Title
Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control

Permalink
https://escholarship.org/uc/item/6hd7n22g

Journal
Journal of Materials Chemistry C, 3(11)

ISSN
2050-7534

Authors
Moulé, AJ
Jung, MC
Rochester, CW
et al.

Publication Date
2015

DOI
10.1039/c4tc02251c

Peer reviewed
Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control†

Adam J. Moulé,*a Min-Cherl Jung,b Chris W. Rochester,a Wolfgang Tress,c Daniela LaGrange,a Ian E. Jacobs,a Jun Li,a Scott A. Mauger,a M. Diego Rail,d Oliver Lin,a David J. Blisky,a Yabing Qi,b Pieter Stroeve,a Louise A. Berbend and Moritz Riede‡e

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulphonate) (PEDOT:PSS) is the most used organic hole injecting or hole transporting material. The hole carrying matrix PEDOT is highly doped by the acidic dopant PSS. When coated onto a substrate, PEDOT:PSS makes a highly uniform conductive layer and a thin (<5 nm) overlayer of PSS covers the air interface. Semiconducting polymer layers for organic photovoltaics or light emitting diodes are coated on top. In this article, we demonstrate that the PSS layer will mix with almost all conjugated polymers upon thermal annealing. Depending on the Fermi energy of the polymer an electrochemical reaction can take place, p-type doping the polymer at the interface between the PEDOT:PSS and the semiconducting polymer. We use chemical and spectroscopic analysis to characterize the polymer/PSS interlayer. We show that the stable and insoluble interlayer has a great effect on the charge injection and extraction from the interface. Finally we demonstrate and electronically model organic photovoltaic devices that are fabricated using these mixed interlayers.

1 Introduction

Over the last two decades, organic electronic devices such as organic photovoltaic (OPV) devices and organic light emitting diodes (OLEDs) have evolved from laboratory curiosities to commercially viable devices. These devices consist of an organic semiconducting (OSC) layer sandwiched between two electrodes that are designed to create a directional current. For OPVs, one electrode is designed to selectively extract holes that are carried by the highest occupied molecular orbital (HOMO) of the OSC while the other electrode selectively extracts electrons from the lowest unoccupied molecular orbital (LUMO). These selective electrodes determine the direction of current in the device. A device with non-selective electrodes (low shunt resistance) has a high “dark” current and will perform inefficiently.1,2 For OLED devices, one electrode selectively injects holes to the HOMO while the other electrode selectively injects electrons to the LUMO. Again in this case, the location (front or back) of the electrodes determines the direction of current flow and non-selective electrodes greatly limit the performance of the OLED device. The most common strategy to induce hole or electron selectivity in an electrode is to choose an electrode material with a Fermi energy that matches the HOMO or LUMO levels of the OSC, respectively.1 In this case, no activation energy is required to inject or extract the charge from the electrode to the semiconductor. This is called an Ohmic contact because the resistance only depends on the material properties.3

To illustrate this idea, Fig. 1 refers to a simplified generic organic semiconductor under open circuit conditions with electrode materials designed for hole transport (left) and electron transport (right). For the hole contact electrode, an Ohmic contact occurs when the quasi-Fermi level for holes in the semiconductor has the same potential as the work function (φ) of the electrode (metal or doped semiconductor). This condition is considered ideal because no barrier exists for charge transport between the electrode and semiconductor HOMO. At the same time the LUMO states are depleted near the electrode (the quasi-Fermi level for electrons does not exist) so charge can only flow through the HOMO states.3
Fig. 1 Cartoon showing a generic organic semiconductor under illumination with quasi Fermi levels for holes and electrons marked as a dotted line. An Ohmic contact is achieved when the \(\phi \) of the electrode matches the quasi Fermi level of the semiconductor. An extraction barrier forms as the electrode \(\phi \) is raised/lowered into the LUMO/HOMO bands. The applied electric field across the layer is reduced as the \(\phi \) of the electrode moves into the band gap of the semiconductor.

When the work function of the hole electrode (\(\phi_{H} \)) is larger than the quasi-Fermi level of the semiconductor HOMO (\(E_{F} (\text{HOMO}) \)), the difference in potential \([\Delta \phi = \phi_{H} - E_{F} (\text{HOMO})]\) is negative (\(\phi \) is reported as a negative number) and a barrier exists for the extraction of holes from the semiconductor HOMO into the electrode. This extraction barrier can potentially be lowered by material changes such as doping or chemical reactions along the interface, band bending, or formation of a vacuum level shift. Alternatively, \(\Delta \phi \) could be positive, where \(\phi_{H} \) lies within the band gap of the semiconductor. In this case, charges can exchange across the interface to compensate the potential difference, which leads to a loss in charge selectivity at the interface, increased dark current, and loss of electric field potential across the device layer. Loss of charge selectivity specifically means that charge can be injected or extracted from both the HOMO and LUMO bands of the semiconductor because when \(\Delta \phi \) is positive, a quasi-Fermi level exists for both HOMO and LUMO states near the interface. Alternatively stated, the depletion zone is reduced so dark charge can flow.

At the electron extraction/injection electrode, an Ohmic contact occurs when the potential difference between the quasi-Fermi level of the LUMO (\(E_{F} (\text{LUMO}) \)) equals to the work function of the electron-collecting electrode (\(\phi_{N} \)), i.e., \([\Delta \phi_{N} = \phi_{N} - E_{F} (\text{LUMO}) = 0]\). At this electrode, a negative \(\Delta \phi_{N} \) corresponds to the case of a loss of charge specificity and electric field loss across the device layer, whereas a positive \(\Delta \phi_{N} \) represents an injection or extraction barrier for electrons to and from the device layer. As for the hole electrode the injection/extraction barrier can potentially be lowered by material changes that result in a vacuum level shift, band bending, doping, or chemical reaction at the interface (i.e., \(\Delta \phi_{N} \) is lowered).

Numerous organic and inorganic solution and vacuum processed materials have been developed for the specific purpose of affecting the charge transport through interfaces. The effects of changing a metal electrode or semiconductor oxides to affect hole and electron injection/extraction are generally understood. Vacuum-evaporated, doped OSCs have also been well studied. Fewer systematic studies of solution-processed, doped organic electrodes have been published because organic materials tend to react or mix, which results in material-specific changes at the interface. High levels of layer control using chemically tailored cross-linkable OSC materials using solution methods have been demonstrated, but these materials are not widely available and are not doped.

Tress et al. published a recent experimental/modeling study aimed at determining the electrical consequences of a \(\Delta \phi \) across doped/undoped organic interfaces in a bi-layer OPV device. For this study, the layers were deposited using evaporation of small molecules and co-evaporation of p- and n-type dopants, which made control of the \(\Delta \phi \) across the interface relatively easy. The result of the study was to show that a \(\Delta \phi \) across the interface caused a degradation of the device efficiency and formation of an “S-shaped” current density–voltage (\(J-V \)) curve. The \(\Delta \phi \) is compensated by charge transfer across the interface, creating a second diode in the opposite direction to the intended device. When a forward bias is applied sufficient to overcome the \(\Delta \phi \), normal diode behavior resumes.

As stated above, the model makes perfect sense. However, compared to a different and widely used material combination, a solution coated bulk heterojunction (BHJ) OPV layer coated onto poly(3,4-ethylenedioxythiophene)-poly(styrenesulphonate) (PEDOT:PSS), the model appears to break down. OPV devices with high efficiency and no “S-shaped” \(J-V \) curve are fabricated with a variety of polymers for which the \(\Delta \phi \) is substantial (<0.5 V). The purpose of this article is to explain the apparent breakdown of a very sensible model and to examine why this effect is masked in OPV devices containing PEDOT:PSS.

PEDOT:PSS has been the most widely used doped polymer material since its introduction in the late 90s. Its popularity comes from a combination of favorable characteristics including transparency in the visible, high conductivity, stable work function, easy processibility, solubility in H2O, and long shelf-life. PEDOT:PSS has been widely reported to be a hole selective charge transporter. The components for the studied formulation are reported to be mixed at a ratio of 1 : 6 PEDOT:PSS, with PSS as the dopant and PEDOT as the doped charge carrier. Neutron Reflectometry (NR), X-ray photo-electron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) of PEDOT:PSS surfaces reveal that the film surface is predominately covered with PSS and with the sulphate group oriented toward the surface. Ellipsometric and conductivity measurements show that PEDOT:PSS has an anisotropic structure with much higher conductivity in the plane of the substrate. It was later found that the increased in-plane conductivity results from a particular film morphology of the PEDOT:PSS, which forms by collapse of micelles during drying. These studies also confirmed a PSS skin on the PEDOT:PSS surface.

The Moulé group has recently studied the interaction of PEDOT:PSS with neighboring layers in an attempt to explain the increased \(V_{oc} \) observed in OPV devices with PEDOT:PSS compared to devices fabricated with other electrode materials. We found that the surface of PEDOT:PSS was much richer in PSS than the bulk of the film (a result reported originally by Xing et al.). We also made two new significant observations. The first was that the PSS rich surface layer would mix with poly-3-hexylthiophene (P3HT) upon heating to above 150 °C. Secondly, the two materials react to p-type doped P3HT in the mixed layer with the mechanism:
$2\text{HPSS} + 2\text{P3HT} \rightarrow 2\text{P3HT}^+\text{PSS}^- + \text{H}_2$

In a follow-up article, we showed that a bi-layer of P3HT with PEDOT:PSS had different conductive properties depending on the order of deposition because the PSS-rich layer is only in contact with the P3HT if the P3HT is deposited on top of the PEDOT:PSS. However if the PEDOT:PSS is coated onto the P3HT, even with heating to 200 °C, there is no mixing or reaction between the materials because P3HT does not react with PEDOT:PSS, only with pure HPSS. We hypothesize that the doping reaction depends on the choice of OSC polymer and in particular on the polymer ionization energy. The following article demonstrates a generalized mechanism for the interaction of PEDOT:PSS with various OSCs used in electronic applications. We discuss the heat induced mixing of various polymers with PEDOT:PSS at the PSS rich interface to form mixed interlayers. We also show significant electronic, chemical, and structural characterization of the mixed interlayer. Finally we demonstrate the preparation of OPV devices using interlayers of the other semiconducting polymers and show that the current density-voltage ($J-V$) behavior is predictable based on the Tress model for charge injection and extraction.

2 Experimental

Polymer interlayers were deposited between the PEDOT:PSS layer and active OPV layer using the following steps (Fig. 2). First, the PEDOT:PSS layer itself is spin coated onto a cleaned indium tin oxide (ITO) substrate at 2500 rpm yielding a layer with ~40 nm thickness. In Fig. 2 the PEDOT is marked as blue while the PSS, which segregates to the surface, is marked in dark blue. Next the interlayer polymer (orange in Fig. 2) is spin coated onto the PEDOT:PSS substrate. The thickness of this interlayer polymer does not matter, so typically only 30–40 nm of polymer is coated. The third step is to heat the layer stack to induce mixing and/or reaction between the PSS and the interlayer polymer with the mixed polymer marked in brown. Fourth, the excess interlayer polymer is removed using a good solvent for the polymer such as chlorobenzene, chloroform or toluene by spin coating several times onto the completed interlayer. Finally, a BHJ polymer-fullerene mixture is coated onto the interlayer.

X-ray reflectometry (XRR) samples were coated onto Si/SiO$_2$ substrates and heated to 110 °C to remove excess water. The heated sample was further heated to 150 °C. Samples were stored under nitrogen to prevent rehydration of the film. XRR was performed at beamline 2-1 at the Stanford Synchrotron Radiation Lightsource (SSRL).

The H$_2$ capture test was performed with mixtures of PSS and P3HT, APFO-3 and F8BT. In each case the polymer was mechanically mixed with PSS and placed into a sealed glass vial. The sample was heated to 180 °C for 30 minutes and then the seal was broken with a syringe. Several µl of gas was extracted from the vial and injected into a gas chromatograph thermal conductivity detector (GC-TCD) spectrometer. The O$_2$ peak was used to reference the extraction time for H$_2$ gas, that may have been off gassed during heating.

Contact angle data were taken on substrates that were prepared as described above. The initial contact angle of a water droplet was measured using a goniometer and microscope camera. These initial data were taken within 30–50 s of water contact. For longer times the PEDOT:PSS layer can swell considerably and the contact angle will be reduced and the interlayer no longer determines the contact angle.

UV/vis and fluorescence spectra were taken on a Perkin Elmer 770C UV/vis/NIR and Varian Cary Fluorescence spectrometer, respectively. The solution state spectra were taken at low (5 mg ml$^{-1}$) concentrations. Film spectra were taken on films cast on glass with a thickness of ~80 nm. P3HT and poly [[9,9-di-n-octylfluorenyl-2,7-diyl]-alt-[benzo[2,1,3]thiadiazol-4,8-diyl]] (F8BT) were purchased from Sigma. Poly[[9,9-diocytolfluorenyl-2,7-diyl]-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (APFO-3) was generously donated by the groups of U. Scherf at The University of Wuppertal, Germany and O. Inganäs at Linköping University, Sweden.
Cyclic voltammograms (CVs) were recorded under a nitrogen (Praxair, 99.998%) atmosphere using a CH Instruments Electrochemical Analyzer Model 620D or 1100, a glassy carbon working electrode (CH Instruments, nominal surface area of 0.0707 cm²), a platinum wire auxiliary electrode, and a Ag/AgNO₃ (0.001 M) non-aqueous reference electrode with a Vycor tip. Reported potentials were all referenced to the SCE couple, and were determined using ferrocene as an internal standard where E₁/₂ ferrocene/ferroacenium is +0.40 V vs. SCE in acetonitrile. Non-aqueous electrolyte solutions were stored over 3 Å molecular sieves which had been activated by heating under vacuum at 200 °C for at least 72 hours. All other reagents were purchased from commercial vendors and used as received.

OPV devices were prepared using BHJ solution of 3 : 2 P3HT : [6,6]-phenyl-C₆1-butryc acid methyl ester (PCBM) at a concentration of 20 mg ml⁻¹ in a solvent mixture of 97 v% chlorobenzene (CLB) and 3 v% nitrobenzene (NB). This solvent mixture was chosen because it creates a high FF and PCE morphology for P3HT/PCBM devices with no annealing needed. The spinning speed was adjusted to coat BHJ layers of ~80 nm. The coating speed had to be adjusted because the surface energy of the substrate layer changes due to the presence of an interlayer. Variation of the current density at negative bias in devices is due to small variations in BHJ layer thickness. A Ca/Ag electrode with thicknesses 5 nm/150 nm was evaporated on top of the BHJ layer through a shadow mask. Devices were measured at ~0.4 suns power using a solar simulator from Radiant Source Technology and a Keithley 2420 source measurement unit.

XPS and UPS samples were prepared at UC Davis as described in Section 2 and transported to Okinawa Institute of Technology and Science in a sealed container back-filled with dry N₂ gas. For the measurements of ultra-violet and X-ray photoelectron spectroscopy (UPS and XPS), we used the He I line (21.2 eV) from a discharge lamp, unmonochromated MgKα (1253.6 eV) and EA125 energy analyzer with a single channeltron that were made by Focus and Omicron Nanotechnology. The energy resolution is 0.15 eV for UPS and 0.7 eV for XPS. The Fermi edge of gold deposited on a high n-doped Si substrate (0.011–0.015 Ω cm) was used to determine the Fermi energy position and the instrumental resolution. The chemical states of polymer samples were obtained with C 1s, O 1s, N 1s and S 2p core-level spectra. The binding energies were calibrated with reference to the Au 4f⁷/₂ level (84.0 eV). The base, UPS and XPS working pressures of the analysis chamber were 1.0 × 10⁻¹⁰, 2.0 × 10⁻⁸ and 5.0 × 10⁻¹⁰ Torr, respectively.

3 Results and discussion

3.1 Vertical segregation of PEDOT:PSS

We previously performed X-ray reflectometry (XRR) of PEDOT:PSS. We now compare with PEDOT:PSS after annealing at 150 °C and in both cases found that the thickness and density of the PSS at the surface could be calculated. Fig. 3 shows the PSS weight fraction vs. depth determined using XRR and with x = 0 defined as the interface between the PEDOT:PSS layer and the Si/SiO₂ substrate. With heating, the film shrinks by ~5 Å due to the loss of PSS content, as seen in the decrease in the weight fraction for the bulk. At the air interface a 30 Å layer of pure PSS forms upon coating. This PSS surface layer becomes slightly thicker and more pure with heating in air.

3.2 Determination of mixing between polymers and PSS

3.2.1 Contact angle measurements. An important question in this work is to determine whether, or at which temperature, common conjugated polymers used for OPV BHJ layers or OLED emission layers will mix with or react with the p-type dopant PSS. As shown in Fig. 3 the substrate is covered with a thin skin of PSS, which is an acid, and therefore is highly hydrophilic. Fig. 4 shows the contact angle for a water droplet vs. heat treatment temperature for interlayer samples of P3HT, APFO-3, and F8BT that were prepared as shown in Fig. 2. Contact angles and surface coverage for other electronic polymers are shown in the ESI, Fig. SA1. For PEDOT:PSS with no interlayer, it can be
where q are the measured contact angles of water on the pure interlayer polymer and PEDOT:PSS respectively (assuming that $q_{\text{interlayer}}$ is the same at all temperatures). At temperatures between 120 °C and 210 °C all of the polymers tested except PCPDTBT (see ESI Fig. S1†) mix/react with the PEDOT:PSS surface and show a surface coverage of over 80%. We assume that PCPDTBT does not mix with PSS because it is composed of two different bulky multi-cyclic aromatic groups and that it would mix with PSS at higher temperatures. However since PEDOT:PSS breaks down at higher temperatures, we did not extend our study beyond 210 °C. We also tested whether the fullerene acceptor PCBM mixes/reacts with the PEDOT:PSS surface. Contact angle results (ESI Fig. S1†) show that no PCBM can be detected at the surface. However, Lu et al. reported PCBM intrusion into the PEDOT:PSS measured using another technique. Contact angle measurements are a simple and accurate method to determine surface coverage of hydrophobic polymers on a hydrophilic substrate. These results show that we can use the procedure shown in Fig. 2 to prepare a complete layer of most conjugated polymers onto PEDOT:PSS using only annealing and dissolution steps.

3.2.2 X-ray photoelectron spectroscopy. In order to learn more about the composition of the interlayer, we used X-ray photoelectron spectroscopy (XPS) to study the exposed surface of washed interlayers, prepared as shown in Fig. 2 with a 180 °C annealing temperature. Fig. 5 shows XPS spectra corresponding to the S 2p spectral region for several polymers. The black lines correspond to neat polymers of P3HT (left), APFO-3 (middle) and F8BT (right) coated onto ITO. Also displayed are samples of PEDOT:PSS on ITO with interlayers of each polymer coated on top P3HT (red-dashed), APFO-3 (green-dashed) and F8BT (blue-dashed). The contact angle measurements show us that some polymer material remains on the PEDOT:PSS surface. Here we use XPS to determine the composition of the interlayer. XPS is a powerful tool to understand chemical states of the polymer thin-film to depths of 4–6 nm.

In order to analyze the XPS spectra in more detail, we fitted the S 2p core-level spectrum using Doniach–Sunjic curves convoluted with Gaussian distribution of 0.5 eV full width at half maximum. The background due to inelastic scattering was subtracted by the Shirley (or integral) method. The fitting results are shown in ESI Fig. S2. Analyzing the P3HT sample, a group of two peaks with different intensities can be identified with the stronger peak at a binding energy of 163.3 eV. These two peaks can be assigned to the spin–orbit splitting $2p_{3/2}$ and $2p_{1/2}$ of S^{2-}, which originates from P3HT. For fitting the S 2p the intensity ratio of spin–orbit splitting used was 1 : 2 for the $p_{1/2}$: $p_{3/2}$, For the P3HT/PEDOT:PSS/ITO sample, two groups of peaks in the S 2p region can be identified. The first group contains two peaks with the same binding energies as those in the P3HT/ITO sample. These two peaks can be assigned to the spin–orbit split $2p_{3/2}$ and $2p_{1/2}$ of S^{2-}, which originates from P3HT and PEDOT. The second group also contains two peaks with different intensities. The stronger peak is located at a binding energy of 167.2 eV. These two peaks can be assigned to the spin–orbit split $2p_{3/2}$ and $2p_{1/2}$ of S^{2-}, which originates from PSS. Comparing the two spectra, the black line is P3HT only and the red line is mixed P3HT:PSS (see fit in ESI Fig. S2†). The spectra can be interpreted to show that P3HT and PSS are detected in the 4 nm closest to the surface with a ratio of 6.5 : 1.

Examining the other S 2p spectra, for the APFO-3/ITO sample a group of two peaks with different intensities can be identified with the stronger peak at a binding energy of 163.6 eV. These
two peaks can be assigned to $2p_{3/2}$ and $2p_{1/2}$ of S^{II}, which originates from APFO-3. For the F8BT/ITO sample, a group of two peaks with different intensities can be identified with the stronger peak at a binding energy of 164.8 eV. These two peaks can be assigned to $2p_{3/2}$ and $2p_{1/2}$ of S^{II}, which originates from F8BT. The intensity ratio of the splitting p is 2 : 1 in $2p_{3/2}$ and $2p_{1/2}$ (see ESI Fig. S2†). As above, the strong peak located at 167.2 eV is associated with the sulfur on PSS. For both F8BT and APFO-3, the peak intensities of the third group are significantly stronger than those of the second group, suggesting that the surface is PSS rich. The F8BT data were fitted to find a 3 : 2 ratio of PEDOT:PSS to F8BT in the 4 nm closest to the sample surface after heating at 180 °C with washing with CB. The APFO-3 data are noisy and so could not be fitted, but the ratio is qualitatively similar to that of F8BT/PSS. By comparison, the P3HT XPS sample had a larger amount of P3HT remaining after washing, indicating a mixed layer that is richer in P3HT. This result is expected based on the contact angle results presented in Fig. 4. P3HT mixes with PSS at a lower temperature than either F8BT or APFO-3.

XPS spectra were also taken in the C 1s and O 1s energy loss ranges (ESI Fig. S3†). The C 1s spectra show very little change in each case, indicating that the sample surface remains carbon rich (not a surprise). The O 1s spectra are more diagnostic. Since P3HT, APFO-3, and F8BT do not have any oxygen in their structure, detection of oxygen has to come from either the C–O–C bonds on the PEDOT or the SO$_3^-$ groups from the PSS. The O 1s spectra are all characteristic of the signal from the SO$_3^-$ groups on the PSS of PEDOT:PSS. Again the XPS data confirm that the top 4 nm of the interlayer is composed of a mixture of the polymer and PSS.40

3.3 Reaction mechanism

In a previous publication, we studied the annealing dependent interaction between PEDOT:PSS and P3HT.44 A series of tests were used to show that P3HT reacts with PSS upon heating to above 150 °C to form p-type doped P3HT and the reaction product H$_2$.44 We hypothesized that P3HT is doped by PSS due to the low ionization energy of P3HT (4.7 eV) compared to the work function (Φ) of PEDOT:PSS (5.1 eV). We also hypothesized that the reaction is limited to those P3HT strands that mix intimately with PSS, meaning that the reaction can only occur at the interface between the materials. In the absence of mixing this reaction is not possible. We now note that another hypothesized reaction with PSS has been published.44 The Meerholz group showed that PSS can catalyze a ring-opening reaction on oxetane cross-linking groups. In this case, excess protons from the PSS are carried through the organic layer with HSO$_3^-$ or SO$_4^{2-}$ providing charge balance. We do not believe that proton transfer is active in the reaction reported here because the thickness of the mixed interlayer does not increase with increasing heat treatment time as is the case for the reaction reported by Meerholz.

APFO-3 and F8BT both have much higher ionization energies than P3HT. We tested whether the heated mixture of PSS with each of these polymers would produce H$_2$ and found that we were unable to detect an H$_2$ product. This rather easy and crude test indicates that APFO-3 and F8BT are not oxidized by PSS. However, since the CA results showed that these polymers will mix with PSS upon heating and XPS shows that some polymer remains on the surface, it is also possible that the H$_2$ is below the detection limit of the GC-TCD. For this reason we conduct analysis using CV, optical measurements, and UPS. Because this research community is composed of chemists, physicists, and engineers with differing tools, CV and UPS data were both taken and compared. UPS provides more accurate data but is more costly and requires much more expertise. The CV data give a reasonable estimate of the HOMO and LUMO onset energies. Comparison of the data gives an idea of the likely error bars on the CV data.

3.4 Detecting a reaction at an internal interface

3.4.1 Cyclic voltammetry

CV measurements were made using neat polymers in a 1 : 1 mixture of 1,2-dichlorobenzene and methylene chloride with ferrocene as the reference. The first oxidation and first reduction potentials of the polymer (E_{ox} and E_{red}) are listed in Table 1. The Φ of PEDOT:PSS has been measured using the UPS or Kelvin force probe set the Fermi energy of PEDOT:PSS to 5.1–5.3 V below vacuum.39,43,46 This reference is generally agreed upon the Fermi energy of PEDOT:PSS.
Table 1: Comparison of measurements of energy levels in the polymers P3HT, APFO-3, and F8BT using CV, optical measurements (UV/vis and fluorescence) and ultraviolet photoelectron spectroscopy (UPS). All energy values are scaled to eVs and to the work function (Φ) of PEDOT:PSS with values displayed as the total energy below the vacuum level. Also displayed is whether H₂ is emitted from the reaction of PSS with the polymers at 180 °C. * Indicates possible measurement artifact.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>P3HT</th>
<th>APFO-3</th>
<th>F8BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{ox} CV (V)</td>
<td>0.12</td>
<td>0.87</td>
<td>1.1</td>
</tr>
<tr>
<td>E_{red} CV (V)</td>
<td>-1.62</td>
<td>-1.52</td>
<td>-1.62</td>
</tr>
<tr>
<td>E_{HOMO} CV (eV)</td>
<td>4.7</td>
<td>5.45</td>
<td>5.68</td>
</tr>
<tr>
<td>E_{LUMO} CV (eV)</td>
<td>2.8</td>
<td>3.55</td>
<td>3.38</td>
</tr>
<tr>
<td>E_{gap} CV (eV)</td>
<td>1.74</td>
<td>2.39</td>
<td>2.72</td>
</tr>
<tr>
<td>E_{a} CV (eV)</td>
<td>0.4</td>
<td>-0.35</td>
<td>-0.58</td>
</tr>
<tr>
<td>E_{gap} (film – UV/vis) (eV)</td>
<td>1.92</td>
<td>1.83</td>
<td>2.38</td>
</tr>
<tr>
<td>E_{gap} (liq – UV/vis) (eV)</td>
<td>2.25</td>
<td>1.94</td>
<td>2.47</td>
</tr>
<tr>
<td>E_{CV} (liq – fluor) (eV)</td>
<td>1.45</td>
<td>1.45</td>
<td>1.75</td>
</tr>
<tr>
<td>E_{CV} (liq – fluoro) (eV)</td>
<td>1.49</td>
<td>1.45</td>
<td>1.81</td>
</tr>
<tr>
<td>IE UPS (eV)</td>
<td>4.6</td>
<td>5.3</td>
<td>6.4</td>
</tr>
<tr>
<td>EA UPS (eV)</td>
<td>2.1</td>
<td>3.5</td>
<td>3.8</td>
</tr>
<tr>
<td>φ_{ITO} UPS (eV)</td>
<td>3.5</td>
<td>2.9*</td>
<td>3.8</td>
</tr>
<tr>
<td>φ_{PEDOT:PSS} UPS (eV)</td>
<td>4.2</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>ΔE (eV)</td>
<td>-0.7</td>
<td>±0.1*</td>
<td>±0.1</td>
</tr>
<tr>
<td>H₂ detected</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P-type doping</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

PEDOT:PSS. In addition, the oxidation potential E_{ox} of a PEDOT:PSS film was measured using CV.⁴⁷ We assume that E_{ox} of PEDOT:PSS measured using CV is equivalent to Φ measured using UPS and equate a linear scale between CV and UPS with PEDOT:PSS as the reference point. All other electrochemical states measured using CV from other polymers are referenced to this.⁴⁸ In the fifth row, the polymer band gap (E_{gap} (CV)) determined from taking the difference between E_{ox} and E_{red} is listed. Note that the reduction potential cannot be measured reversibly using CV, so the E_{red} and E_{gap} (CV) will both be underestimated by this measurement.⁴⁸

A CV measurement does not measure the Fermi energy of the polymer but does allow us to compare several polymers under identical electrochemical conditions. Assuming that no charge movement occurs (the non-contact case) we can estimate the overpotential required to inject or extract charge from the PEDOT:PSS electrode (E_a). This is the equivalent of assuming that the PEDOT:PSS oxidation potential sets the work function for the substrate and we are estimating the extraction potential from the HOMO level of the polymer. In this case, P3HT has a 0.4 V extraction barrier for a hole from PEDOT:PSS (equivalent to 0.4 V injection potential for an electron). By comparison, APFO-3 and F8BT have 0.35 V and 0.58 V, respectively, overpotential to extract holes from PEDOT:PSS. This simple analysis shows that from CV measurements, an extraction barrier for holes is expected for P3HT on PEDOT:PSS while hole extraction is favored for APFO-3 and F8BT. Many assumptions were made to obtain these estimates. We will next use UPS to measure the Fermi energy directly and compare to the CV estimates here.

3.4.2 Optical measurements

For comparison we recorded the absorption spectra of each polymer in both a fully dissolved sample, which compares well to the CV measurement, and a film sample, which compares well to a UPS sample. These spectra are shown in ESI Fig. S3† and have been published in multiple other articles. In each case the optical band gap E_{gap} for both samples is listed in Table 1. In general, E_{gap} is lower for film samples because the exciton state energy is lowered by delocalization across multiple polymer chains in a solid sample.²²

3.4.3 Ultraviolet photoelectron spectroscopy

We now analyze UPS spectra of PEDOT:PSS/polymer bi-layers that were prepared by annealing at a PEDOT:PSS/polymer bi-layer at 180 °C. This sample shows the effect of bi-layer formation on the top surface of the polymer layer. Fig. 6A shows UPS He I spectra of ITO (black) and PEDOT:PSS/ITO (gray-dashed) samples prepared with identical heating steps to the other samples. The work function is determined by measuring the secondary electron cutoff shown on the left side of the figure. Work function values are determined to be 3.6 eV and 4.6 eV for ITO and PEDOT:PSS/ITO, respectively. Both values are lower than those reported elsewhere,⁴⁴ which is possibly caused by ambient exposure.³³

Fig. 6B shows UPS He I spectra of P3HT/ITO (black) and P3HT/PEDOT:PSS/ITO (red-dashed) samples. The φ for the P3HT/ITO sample is 3.5 eV. The leading edge of the HOMO features is 1.1 eV below the Fermi level. Thus, the ionization energy is 4.6 eV, which is consistent with the literature value and with both CV measurements above.⁴⁹,⁵⁻ Based on the HOMO-LUMO optical gap value of 1.9 eV for P3HT, the Fermi level is just slightly below the middle of the HOMO-LUMO gap. The roughly mid-gap position of the Fermi level is in good agreement with the fact that the P3HT layer in this sample is mainly intrinsic. In addition, the work function of P3HT/ITO is only 0.1 eV lower than that of the bare ITO substrate, which indicates that only weak charge transfer occurs at the P3HT/ITO interface. On the other hand, when an interface layer of P3HT/PEDOT:PSS is formed on ITO, the whole spectrum shifts towards lower binding energies. The Fermi levels shift towards the HOMO edge by approximately 0.7 eV,⁵⁻ which is schematically illustrated in Fig. 7. Taking into account such a shift, the difference between the Fermi level and HOMO level is 0.4 eV, exactly the same energy as determined from CV as the overpotential required to inject holes into PEDOT:PSS. The significant shift of the Fermi level towards a position just 0.4 eV higher than the HOMO level is likely caused by the p-type doping of P3HT by PEDOT:PSS. This p-type doping reaction removes the overpotential required to inject holes from P3HT to PEDOT:PSS. Such a strong p-type doping behavior also implies that the electron affinity (EA) of PEDOT:PSS is larger than or close to 4.6 eV.

Fig. 6C shows UPS He I spectra of APFO-3/ITO (black) and APFO-3/PEDOT:PSS/ITO (green-dashed) samples. The work function is 2.9 eV for the APFO-3/ITO sample. The leading edge of the HOMO features is 2.44 eV below the Fermi level and so 5.34 eV which is a smaller ionization energy than other published data. The previously published IE was 5.8 eV.⁵⁶ These measurements indicate that the Fermi energy is within or very close to the LUMO band. This result is inconsistent with a typical understanding of how organic semiconductors operate and is thus most likely a measurement artifact. Perhaps the
sample was exposed to oxygen before measurement. The ϕ_N of APFO-3/ITO is significantly larger (by 0.7 eV) than that of the bare ITO substrate, which indicates substantial electron transfer from APFO-3 to ITO at the APFO-3/ITO interface. When a mixed interface layer of APFO-3/PEDOT:PSS is formed on ITO, the Fermi level shifts strongly away from the LUMO band and is now roughly evenly between the HOMO and LUMO levels, which is schematically illustrated in Fig. 7. This result is consistent with the previous report of ambipolar transport in APFO-3 and is also consistent with previously published OPV results.57,58 We conclude that the APFO-3/ITO sample is an artifact. The Fermi energy in the APFO/PEDOT:PSS/ITO sample is 1.1 eV higher than the HOMO level, which suggests the absence of the p-doping effect, in contrast to what was found with the P3HT/PEDOT:PSS sample.

Fig. 6C shows UPS He I spectra of F8BT/ITO (black) and F8BT/PEDOT:PSS/ITO (blue-dashed) samples. The work function is 4.6 eV for the F8BT/ITO sample. The leading edge of the HOMO features is 1.8 eV below the Fermi level. Thus, the ionization energy is 6.4 eV, which is 0.5 eV larger than the reported literature value.39 Based on the HOMO–LUMO gap value of 2.3 eV for F8BT, the Fermi level is roughly at the middle position of the HOMO–LUMO gap but closer to the LUMO. The ϕ_N of F8BT/ITO is significantly larger (by 1.0 eV) than that of the bare ITO substrate, which indicates substantial electron transfer from ITO to F8BT at the F8BT/ITO interface. Such charge transfer is likely the cause for the shifting of the Fermi level in F8BT closer to the LUMO. When a mixed interface layer of F8BT/PEDOT:PSS is formed on ITO, the Fermi level shifts slightly away from the HOMO edge by approximately 0.2 eV, which is schematically illustrated in Fig. 7. The Fermi level in the F8BT/PEDOT:PSS/ITO is 2.0 eV higher than the HOMO, which suggests the absence of the p-doping effect. This observation is in sharp contrast to what was found on the P3HT/PEDOT:PSS sample.

All measured CV, UPS, and optical data including the change in Fermi energy (ΔE_F) are listed in Table 1. In addition we list the results of the H$_2$ capture test.30 Table 1 lists the first oxidation potentials (E_{ox}) for the interlayer polymers as determined by CV. In the third row, E_{ox} is converted to the ionization energy (IE) by comparison with literature ultraviolet photoelectron spectroscopy (UPS) of PEDOT:PSS.30 with a reported Φ value of \sim5.1 eV. With no other information we can expect that polymers with IE less than 5.1 eV might favorably donate electrons to PEDOT:PSS, as shown for P3HT. However, a recent

Fig. 6 Ultraviolet photoelectron spectra of (A) PEDOT:PSS on ITO, (B) P3HT on PEDOT:PSS and ITO, (C) APFO-3 on PEDOT:PSS and ITO and (D) F8BT on PEDOT:PSS and ITO.
article by Greiner et al. showed that conjugated organic molecules donate electrons to oxide substrates if the positive polaron state of the absorbed molecule lies closer to the vacuum level than the Fermi energy of the substrate. We compare data taken from CV, optical measurements, and UPS to measure the energy gap between the ionization energy (also top of the HOMO band) of the polymer and the polaron level of the polymers on PEDOT:PSS. This table establishes that CV measurements give a rough estimate of the energy level alignment between polymers, but that interfacial states between PEDOT:PSS and polymers can change the Fermi level alignment, radically changing the hole extraction potential between the polymer and the PEDOT:PSS. This change is due to doping of the polymer by PSS. Only P3HT is p-type doped from the PSS, while others do not react with PSS. From the cases shown above, P3HT is doped by PEDOT:PSS while APFO-3 and F8BT are not because they have higher Fermi energies.

3.5 Interlayers in devices

The above sections have established how large the energy barrier for charge injection/extraction should be between PEDOT:PSS and a variety of donor polymers used for OPVs and OLEDs. It is clear in each case that PEDOT:PSS would be the hole collecting/injection electrode with low work function metal collecting/injection electrons at the other interface. However, it is also clear that only some polymers (with a smaller IE than the Fermi energy (E_F) of PEDOT:PSS) are p-type doped from the PSS, while others do not react with PSS. From the cases shown above, P3HT is doped by PEDOT:PSS while APFO-3 and F8BT are not because they have higher Fermi energies.

The next step is to establish how the mixed interface layer will affect the electronic function of an OPV device. In a typical BHJ fabrication, the mixture is coated onto the PEDOT:PSS and later the device may or may not be heated. If heating with sufficient temperature occurs, the polymer in the BHJ will mix with the PSS but fullerene will not (see Fig. 4). These processes occur for every heated BHJ device. For this study, we add the additional step that we can prepare a mixed interface layer between the PEDOT:PSS and the BHJ layers that will affect and control the injection and extraction of charge through the anode of the device.

Fig. 7 Energy level diagrams showing the results of UPS for P3HT, APFO-3 and F8BT on an ITO substrate. (A), (B) and (C) respectively. (D), (E) and (F) are corresponding diagrams derived from UPS of P3HT, APFO-3 and F8BT coated onto ITO/PEDOT:PSS, annealing at 180 °C and then washed with CLB.
The device study presented here is quite similar to a previous study of vacuum deposited materials by Tress et al. In that case, bi-layer OPV devices, fabricated using vacuum processes, were studied and the work functions of the hole transport layer (HTL) and electron transport layer (ETL) were varied. The authors presented a model that explained how the IV curve changed as a function of the energy difference between the Fermi energy of the HTL and the electron donor of the solar cell. They found that the lack of alignment between the HTL and HOMO of the donor resulted in S-shaped JV curves. The work function of the HTL layer was varied by changing the doping level.

Our study presents a different challenge because multiple layers or conjugated materials cannot normally be deposited using solution methods. The first half of this paper showed that a thin layer (2-5 nm) can be reliably rendered insoluble when deposited and annealed on PEDOT:PSS, which allows us for the first time to ask whether these mixed interface layers are electrically complete and whether they function like the doped HTL layers that were deposited using vacuum techniques by Tress et al.

Fig. 8 shows JV curves of P3HT/PCBM BHJ devices coated onto interlayers of P3HT, APFO-3, and F8BT formed on PEDOT:PSS by the procedure in Fig. 2. From the UPS and CV data we determine that P3HT is p-type doped by the PSS while APFO-3 and F8BT are not doped by PEDOT:PSS. The P3HT interlayer device has a Voc of 0.55 V and FF of 0.6. The JV curves show the progression of increasing interlayer completeness with BHJ layers cast from a mixture of CLB and NB, a mixture designed to solvent cure the morphology of the BHJ layer. CLB/NB cast BHJ devices do not need to be heated and therefore maintain intact interlayers. The device properties were not optimized, but it can be stated that the JV curve is similar to that of a normal P3HT/PCBM OPV device with perhaps reduced Voc. A device with an interlayer of P3HT (already shown to be doped to P3HT+) shows little change when compared to the no interlayer device. This result shows that addition of a 2-5 nm layer of P3HT between the BHJ layer and the PEDOT:PSS has essentially no effect on the Jsc, Voc, FF or device PCE. The layer formed at 180 °C shows higher series resistance at higher forward potentials demonstrating that the number of doped paths through the P3HT/PSS interlayer is lower than for the interlayer annealed at 210 °C. A normal annealed BHJ device will have some doped P3HT mixed with PSS, but vertical concentration measurements have shown that in fact, crystalline domains do not extend to the PEDOT:PSS interface and the PCBM concentration at the interface is still near 50%. This comparison shows that P3HT/PCBM BHJ mixtures have high PCE under a variety of morphological conditions.

The devices fabricated with APFO-3 and F8BT interlayers both show S-shaped JV curves indicating that there is a barrier to extraction of holes through the interlayer. For both device types the temperature at which the interlayer is heated determines the layer thickness. All F8BT is removed by heating to 150 °C while some F8BT enters the interlayer with 180 °C and a full interlayer is formed with annealing at 210 °C. The progression of JV curves can be interpreted as a growing surface coverage of the interlayer polymer with both forward and double diode characteristics in parallel for the incomplete layer formed at 180 °C. We found in working on this system that interlayer formation is highly sensitive to the fabrication conditions. If the P3HT/PCBM BHJ layer was cast from a heated solution (60 °C) onto a complete interlayer, the interlayer displays the characteristics of a mixed interlayer. In addition, if devices with interlayers are heated after the BHJ layer is deposited, the S-shaped characteristic shifts to reflect mixed P3HT/APFO-3 and P3HT/F8BT interlayers. These data show IV
plots with a variety of shapes that have some S-shaped component much like the incomplete interlayers formed at 180 °C, but the data varied widely and so are not shown.

The S-shaped J/V curves are modeled using a one dimensional drift–diffusion simulation. In this model the BHJ layer is treated as one effective medium. The interlayer is represented as a separate thin layer with a thickness of 3 nm. This value is not measured, but considered as realistic. The metal (like) contacts PEDOT:PSS and Al are treated with a thermionic model and an injection barrier into the blend of 0.1 eV. The most important input parameters are the effective gap of the blend (1 eV), charge carrier mobilities (μe = 6 × 10−4 cm2 V−1 s−1, μh = 6 × 10−5 cm2 V−1 s−1), dielectric constant (3.8), and the effective density of states (1 × 1019 cm−3), disorder is neglected as it is not important for the conclusions of this study. Recombination is modeled according to Langevin theory with a reduction factor of 0.08. These parameters are in the range of reports from the literature. It is likely that other parameter combinations would fit the experimental data similarly well. The mobilities and the recombination prefactor were found by fitting the experimental J/V-data of devices without interlayer. The mobilities are lower compared to several values reported in the literature. This is due to a different morphology, as the P3HT:PCBM blend here is much thinner (80 nm) and cast from CLB with a ratio of 3:2 instead of a 1:1 film from oDCB, where optimized thicknesses are in the range of several 100s of nm. The absorbed photon flux that generates charges is derived from the saturated photocurrent at reverse bias and included into a spatially constant generation rate. A constant generation rate is a valid approximation as long as very detailed studies onto the optics of the stack are not done.

To model the J/V curves shown in Fig. 9 the material parameters of the blend are maintained. The generation rate is adjusted to reach the saturated photocurrent. Additionally, in the case of interlayers, their HOMO is varied to realize the extraction barrier as sketched in Fig. 9b. Drift- and diffusion rates at the barrier are multiplied by a Boltzmann factor. A lowering of the barrier is considered assuming a hopping distance of 1 nm. This approach (details in ref. 19 and 68) describes the S-shapes of the J/V-curves very well, considering a value for the extraction barrier of 0.4 eV for APFO-3 and 0.52 eV for F8BT. Note that these values are smaller than those expected from the UPS data (cf. Fig. 7). One reason might be that the influence of P3HT:PCBM coated onto the interlayer is not considered in that UPS study. Consequently, dipoles might emerge, which are neglected. Furthermore, disorder might effectively lower the barrier compared to a value derived by the difference of the UPS HOMO onsets. Finally, the unknown interlayer thickness gives rise to uncertainties.

The good coincidence of experimental and simulation data proves that a thin closed interlayer is formed. This interlayer acts as a barrier when extracting photogenerated holes. Presumably, this interlayer is so thin that a tunneling of injection current under forward bias can occur. A tunneling of charges through the interlayer into the blend is not considered in the simulation. Consequently, the simulation underestimates the forward current.

4 Conclusions

This article addresses the formation and electrical properties of polymer/PSS mixed interlayers that form at the surface of conjugated polymers with PEDOT:PSS. We first demonstrate that interlayers form upon heating with a wide variety of conjugated polymers. The interlayers have a thickness of 2–5 nm, which is limited by the thin PSS layer on top of the PEDOT:PSS. Interlayer polymers can be p-type doped upon mixing with the PSS if their Fermi energy is lower than the oxidation potential of the PSS. However insoluble interlayers can form even without the doping reaction. Extensive spectroscopic work shows that doping of the interlayer polymer by PSS has a profound effect on the electronic properties of the interlayer.

Next a series of OPV devices were fabricated on top of prepared interlayers. We show that doped interlayers of P3HT have very little effect on the J/V characteristics. The presence of a
skin of P3HT between the PEDOT:PSS and BHJ layer has almost no effect on the JV characteristics which demonstrates that the morphology of P3HT:PCBM is very forgiving and will produce high PCE with a variety of morphology conditions. Mixed interlayers of polymers with higher ionization energy caused higher extraction barriers for holes into the PEDOT:PSS electrode. The extraction barrier is overcome with negative bias and negative bias current density is similar to devices with no interlayer. The JV behavior is predictable based on the Tres model for charge injection and extraction.

Acknowledgements

This project was carried out over a period of six years. The salaries of D.L.G., C.W.R., and S.A.M. were supported by the U.S. Department of Energy under Award number DE-FG36-08GO18018 from 2008–11 and covered device work, contact angle measurements, and XRR. Further funding from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award no. DESC0010419 covered optical measurements by I.E.J., D.J.B., O.L., continued device work by J.L. and finally writing the paper by A.J.M. in 2013–14. L.A.B. is an Alfred P. Sloan Foundation Fellow. L.A.B. also thanks UC Davis for support of this work. Y.Q. and M.-C.J. thank the Okinawa Institute of Science and Technology Graduate University (OIST) for financially supporting the work carried out in OIST. M.R. acknowledges the funding through the InnoProfile Project (03IP602) of the German Ministry of Education and Research (BMBF). We thank U. Scherf from the University of Wuppertal, Germany and O. Inganas from the University of Linköping, Sweden for donation of APFO-3 samples.

References
