261Rf was produced by irradiation of 47 micrograms of 248Cm, which was electrodeposited over 0.2 cm2 area onto a 0.0005-inch thick Be foil, with 92-MeV 180 ions from the Berkeley Heavy Ion Linear Accelerator. Details of the bombardment assembly, fast sample transfer system and other experimental procedures have been described elsewhere (1,15,16).

In each chemical experiment, the rutherfordium recoil atoms were washed from an NH$_4$Cl-coated, platinum catcher foil with ~ 50 microliters of ammonium alpha hydroxyisobutyrate (0.1 M, pH 4.0) onto the top of a 2 mm. diameter by 2 cm. long, heated (~80°C) column of Dowex 50 × 12 cation resin. This solution was forced into the resin and, after adding more eluant, the washing was continued. The first two drops (free column volume) contained little or no activity and were discarded. The next four drops (taken in two drop fractions) were collected on platinum discs, evaporated to dryness and heated to ~500°C to burn off any carbon residue. The discs were placed active side down directly over Si(Au) alpha particle detectors. The number, energy and time distribution of alpha particles with energies between 6 and 12 MeV emitted by the sources were recorded in a PDP-9 computer. A large part of the chemical system was automated so that the average time from beam off to counting was reduced to ~ 60 seconds. Approximately 100 atoms of 261Rf were produced for study in several hundred experiments, however, only about 1/10 of this number of events were observed after chemistry due to decay, counting geometry and chemical losses. At regular intervals, the platinum catcher foils were counted directly for yield measurements.
FIG. 1
Elution of Zr and Hf tracer from a Dowex 50 x 12 cation exchange resin column using Ammonium Alpha Hydroxyisobutyrate.

FIG. 2
Gamma-ray spectra taken with Ge(Li) detector before (a) and after (b) chemical separation and shows typical separation of ^{170}Hf from ^{169}Lu.
Results and Discussion

Under experimental column conditions described above, over 50% of tracer quantities of Zr and Hf were washed through the cation exchange column with the first few column volumes of eluant as shown in Fig. 1. In contrast, trace quantities of the 3+ ions Tm, Cf and Cm did not elute in over 100 column volumes. One would expect Lr to be the first 3+ actinide to be removed from the column and to elute in about the same position as Tm (13, 17). Divalent nobelium, as well as the alkaline earth elements, are retained even more strongly by the resin than the 3+ actinides (14). Alpha particle analysis of the same early column fractions using trace quantities of a number of other elements in this region of the periodic table showed the following amounts present: Bi < 3%, Ra < 1%, Fr < 1%, Th < 1%, Np < 5%, Pu ~ 50%, and Pa ~ 50%. Atoms of ^{170}Hf and ^{169}Lu, produced by the irradiation of a 1 mg/cm2 target of ^{159}Tb with 67-MeV ^{14}N ions from the Oak Ridge Isochronous Cyclotron, were subjected to the identical chemical separations as described for ^{261}Rf. Fig. 2 shows γ-ray spectra taken with a 40 cc. Ge(li) detector both before (a) and after separation (b) and indicates typical separation of the Hf from Lu. These data indicated that only about 50% of the ^{170}Hf produced was recovered by this procedure.

Fig. 3 shows a summary of data accumulated over a 3 week period for ^{261}Rf. Although the actual time of occurrence as well as the energy of each alpha particle event was recorded, the time distributions given in Fig. 3 are four sequential one-minute decay intervals plus a summation of the four individual energy spectra. Fig. 3a shows energy spectra accumulated directly from platinum catcher foils from which the production rates of ^{261}Rf and the indicated impurity activities were determined. Fig. 3b shows the energy spectra accumulated from sources after chemical separation, which contained seventeen alpha particle events in the energy region 8.2 to 8.4 MeV. Approximately one half of these events are probably due to the decay of ^{257}No ($T_{1/2} = 26$ sec., E_{α}'s = 8.22 (55%), 8.27 (26%) and 8.32 (19%) MeV), the daughter of the separated ^{261}Rf. In two experiments, two alpha decay events
FIG. 3.a
Alpha particle energy spectrum accumulated from sources without chemical separation.

FIG. 3.b
Alpha particle energy spectrum accumulated from sources after chemical separation.
occurred in the 8.2 to 8.4 MeV region within a time interval of one minute, most probably the first one due to 261Rf and the second due to the daughter 257No. This is consistent with the number of pair events expected in the counting system that was used. Decontamination factors of from 100 to 1000 of the Rf from the impurity activities were obtained.

The data show that, for the particular cation exchange conditions used in these experiments, the behavior of the activity assigned to element 104 with mass 261 is entirely different from trivalent and divalent actinide elements but is similar to Hf and Zr as one would predict for the next member of the periodic system following the actinide series of elements.

Acknowledgements

The authors wish to thank Jean Rees for her considerable help in the chemical separations and the HILAC staff for their excellent support.

References

5. G. T. Seaborg, American Chemical Society, Mendeleev Centennial Symposium, Minneapolis, Minn. (April 15, 1969).
8. I. Zvara, Yu. T. Chuburkov, V. Z. Belov, G. V. Buklanov, B. B. Zakhvatoev,

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.