Lawrence Berkeley National Laboratory

Recent Work

Title
WALL HEATING DUE TO BEAM BUNCH FIELDS

Permalink
https://escholarship.org/uc/item/6gj37807

Author
Hoyer, Egon

Publication Date
1982
WALL HEATING FOR A GAUSSIAN BUNCH IN A CYLINDRICAL PIPE, PER WORTON & WILSON - AATF 17/15 (SLAC), IS GIVEN BY:

\[
\begin{align*}
P_{\text{tot}} &= \frac{\Gamma^{(3/4)} T_r I_0^2}{\Delta_{e}^{3/2} 4\pi^2} \left(\frac{\Lambda_0}{2\Delta_e} \right)^{1/2} L \quad \text{[Watts]} \\
&+ \frac{P_A}{2\pi \alpha L} \quad \text{[Watts/m²]}
\end{align*}
\]

WHERE:
- \(\Delta_e\) = DC CONDUCTION \(\left(\frac{1}{\text{ohm}}\right)\)
- \(I_0\) = PERMITTIVITY = \(4\pi \times 10^{-7} \text{ (F/m)}\)
- \(\Gamma_{(3/4)} = 1.2254\)
- \(Q = RADIUS (m)\)
- \(L = LENGTH (m)\)
- \(I_0 = AVERAGE \text{ CURRENT (AMPS)}\)
- \(\Delta_e = BUNCH \text{ LENGTH (FWHM)} \text{ (SEC)}\)
- \(T_r = \text{BUNCH SPREAD Zones (SEC)}\)

WALL HEATING:

FOR THE WIGGLEM CL. CONSIDER THE VACUUM CHAMBER A TUBE WITH RADIUS \(a\) (CONSERVATIVE). USE SS:

\[
\Delta_{\text{DC}} = 1.39 \times 10^6 \quad (1/\text{ohm})
\]
Foilスペクトル:

\[I_0 = 100 \text{mA} \quad (n=4 \text{ bunches}) \]

基于 \[I_0 = 50 \text{mA} \quad n^{1/2} \]

\[\Delta t = (200 - 400) \text{ps} \quad \Delta x = (1.86 - 1.12) \text{m} \]

\[T_{1/2} = \frac{1}{50} n = \frac{1}{1.28 \text{MHz}} \quad 4 = 195 \text{ns} \]

Foil Beam:

- Foil \(a = 1.01 \text{m} \)

\[\frac{P_{\text{tot}} \text{ [Watts/m]}}{L} = \frac{(1.25 \times 10^{-4}) (195 \times 10^{-9} \text{sec}) (1 \text{ amp})}{(200 \times 10^{-12} \text{m})^{3/2}} \left(\frac{4 \pi \times 10^{-7} \text{H/m}}{2(1.39 \times 10^{-3} \text{m})} \right) \]

\[= 1.44 \text{ [Watts/m]} \]

- Foil \(a = 1.003 \text{m} \)

\[\frac{P_{\text{tot}}}{L} = 4.75 \text{ Watts/m} \quad \text{small!} \]

Skin Depth:

\[\delta = \sqrt{\frac{1}{\sigma \Delta t / \pi f}} \quad (\text{m}) \]

For SS @ 1.28 MHz:

\[\delta = \sqrt{\frac{1}{(1.39 \times 10^{-6} \text{S/m})(4 \pi \times 10^{-7} \text{H/m})(4.28 \times 10^{6} \text{W/m})}} \]

\[= 3.77 \times 10^{-4} \text{m} = 0.37 \text{mm} \]
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.