Lawrence Berkeley National Laboratory

Recent Work

Title
Characterization of Low-Order Aberrations in the SEMATECH North MET Tool

Permalink
https://escholarship.org/uc/item/6hh34782

Author
Dean, Kim

Publication Date
2006-08-18
Characterization of low-order aberrations in the SEMATECH North MET tool

Patrick Naulleau,¹,² Justin Waterman,² Kim Dean³

¹Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
²College of Nanoscale Science and Engineering, University at Albany, NY 12203
³SEMATECH, Austin, TX 78741

Previous papers have reported on print-based methods developed to measure the aberrations in the Berkeley EUV microfield exposure tool (MET). The data showed that the tool has larger aberrations than those measured during interferometry (both visible and EUV) performed before the optic was integrated into the tool. The same analysis has been performed on the SEMATECH North MET to measure the low-order aberrations.

As with the Berkeley tool, quantitative measurement of cross-field astigmatism has revealed elevated levels of astigmatism in the SEMATECH North tool. Additionally, we present quantitative measurements of field tilt and curvature, coma, and spherical error. Pending the availability of new data, we also investigate the effect of system temperature on aberrations.

Keywords: extreme ultraviolet, lithography, aberrations

Preferred format: Poster

Contact Information:
Patrick Naulleau, Center for X-Ray Optics, Lawrence Berkeley National Laboratory, MS2-400, 1 Cyclotron Rd., Berkeley, CA 94720, PNaulleau@lbl.gov, 510-486-4529 (Tel), 510-486-4550 (Fax) (presenter)

Justin Waterman, University at Albany, JWaterman@uamail.albany.edu, 255 Fuller Rd, Albany NY, 12203

Kim Dean, SEMATECH, Kim.Dean@sematech.org, 512-356-3275, Austin TX

Klaus Lowack, SEMATECH, Klaus.Lowack@sematech.org, 518-956-7132, 255 Fuller Rd., Albany NY, 12203