Title
A GAS MIXTURE FOR MULTI-WIRE CHAMBERS WITH HIGH PROPORTIONAL GAIN

Permalink
https://escholarship.org/uc/item/6hd3b4c4

Author
Fuzesy, Raymond Z.

Publication Date
1971-10-01
A GAS MIXTURE FOR MULTI-WIRE CHAMBERS
WITH HIGH PROPORTIONAL GAIN

Raymond Z. Fuzesy, John Jaros, Leon Kaufman, John Merriner,
Sherwood Parker, Victor Perez-Mendez, and Sidney Redner

October 1971
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A GAS MIXTURE FOR MULTI-WIRE CHAMBERS
WITH HIGH PROPORTIONAL GAIN

Raymond Z. Fuzesy*, John Jaros*, Leon Kaufman†, John Martiner*, Sherwood Parker‡, Victor Perez-Mendez†, Sidney Redner*

October, 1971

ABSTRACT

We describe a gas mixture for multi-wire proportional chambers which increases the maximum gain that can be reached with full proportional operation.

We describe in this note gas mixtures that produce gains five times larger than those obtained from Ar - CO₂ and Ar - CH₄ and which preserve proportionality of the output pulse height. This gain is achieved by the addition of a small amount of xenon.¹

Figure 1 shows the chamber gain as a function of applied voltage for several percentages, p (by volume) of xenon added to 7% CO₂ and (93 - p)% Ar. We made a rough check (to ±15%) of the proportionality, as the voltage was raised, of the signals from ⁵⁷Fe X-rays and from minimum-ionizing particles. Figure 2 shows, as a function of Xe concentration, the maximum gain that can be reached while still preserving proportionality. (At each point, the highest possible voltage consistent with proportionality was used.) Figure 3 shows the gain at constant voltage as a function of Xe concentration. Here, in addition, we show data using 7% CH₄ in place of 7% CO₂ (dotted curves). The peak is similar for both quenching gasses and is sufficiently broad so that no significant gain variations are introduced by normal variations in the Xe concentration. All these measurements were made using a 20 x 20 cm² chamber with an anode plane of 20µm diameter stainless-steel wires spaced 2 mm apart and with 4 mm anode-cathode plane gaps.

Some comparisons with the "magic mixture" ²,₃ might be useful. The main advantage of the magic mixture is its higher gain -- a saturated output (independent of the initial ionization) of over 6 x 10⁵ ion-pairs has been reported. The maximum proportional gain from the Ar - Xe mixtures of 10⁵ typically produces about 10⁴ ion-pairs from minimum-ionizing particles. The Ar - Xe mixtures provide proportional rather than saturated operation, and the absence of electro-

negative gasses permits operation with larger wire spacings. These two properties can be either advantageous or disadvantageous depending on the application. Proportional gain is often useful for medical applications ⁴ and in the measurement of ¹³¹I from ionization. If high spatial resolution is not essential, an increase in the anode wire-to-wire spacing permits the construction of large chambers that do not require support wires across the anode plane ⁵. In addition, Ar - Xe mixtures (particularly the 86% Ar - 7% Xe - 7% CO₂ combination) reach useful gains at far lower voltages, also reducing the need for support wires. Finally, the absence of complex organic gasses should prove useful in chambers that are to be exposed to large amounts of radiation.

ACKNOWLEDGEMENTS

We would like to take this opportunity to acknowledge the help given to us by Herbert Steiner and Tomo Katsura. Work done under the auspices of the U.S. Atomic Energy Commission.

*Lawrence Berkeley Laboratory, Berkeley
†University of California, San Francisco
‡University of Hawaii, Honolulu
REFERENCES


FIGURE CAPTIONS

1. Chamber gain as a function of applied voltage for Ar - Xe - 7% CO₂ mixtures. Percentages indicated refer to the Xe concentration.

2. Maximum gain that can be achieved without losing proportionality as a function of Xe concentration. The applied voltage increases with increasing Xe concentration.

3. Gain at constant voltage as a function of Xe concentration. The solid lines are for gas mixtures using 7% CO₂ for quenching and the dotted for 7% CH₄.
Figure 1
Figure 3
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.