Lawrence Berkeley National Laboratory
Recent Work

Title
Coherent Beam-Beam Simulations

Permalink
https://escholarship.org/uc/item/6gp0c591

Author
Krishanagopal, S.

Publication Date
1992
Coherent Beam-Beam Simulations*
SRINIVAS KRISHNAGOPAL, Lawrence Berkeley Laboratory, Berkeley

The study of coherent beam-beam phenomena in electron-positron storage rings requires the use of simulations in which both beams are allowed to affect each other. To date these have assumed Gaussian beam distributions for the field calculations. This, however, turns out to inhibit the occurrence of coherent resonances. We have developed a new technique for calculating the fields due to general beam distributions. In simulations that employ this technique we find a new class of coherent phenomena. Higher order coherent resonances, that have a period-n, antiscorrelated variation of the beam sizes, limit performance at the tunes investigated. The widths of these resonances depend inversely on the damping decrement of the ring.

* Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098