Title
MOLECULAR SPECTROSCOPY BY STEPWISE TWO-PHOTON ION-PAIR PRODUCTION AT 71 nm

Permalink
https://escholarship.org/uc/item/6h3173f9

Author
Kung, A.H.

Publication Date
1985-06-01

MOLECULAR SPECTROSCOPY BY STEPWISE TWO-PHOTON ION-PAIR PRODUCTION AT 71 nm

A.H. Kung, R.H. Page, R.J. Larkin, Y.R. Shen, and Y.T. Lee

June 1985

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Molecular Spectroscopy By Stepwise Two-Photon Ion-Pair Production at 71 nm

A.H. Kung
San Francisco Laser Center, Department of Chemistry, University of California, Berkeley, CA 94720, U.S.A.

R.H. Page, R.J. Larkin, Y.R. Shen, and Y.T. Lee
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, U.S.A.

The Rydberg states of H₂ have been a continuing subject of intensive study by various research groups.[1-4] However, understanding of the high lying electronic states of this molecule has been inhibited by the lack of spectroscopic data in the region < 75 nm. Experimental studies have been difficult because spectroscopic features are generally buried under an intense absorption or photoionization continuum.[5] Intense, high-resolution excitation sources are not easily available. Recent developments on tunable, narrowband, coherent XUV sources [6] provide new means of studying the spectroscopy in this region with high resolution (± .0005 nm). We have applied the technique of stepwise two-photon excitation to study photoionization of H₂ in a molecular beam using the two lowest excited states of H₂ as the intermediate level. This excitation, coupled with the detection of background-free H⁺ ions has enabled us to uncover, for the first time, spectroscopic features that are difficult to observe in positive ion detection.[7] These features have been successfully assigned to new Rydberg series converging to the high vibrations of the H₂⁺ ground electronic state.

In this study, the first photon at ~ 96 nm is derived by frequency trimming of a pulsed tunable dye laser in a pulsed jet of CO. The frequency is tuned on resonance with a ro-vibronic level of H₂ in the Lyman (B' τ_g) band with v' = 12, 13 or the Werner (C' τ_u) band with v' = 2. The excited H₂ molecule absorbs a second photon that is the UV output from a second dye laser (see Figure 1). The frequency of this second photon is chosen such that the sum of the frequencies of the first and the second photons can be higher than

Figure 1: Potential energy diagram of H₂, showing two-photon excitation scheme.
71.57 nm, the threshold for H− ion production. Here, the H− ions are formed from H\textsubscript{2} by photopredissociation through the ion-pair channel. Monitoring the negative ions with a quadrupole mass spectrometer and tuning the second laser will show the threshold for ion-pair production followed by a H+ ion continuum. Interference of this ion-pair continuum by the major, molecular ion production channel will result in structure in the continuum.[8]

Figure 2 is an example of the resulting spectrum. This spectrum consists of a structured continuum with sharp dips superimposed on the structures. The origin of the gross features is not understood at this point. However, the dips have been successfully assigned. They correspond to previously unobserved Rydberg series of H\textsubscript{2} that converge to the H2+(v*=9, N=1) and H2+(v*=9, N=3) vibrations as the series limit. By tuning to different intermediate states, we have also observed several preliminary, new Rydberg series converging to the v*=9 vibration of the H2+ ion with the rotational quantum number as high as N=5. These represent the first observation of large \(\Delta v (\geq 9)\) and \(\Delta J (\geq 3)\) transitions in the spectroscopy of H\textsubscript{2}.

In conclusion, we have described a new technique that couples non-linear spectroscopy with negative ion detection for molecular hydrogen spectroscopic studies in the XUV region. The technique should be easily extendable to studies of other diatomics and polyatomic molecules.

Acknowledgements This work was supported by the United States Department of Energy under grant DE-AC03-76SF-00098. AHK’s work is also supported by the National Science Foundation under grant CHE-8303208.

References
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.