Title
Impact of Elevated Nitrate on Sulfate-Reducing Bacteria: Implications of inhibitory mechanisms in addition to osmotic stress

Permalink
https://escholarship.org/uc/item/6hd5s9j7

Author
He, Qiang

Publication Date
2014-04-21
Impact of Elevated Nitrate on Sulfate-Reducing Bacteria: Implications of inhibitory mechanisms in addition to osmotic stress

Qiang He\textsuperscript{1,2}, Zhili He\textsuperscript{3,13}, Dominique C. Joyner\textsuperscript{4,13}, Marcin Joachimiak\textsuperscript{5,13}, Morgan N. Price\textsuperscript{5,13}, Zamin K. Yang\textsuperscript{6,13}, Huei-Che Bill Yen\textsuperscript{7,13}, Christopher L. Hemme\textsuperscript{3,13}, Romy Chakraborty\textsuperscript{4,13}, Wenqiong Chen\textsuperscript{6,13}, Matthew M. Fields\textsuperscript{9,13}, David A. Stahl\textsuperscript{12,13}, Jay D. Keasling\textsuperscript{5,11,13}, Martin Keller\textsuperscript{6,13}, Adam P. Arkin\textsuperscript{5,10,13}, Terry C. Hazen\textsuperscript{4,13}, Judy D. Wall\textsuperscript{7,13}, and Jizhong Zhou\textsuperscript{3,13*}

\textsuperscript{1}Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, Tennessee 37966; \textsuperscript{2}Center for Environmental Biotechnology, the University of Tennessee, Knoxville, Tennessee 37966; \textsuperscript{3}Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
\textsuperscript{4}Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; \textsuperscript{5}Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; \textsuperscript{6}Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; \textsuperscript{7}Departments of Biochemistry and Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, Missouri 65211; \textsuperscript{8}Diversa Corp, San Diego, California 92121; \textsuperscript{9}Department of Microbiology, Montana State University, Bozeman, Montana 59171; \textsuperscript{10}Department of Bioengineering, University of California, Berkeley, California 94720; \textsuperscript{11}Department of Chemical Engineering, University of California, Berkeley, California 94720; \textsuperscript{12}Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195; \textsuperscript{13}Virtual Institute for Microbial Stress and Survival

Acknowledgements
This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy

Sulfate-reducing bacteria are studied for their potential in heavy metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. While the inhibition has been suggested to result from competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using \textit{Desulfovibrio vulgaris} as a model sulfate-reducing bacterium, it was observed that significant growth inhibition was effected by 70 mM NaNO\textsubscript{3} but not 70 mM NaCl, indicating the presence of inhibitory mechanisms in addition to osmotic stress. While the differential expression of a small number of genes in response to nitrate suggested the potential involvement of osmotic and nitrite stress responses, the roles of these two stress responses appear minor given the lack of similarity in the overall transcriptional profiles between nitrate, nitrite, and NaCl stress responses. The presence of unique stress response pathways in nitrate stress is further suggested by the lack of extensive similarities in the response profiles between nitrate stress and various other stress conditions. In addition, the importance of genes with functions in the metabolism of \textit{S}-adenosylmethionine in the shift of energy flow was implicated in nitrate stress response.