Ventilator-induced Lung Injury

CLINICS IN CHEST MEDICINE, 37(4)

0272-5231

Beitler, JR
Malhotra, A
Thompson, BT

2016-12-01

10.1016/j.ccm.2016.07.004

Peer reviewed
INTRODUCTION

As with most medical and pharmacologic interventions, mechanical ventilation must be titrated within a therapeutic window, providing the required life-sustaining support while minimizing unintended toxicity. The potential for mechanical ventilation to cause harm was first described in the mid-eighteenth century. John Fothergill postulated that mouth-to-mouth resuscitation may be preferable to mechanical ventilation because “the lungs of one man may bear, without injury, as great a force as those of another man can exert; which by the bellows cannot always be determined.” More than 250 years later, ventilator-induced lung injury (VILI) was proved definitively to contribute to mortality in patients with acute respiratory distress syndrome (ARDS). Classically, 4 mechanisms of VILI have been described: barotrauma, volutrauma, atelectrauma, and biotrauma (Table 1). Recent recognition that heterogeneous regional mechanics, stress frequency, and pulmonary capillary stress failure may also contribute to VILI has inspired a renewed line of investigation toward personalizing lung-protective ventilation.

CLASSIC MECHANISMS OF VENTILATOR-INDUCED LUNG INJURY

Barotrauma and Volutrauma

In 2000, the landmark ARDS Network trial showed definitively that limiting tidal volume (6 vs 12 mL/kg predicted body weight [PBW]) and plateau airway pressure (≤30 vs ≤50 cm H2O) improves survival in patients with ARDS. This study and a small...
preceding pilot trial brought into clinical practice what had been suggested for decades by preclinical studies: that mechanical ventilatory support with high volumes and pressures can cause preventable morbidity and mortality in critically ill patients.

Lung volume and transpulmonary pressure

For much of the last 30 years, barotrauma (high inflation pressure–mediated lung injury) and volutrauma (overdistension-mediated lung injury) were viewed as distinct, albeit related, entities. In a classic study by Dreyfuss and colleagues, rats were mechanically ventilated using one of 3 strategies: (1) high airway pressures and high tidal volumes, (2) high airway pressures and low tidal volumes, or (3) low airway pressures and high tidal volumes. The high-pressure low-volume strategy was achieved via thoracoabdominal strapping with rubber bands, decreasing chest wall compliance. In contrast, the low-pressure high-volume strategy was achieved via an iron lung (negative pressure ventilator). Animals supported with either high-volume strategy had markedly more severe lung injury compared with animals ventilated with the high-pressure low-volume strategy. Similar findings have been replicated in other animal models, leading to the misleading conclusion that volutrauma is more important than barotrauma.

It is true that high airway pressure per se does not cause VILI, as these studies confirmed. However, the pertinent distending pressure of the lungs is not simply the airway pressure but...
the transpulmonary pressure (airway minus pleural pressure), the difference between the pressure inside versus outside the lung (Fig. 1).11–13 Comparable transpulmonary pressures are achieved for a given lung volume regardless of whether airway pressure is positive (as during mechanical ventilation) or negative (as during normal spontaneous breathing).

Thus, lung volume and transpulmonary pressure are inherently related. In the Dreyfuss and colleagues6 study, thoracoabdominal strapping in the high-airway-pressure low-volume group impeded chest wall excursion and thus ensured both low lung volumes and low transpulmonary pressures. In contrast, in the low-airway-pressure high-volume group, iron lung negative pressure ventilation resulted in both high lung volumes and high transpulmonary pressures.

Failure to consider transpulmonary pressure in mechanically ventilated patients can lead to miscalculating VILI risk. At one extreme, high airway pressures in morbid obesity in part may reflect transmitted high pleural pressures (ie, low transpulmonary pressure) and not necessarily

Fig. 1. Transpulmonary pressure. Transpulmonary pressure ($P_{\text{airway}} - P_{\text{pleural}}$) is the pertinent distending pressure of the lung. At zero flow, airway and alveolar pressure are equal; for example, during an end-inspiratory plateau pressure maneuver. (A) Nonintubated patient, normal spontaneous breathing at end inspiration. (B) Intubated patient without respiratory disease, passive on mechanical ventilator at end inspiration. (C) Intubated patient, chest wall stiffness results in lower transpulmonary pressure and lower lung volume at end inspiration despite higher airway pressure. (D) Intubated patient, forceful inspiratory muscle effort, such as from heightened respiratory drive, produces high transpulmonary pressure and lung volume at end inspiration even though airway pressure is reasonably low. Paw, airway pressure; Ppl, pleural pressure; Ptp, transpulmonary pressure. (Adapted from Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369(22):2127.)
overdistension. At the other extreme, critically ill patients with ARDS with air hunger and forceful spontaneous inspiratory muscle effort may have low airway pressures but large pleural and transpulmonary pressure swings and resultant tidal volumes, predisposing to barotrauma/volutrauma.

Tonically held versus cyclic volumes and pressures

The lungs seem to respond differently to high volumes and transpulmonary pressures depending on how the volumes and pressures were achieved. In vitro models of alveolar type I and type II cells placed in a biaxial stretcher have shown that cyclic strain (ie, repeated, cyclic deformations) induce more cell death than a single, tonically held deformation of the same peak magnitude. For a given peak strain, decreasing cyclic strain reduced the amount of cell death.

Analogous findings have been observed in vivo with animal models of VILI. High tidal volumes, with associated large cyclic strain, cause lung injury. However, achieving the same peak strain with high positive end-expiratory pressure (PEEP) and low tidal volumes (ie, high end-expiratory lung volume and low cyclic strain) induces less lung injury. Existing human data similarly suggest that VILI risk for a given end-inspiratory pressure and volume during mechanical ventilation may depend on the relative contributions of PEEP (tonically held deformation, less injurious) versus tidal volume (cyclic deformations, more injurious). Translating these findings to clinical practice, if an upper limit on inspiratory pressure is exceeded, decreasing tidal volume rather than PEEP may afford additional lung protection.

Cellular effects of volutrauma and barotrauma

The classic schema of alveoli as balloonlike structures that stretch during tidal inflation may not fully represent alveolar micromechanics. During normal breathing, alveolar walls seem also to unfold, minimizing elastic stretch and cellular strain except when lung volumes approach total lung capacity. Deformation-related cell strain, when it does occur, induces rapid lipid trafficking to the plasma membrane, increasing cell surface area to prevent plasma membrane rupture and to repair the cell when stress failure does occur. When these cytoprotective mechanisms are exceeded, additional inflation translates directly into cell strain, producing cell detachment from the basement membrane, epithelial and endothelial cell junction breaks, intracapillary blebs, and alveolar and interstitial edema, which are the microscopic correlates of clinical lung injury.

Atelectrauma

In ARDS, surfactant dysfunction and weight of the edematous lung contribute to regional atelectasis. Cyclic opening and collapse of such atelectatic but recruitable lung units during tidal ventilation contribute to lung injury, termed atelectrauma. For atelectatic alveoli, high shear stress is generated during recruitment at the interface between the air bolus and collapsed airway, causing mechanical injury (Fig. 2). For flooded alveoli, formation and destruction of foam bubbles at the gas-liquid interface of flooded alveoli

Fig. 2. Atelectrauma. Local stress and strain of epithelial cells generated during alveolar recruitment. (A) Air bubble propagation down atelectatic airway generates dynamic wave of shear stress and strain at interface of air bubble and collapsed airway. As the air bubble approaches, the epithelial cell is pulled inward toward the bubble. As the air bubble passes, the cell is pushed outward. (B) Air bubble generates similar shear stress and strain of epithelial cells during propagation along flooded airway. (From Ghadiali SN, Gaver DP. Biomechanics of liquid-epithelium interactions in pulmonary airways. Respir Physiol Neurobiol 2008;163(1–3):235; with permission.)
contributes additional local interfacial stress that disrupts plasma membrane–cytoskeletal adhesions and leads to lung injury.41

Clinically, low-tidal-volume ventilation may minimize atelectrauma by maintaining low airway driving pressures, decreasing likelihood of exceeding the critical opening pressure of collapsed lung units.42 In addition, PEEP set at greater than the critical closing pressure of potentially collapsible lung units promotes sustained recruitment and may further prevent atelectrauma,5,26,43–46 although the optimal PEEP titration strategy remains to be defined.

Biotrauma

Mechanical lung injury triggers an extensive biological response, including activation of a proinflammatory and proinjurious cytokine cascade termed biotrauma.23,47–49 This cascade may promote injury even in lung regions not faced with significant mechanical insult. Perhaps more importantly, this proinflammatory response also promotes extrapulmonary organ injury, predisposing to multiorgan failure, which carries increased risk of death.23,47–53

The epithelial surface area of each adult lung is estimated to be 65 to 84 m2 (700–900 square feet),54 nearly the size of one-half of a tennis court. Thus, in the lung, biological responses that are small in magnitude on a cellular level can precipitate collectively a substantial release of proinjurious mediators. Compounding this signal amplification, roughly the entire blood volume of the human adult passes through the pulmonary circulation every minute. Thus, proinflammatory and proinjurious mediators produced by the lung, on entering the circulation, are readily transported throughout the body where they affect previously uninvolved organs. More than a theoretical construct, human ARDS clinical trials have confirmed that lung-protective ventilation attenuates systemic inflammation48,52 and extrapulmonary organ system failures (eg, cardiovascular, renal, hepatic),5,53 helping to account for their associated survival benefit.

REGIONAL MECHANICS

A seminal discovery shaping the current understanding of VILI occurred in the mid-1980s, when the first computed tomography (CT) scans of patients with ARDS revealed strikingly heterogeneous lung parenchyma. In the classic CT for ARDS, patchy areas of well-aerated lung and poorly aerated lung are found in the ventral regions, with dense dependent atelectasis distributed in the dorsal posterior regions of supine patients.55–57 These radiographic discoveries suggest that (1) regional mechanics may vary throughout the ARDS lung, and (2) the total volume of aerated lung available to ventilate is reduced in patients with ARDS.

Lung Inhomogeneity and Shear Strain

Differences in regional mechanics throughout the ARDS lung induce additional mechanical stresses that predispose to VILI. Neighboring alveoli are mechanically interdependent.11,58 Collapse or flooding of one lung unit necessarily induces deformation of adjacent units as the interalveolar septum stretches inward toward the atelectatic or flooded unit. As a result, the adjacent air-filled alveolus experiences additional shear strain as it inflates nonuniformly (Fig. 3). Isolated, perfused animal lung models, wherein single-alveolus pulmonary edema is induced by micropuncture, have visualized this process with confocal microscopy.58 In vivo animal models using PET have found that \([^{18}\text{F}]\text{fluoro-2-deoxy-D-glucose}\) uptake, indicating local neutrophilic activation, is increased in areas of high regional strain.59 Initial human studies using PET CT similarly have confirmed lung inflammation to be heterogeneous in patients with ARDS, likely in part because of differences in regional strain.60,61 These findings suggest a causal linkage to the association between parenchymal inhomogeneity and mortality observed in patients with ARDS.62

Both PEEP and prone positioning may reduce VILI in severe ARDS in part by improving lung homogeneity, yielding more uniform strain distribution.63–67 Adequate PEEP minimizes small airways collapse, promoting sustained recruitment that improves lung homogeneity and increases total aerated lung volume available for tidal ventilation. PEEP may also redistribute edema fluid from the flooded alveolus into the interstitial space, decreasing shunt fraction while perhaps promoting more uniform interdependent alveolar mechanics.68,69 PEEP seems to have mixed effects on pulmonary lymphatic flow, involved in clearance of extravascular lung water, depending on hemodynamic management and lung compliance.70–72 PEEP has been shown in most ARDS animal models to protect against VILI.6,22,37,49 Human studies with ARDS have yet to identify the optimal PEEP titration strategy.43–45 Although, in general, higher PEEP may be warranted in patients with more severe ARDS.73 Most major clinical trials to date have adjusted PEEP based on oxygenation requirements using an arbitrary PEEP-FiO\textsubscript{2} (fraction of inspired oxygen) titration table.3,43,44,63,74–76 However, a PEEP titration
strategy that seeks not only to maintain oxygenation but also to reduce regional strain may afford additional lung protection in patients with ARDS. Several such strategies have been tested in small clinical studies, but none to date in a large multicenter trial adequately powered for patient-centered outcomes.

Prone positioning similarly seems to improve lung homogeneity. In the normal lung, alveolar size decreases from ventral to dorsal regions because of gravity and shape matching of the lung and thoracic cavity. Increased mass of the edematous ARDS lung generates a superimposed pressure on gravity-dependent lung regions, leading to dense atelectasis of the dorsal lung regions with relative sparing of more ventral regions. When the patient is repositioned prone, shape matching again favors decreased alveolar size from ventral to dorsal regions, but the gravitational effect (nontrivial from edema weight in ARDS) now favors expansion of dorsal regions. The net effect, as shown on CT, seems to be more homogeneous aeration throughout the lung, likely promoting more uniform strain distribution and thus lung protection. The recent Proning Severe ARDS Patients (PROSEVA) multicenter randomized trial found that proning patients with early severe ARDS for at least 16 h/day improved survival compared with semirecumbent supine positioning, despite management with identical lung-protective mechanical ventilation strategies. Although the effect size in PROSEVA may overestimate that of proning because of more frequent use of neuromuscular blockade in the prone arm
(which may afford additional lung protection76) and greater baseline vasopressor requirements in the supine arm, proning likely affords added lung protection in select patients with severe ARDS.

Although PEEP and proning share related physiologic mechanisms, a mechanics-based PEEP titration strategy has not been studied adequately in a major trial of prone positioning. At least 1 physiologic human study suggests that concomitant proning and higher PEEP may further improve lung homogeneity relative to either strategy in isolation.82 However, the extent to which a mechanics-based PEEP titration strategy affords additional clinical benefit during prone positioning, or vice versa, is unknown.64

The Acute Respiratory Distress Syndrome Baby Lung

In patients with ARDS, the weight of superimposed edematous lung tissue, coupled with surfactant dysfunction, contributes to dense atelectasis of dependent lung regions.35,38,83 As a result, the volume of aerated lung available for gas exchange and mechanical insufflation is reduced, a concept termed the ARDS baby lung (Fig. 4).84 The baby lung is not a fixed anatomic structure, as shown by redistribution of dependent atelectasis to ventral regions with prone positioning.81,85 Nor does aerated lung equate to normal lung, as shown by enhanced [18F]fluoro-2-deoxy-D-glucose uptake signaling active inflammation in aerated regions.86

Baby lung inspiratory capacity predicts end-inspiratory lung stress during tidal ventilation,25 suggesting that low tidal volumes may be effective in ARDS in part because the functional lung volume is reduced. The original ARDS Network trial investigators reasoned that lower tidal volumes may be required to prevent regional overdistension in ARDS in part because the aerated lung volume is reduced.3 In vivo preclinical models using diffusion-weighted hyperpolarized gas MRI have found that the aerated baby lung may experience regional overdistension.87,88 An ideal lung-protective strategy might scale tidal volumes to functional baby lung size rather than predicted healthy lung size (ie, milligrams per kilogram PBW). Such strategies have been explored in physiologic studies25,89,90 but have yet to be tested in prospective clinical trials powered for patient-centered outcomes.

STRESS FREQUENCY AND PERMISSIVE HYPERCAPNIA

Both the magnitude and frequency of peak alveolar stretch likely contribute to VILI.91 Preclinical studies have found that, for a given magnitude of lung stretch, increasing the stretch frequency also worsens lung injury.17,91–93 In human studies, infrequent high-volume breaths, such as occasional recruitment maneuvers or sigh breaths, do not seem to cause clinically significant lung injury94 and may even afford transient lung protection.95–98 At the other extreme, delivery of high tidal volumes with every breath clearly worsens VILI and mortality in patients with ARDS.3,5 The dose-response curve for the relationship between frequency of high-volume breaths and VILI may be J shaped. Occasional high-volume breaths, such as sighs, may be protective by preventing derecruitment,96 increasing lung homogeneity,97 and increasing baby lung size (maintained if PEEP exceeds small airways closing pressure).25 However, frequent high tidal volumes cause VILI in at-risk patients.

The precise role for limiting stress frequency remains to be determined. Maintaining a low tidal

![Fig. 4. ARDS baby lung. CT chest of representative patient with ARDS. Ventral regions are well aerated with patchy ground-glass opacities and few areas of focal consolidation from pneumonia. Dorsal regions show dense dependent atelectasis caused by superimposed pressure from gravity on the edematous ARDS lung above. As a result, the volume of aerated lung available for exchange and mechanical insufflation is reduced; this smaller aerated region is termed the baby lung.](image-url)
volume strategy while also limiting stress frequency, by limiting respiratory rate, results in hypercapnic acidosis, a strategy termed permissive hypercapnia.5,99 This approach was shown in a small clinical trial to improve survival compared with a high-tidal-volume strategy.5 However, permissive hypercapnia was not evaluated in the ARDS Network trial of high versus low tidal volumes,6 which instead advised a high respiratory rate to achieve near eucapnia and normal pH. The high-respiratory-rate strategy of the ARDS Network likely requires less sedation during low-tidal-volume ventilation than a permissive hypercapnia strategy. Because hypercapnic acidemia heightens respiratory drive, deep sedation or neuromuscular blockade may be required to reinforce lung-protective ventilation and minimize patient-ventilator dyssynchrony during permissive hypercapnia.

Hypercapnia also has several biological effects of unclear clinical consequence. In preclinical VILI models, hypercapnic acidosis impaired alveolar cell migration100 and plasma membrane repair101 following mechanical injury, the latter in a pH-dependent fashion.101 Hypercapnia, independent of pH, also may impair alveolar edema fluid clearance by promoting endocytosis of plasma membrane Na⁺-K⁺-ATPase channels involved in maintaining the Na⁺ gradient that water follows.102 Hypercapnia attenuates tumor necrosis factor alpha; interleukin (IL)-1, IL-6, and IL-8 cytokine production; oxygen free radical formation; and nuclear factor kappa B activation,103–107 potentially limiting the cascading effects of trauma on pulmonary and extrapulmonary organ failure. In vivo models of VILI,108,109 bacterial pneumonia,110 and abdominal sepsis111 have shown that hypercapnic acidosis, achieved via inspired CO₂, attenuates lung injury. Different experimental preparations have yielded conflicting results on the effects of hypercapnia in pulmonary infection,112 highlighting the need for further translational research and ultimately clinical studies.

CAPILLARY STRESS FAILURE

In addition to alveolar epithelial injury, capillary endothelial stress failure likely contributes to VILI. Enhanced regional pulmonary blood flow, such as occurs from hypercapnic adrenergic tone or attempted ventilation-perfusion matching, increases capillary wall stress.113 Multiple preclinical models have found that increasing pulmonary blood flow worsens lung injury.114–116 Dynamic shear forces from blood flow seem to play a central role, because achieving high capillary pressure by increasing left atrial pressure statically does not produce comparable lung injury.115 Importantly, increasing pulmonary blood flow may lead to lung injury that otherwise would not occur during moderate tidal overdistension.116

The clinical implications to VILI from pulmonary capillary stress failure remain unclear. Vasoactive medications may have distinct effects on pulmonary blood flow and distribution and thus attenuate or exacerbate VILI.117,118 A randomized clinical trial evaluating hemodynamic management for neuroprotection following severe head injury found increased ARDS incidence in the strategy requiring increased vasopressor use and intravenous fluid administration to achieve higher mean arterial and cerebral perfusion pressures.119 Similarly, in a multicenter trial of patients with ARDS, a more liberal fluid management strategy was associated with fewer ventilator-free days compared with a strategy favoring earlier diuresis, although survival did not differ significantly between groups.120 While capillary stress failure unquestionably plays a role in VILI, the magnitude of its importance and any clinical management decisions that should follow remain to be defined.

VENTILATOR-INDUCED LUNG INJURY PREVENTION IN PATIENTS WITHOUT ACUTE RESPIRATORY DISTRESS SYNDROME

Perhaps the greatest challenge for VILI prevention, among patients without ARDS, is to balance the degree of VILI risk with the potential for harm from a given VILI prevention strategy. Clinical lung injury does not develop in most patients even when identifiable risk factors are present.121,122 Clinical risk prediction scores such as the Lung Injury Prediction Score (LIPS)122 and Early Acute Lung Injury Score123 perform reasonably well in identifying patients at risk of lung injury, but have yet to prove useful in guiding preventive strategies. A multiple-hit conceptual model for VILI risk has been proposed, wherein patients with increased baseline risk for lung injury (eg, from pneumonia or sepsis) are likely to develop clinical lung injury if secondary insults are encountered (eg, exposure to high tidal volumes).124 Among candidate interventions for VILI prevention in patients without ARDS, limiting tidal volume has been most widely studied. A 2-hospital randomized trial found decreased ARDS incidence with 6 versus 10 mL/kg PBW in critically ill patients without ARDS with anticipated need for mechanical ventilation of more than 3 days, although survival and ventilator-free days did not differ.125 A multicenter trial of intraoperative low tidal volumes among high-risk patients undergoing abdominal surgery found decreased need for postoperative
positive pressure ventilation and shorter hospital length of stay with 6 to 8 mL/kg PBW compared with 10 to 12 mL/kg PBW. Building on these findings, a recent meta-analysis of 15 small randomized trials and 5 large observational studies similarly concluded that lower tidal volumes targeting 6 to 8 mL/kg PBW were associated with improved survival in patients without ARDS. However, attempts to restrict tidal volume may prove challenging in patients supported in assist-control or pressure-support modes without increasing sedation or even administering

Table 2
Strategies for VILI prevention in at-risk patients

<table>
<thead>
<tr>
<th>Preventive Strategy</th>
<th>Implementation</th>
<th>VILI Mechanisms<sup>a</sup></th>
</tr>
</thead>
</table>
| Limit tidal volume | Scaled to healthy lung size³,⁵,⁴² (<8 mL/kg PBW) or functional baby lung size²⁵,⁸⁹ Scaling to functional lung size may be ideal, but strategy not yet well defined | • Prevent tidal overdistension (volutrauma)
• Decrease cyclic and end-inspiratory stress (barotrauma)
• Minimize shear forces via smaller-volume inflation of aerated alveoli adjacent to flooded/atelectatic alveoli
• Prevent tidal recruitment of atelectatic alveoli (atelectrauma) |
| Limit inspiratory pressure | Limit airway plateau pressure,³ airway driving pressure,⁵,¹³¹ or transpulmonary driving pressure²⁵,⁴⁶,⁸⁹ Limiting transpulmonary driving pressure may be ideal, but strategy not yet well defined | Identical mechanisms as with limiting tidal volume |
| PEEP | PEEP-FiO₂ table,⁴³,⁴⁴ maximal static stress (Express),⁴⁵ esophageal pressure guided,⁴⁶ highest respiratory system compliance,⁷⁹ lower inflection point of pressure-volume curve.⁵ Mechanics-based approach to PEEP may be ideal, but optimal strategy not yet well defined | • Increase aerated functional baby lung size to prevent tidal overdistension (volutrauma)
• Maintain transpulmonary pressure higher than closing pressure to prevent tidal collapse during expiration (atelectrauma)
• Improve lung homogeneity to decrease shear strain
• Decrease pulmonary blood flow to attenuate capillary stress failure |
| Prone positioning | In severe ARDS, prone at least 16 h daily.⁵³ No clinical data to suggest efficacy as rescue therapy | • Improve lung homogeneity to decrease shear strain
• Increase aerated ARDS baby lung size (volutrauma) |
| Limit respiratory rate | Adjust to maintain minimum allowable pH or maximum allowable Paco₂.⁵ May require deep sedation, neuromuscular blockade, or extracorporeal CO₂ removal. Not proven in clinical trial vs high-rate strategy | • Limit stress frequency, reducing exposure to volutrauma, barotrauma, atelectrauma, and cyclic strain
• Unclear net effect of resultant hypercapnia |
| Limit spontaneous respiratory effort | In severe ARDS, increased sedation ± neuromuscular blockade⁷⁶ | • Limit inspiratory effort to prevent occult high tidal volumes from breath stacking
• Limit forced expiration to prevent cyclic derecruitment (atelectrauma) |

^a Preventing mechanical lung injury decreases biotrauma.
neuromuscular blockade to blunt patient inspiratory effort. Careful evaluation of the patient-specific drawbacks from such cointerventions must be addressed before broadly recommending low tidal volumes for all.130 This balance may be easier to strike for intraoperative low tidal volumes among high-risk patients because general anesthesia and neuromuscular blockade are routine in many major surgeries. Ideally, tidal volume limits might be individualized for each patient according to VILI risk and tradeoffs for cointerventions (eg, sedatives, paralytics) required to achieve them.

SUMMARY

Prevention of VILI can attenuate multiorgan failure and improve survival. Clinically significant VILI may occur from volutrauma, barotrauma, atelectrauma, biotrauma, and shear strain. Differences in regional mechanics play an increasingly recognized role in VILI pathogenesis and prevention. Less well understood are the contributions of alveolar stress frequency and pulmonary capillary stress failure, although both have compelling biological plausibility. Increased understanding of VILI has led to several preventive strategies targeting underlying mechanisms (Table 2). VILI occurs most readily in patients with concomitant physiologic insults (eg, sepsis, trauma, major surgery) that prime the immune system for a cascading response to mechanical lung injury. Because most patients without ARDS who are at risk of VILI do not develop clinically significant lung injury,121,122 prevention efforts should carry minimal side effects to justify broad application or be targeted to subsets of patients at increased risk.

REFERENCES

Ventilator-induced Lung Injury

