Title
Preliminary Associations between the Detection of Perfluoroalkyl Acids (PFAAs) in Drinking Water and Serum Concentrations in a Sample of California Women

Permalink
https://escholarship.org/uc/item/6hh3s5mh

Journal
Environmental Science & Technology Letters, 3(7)

ISSN
2328-8930 2328-8930

Authors
Hurley, Susan
Houtz, Erika
Goldberg, Debbie
et al.

Publication Date
2016-07-12

DOI
10.1021/acs.estlett.6b00154

Peer reviewed
Preliminary Associations between the Detection of Perfluoroalkyl Acids (PFAAs) in Drinking Water and Serum Concentrations in a Sample of California Women

Susan Hurley,*† Erika Houtz,‡§ Debbie Goldberg,† Miaomiao Wang,‡ June-So Park,‡ David O. Nelson,† Peggy Reynolds,†∥ Leslie Bernstein,⊥ Hoda Anton-Culver,# Pamela Horn-Ross,⊗ and Myrto Petreas‡

†Cancer Prevention Institute of California, 2001 Center Street, Suite 700, Berkeley, California 94704, United States
‡Department of Toxic Substances Control, California Environmental Protection Agency, 700 Heinz Avenue, Berkeley, California 94710, United States
§Arcadis, 100 Montgomery Street, Suite 300, San Francisco, California 94104, United States
∥Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California 94305-5405, United States
⊥Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
#Department of Epidemiology, School of Medicine, University of California Irvine, Irvine, California 92697, United States
⊗Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, California 94538, United States

Supporting Information

ABSTRACT: This study compared detection of perfluoroalkyl acids (PFAAs) in public drinking water with PFAA serum concentrations for 1566 California women. PFAA occurrence in drinking water from U.S. EPA’s third Unregulated Contaminant Monitoring Rule (UCMR3) database was linked by residential zip code to study participants. Detectable water concentrations of perfluorooctanoic acid (PFOA) ranged from 0.020 to 0.053 μg/L and of perfluorooctanesulfonic acid (PFOS) from 0.041 to 0.156 μg/L. Forty percent of detectable concentrations exceeded the 2016 Health Advisory Level of 0.07 μg/L for combined PFOA and PFOS concentrations. Serum concentrations of PFOS and PFOA significantly differed between participants with and without detectable measures of these compounds in water (Wilcoxon P ≤ 0.0007). Median serum concentrations of PFOS and PFOA were 29% and 38% higher, respectively, among those with detectable levels in water compared to those without detectable levels. Validation of this approach and replication of these results in other study populations are warranted.

INTRODUCTION

Perfluoroalkyl acids (PFAAs) are a subset of the poly- and perfluoroalkylsubstances (PFASs), a class of compounds that have been widely used for over 60 years to impart nonstick, waterproof and stain-resistant coatings to a variety of consumer products, including cookware, food packaging, clothing, carpeting, and textiles.1-3 PFASs are also active ingredients in aqueous film forming foams (AFFF) used to extinguish hydrocarbon-based fuel fires at airports, oil refineries, military bases, and firefighter training facilities.4 PFAAs are highly resistant to biodegradation and are among the most persistent of environmental pollutants.5,6 A growing body of scientific evidence for the two most studied members of PFASs, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggests potentially toxic effects including tumor induction, hepatotoxicity, developmental toxicity, immunotoxicity, endocrine disruption, and neurotoxicity.2,6,9-13 Consequently, PFASs, especially PFOS and PFOA, have become the focus of considerable public health concern.

Although U.S. and California biomonitoring data indicate widespread human exposures,14-16 routes of exposure have not been fully elucidated.5,17-20 Drinking water can be a significant...
route of exposure among populations whose water has known “significant environmental contamination”, but it is unclear whether drinking water may serve as an important route of exposure among the general population. The use of AFFF at airports and military bases and the land application of biosolids have both been observed to contaminate surrounding groundwater and surface water with PFASs and may contribute to PFAS levels in drinking water sources far from PFASs manufacturers.

The U.S. Environmental Protection Agency (U.S. EPA), under its third Revisions to the Unregulated Contaminant Monitoring Rule (UCMR3) for Public Water Systems began testing public water supplies in 2013 for six PFAs. These data are collected to provide scientifically valid information on the occurrence of unregulated chemicals that are of potential public health concern and are used by the U.S. EPA to inform regulatory decisions. The UCMR3 now offers the most comprehensive population-based data set of PFAS occurrence in drinking water. The current analysis compares biomonitoring data on PFAs in a sample of California women with UCMR3-derived PFAS drinking water detections. To our knowledge, this is the first study to link PFAS biomonitoring data for the general population to PFAS detections in U.S. public water supplies.

MATERIALS AND METHODS

Study Population

The study population was composed of 1566 women residing in California who are participants in the California Teachers Study (CTS), an ongoing cohort study of over 133,000 female professional public school employees. These women provided a blood sample as part of their participation in a breast cancer case-control study nested within the CTS. The characteristics of the study population reflect that of the larger CTS study from which it was drawn. As shown in the Supporting Information (Table S1), the study population was predominantly composed of non-Hispanic white (77%) and middle-aged or older women, with nearly 70% between the ages of 60–79 years. Approximately 40% had been diagnosed with breast cancer prior to blood collection.

Serum Collection

Blood samples were collected from participants by licensed phlebotomists from January 2011 to September 2013. Addresses at blood draw were confirmed with participants by the phlebotomists prior to blood collection. Blood samples were collected in Tiger Top (SST) tubes (10 mL BD collection tube catalog #367985), kept on cool packs, and within several hours were spun down using portable centrifuges to separate the serum. Processed samples were then frozen and transported to the laboratory where they remained frozen and stored at −20 °C until thawed for the PFAA analysis.

Serum PFAS Measurements

Serum measurements of 12 PFAs were conducted using an online SPE-HPLC-MS/MS method as described in detail previously. Briefly, 100 μL of serum was diluted in formic acid and spiked with isotopically labeled internal standards before injection into the online SPE-HPLC-MS/MS system (Symbiosis Pharma, IChrom Solutions, Plainsboro, NJ, and ABSciex 4000 QTrap mass spectrometer, ABSciex, Redwood City, CA) for cleanup and analysis. Native and isotopically labeled PFAS standards were purchased from Wellington Laboratories (Shawnee Mission, KS). Within each batch analysis of 20 samples, two in-house spiked calf serum samples and NIST 1958 Standard Reference Material were run in duplicate together with the other quality control samples.

The current study is restricted to the four PFAs that were detected in California UCMR3 data: PFOS, PFOA, perfluorohexanesulfonic acid (PFHpA), and perfluoroheptanoic acid (PFHxS). Limits of detection (LOD) and detection frequency (DF) for each of the compounds were as follows: PFOS (LOD = 0.066 ng/mL; 99.87% DF); PFOA (LOD = 0.110 ng/mL; 99.87% DF); PFHxS (LOD = 0.021 ng/mL; 99.04% DF); PFHpA (LOD = 0.026 ng/mL; 74.8% DF).

PFAAs in UCMR3 Drinking Water

Proxy indicators for PFAs in study participants’ drinking water were derived by linking their residence at the time of blood draw to information on PFAS occurrence in the UCMR3 data. Drinking water samples included in UCMR3 were collected from all U.S. public water systems (PWSs) serving ≥10,000 people and 800 representative smaller PWSs between January 2013 and December 2015. Water samples were taken at the entry point to the distribution system. Minimum reporting levels ranged from 0.01 to 0.09 μg/L, depending on the analyte (Table 1). Further details of the UCMR3 data monitoring are available elsewhere. In California, water was sampled from 452 PWSs. One or more PFAs were detected in drinking water samples collected from 28 PWSs (6.2% detection rate). Because perfluorononanoic acid (PFNA) and perfluorobutanesulfonic acid (PFBS) were not detected in any PWSs in California, these compounds were not included in our analysis.

The UCMR3 occurrence data were downloaded from the EPA Web site on April 12, 2016. For each chemical, the UCMR3 database contains a record for each water sample that includes the following information: whether the chemical was detected at or above its LOD, the concentration detected (μg/L), collection date, and identifiers for the PWS provider and facility. The UCMR3 data also contain information identifying the zip codes served by each large PWS (i.e., serving ≥10,000 people). These data were cross classified by PWSs to create a file that summarized for each California zip code whether any PFAA had been detected at least once during the 3 year UCMR3 monitoring period. This file was then linked to our study participants based on the zip code of residence at the time of blood collection. Through this process, a proxy indicator for the occurrence of each
PFAA in the drinking water of study participants was created and defined as follows: “detected” indicating that the particular PFAA had been detected in at least one PWS that serves their residential zip code; “not detected” indicating that the particular PFAA had not been detected in any of the PWSs that serve their residential zip code; and “not tested” indicating that their residential zip code was not supplied by a PWS contained in the UCMR3 database.

Statistical Analysis. Prior to statistical analyses, serum samples with PFAA concentrations below the LOD were imputed as LOD/√2 for each analyte. Descriptive statistics, including mean values, median values, geometric mean values, and percentiles for the serum PFAA concentrations were calculated and are presented separately for those with and without detectable measures of each of the PFAAs in drinking water (Table 2). Wilcoxon Rank-Sum tests were performed to evaluate formally whether the distributions of serum concentrations differed in a statistically significant way between those with and without detectable levels of the given PFAA in drinking water. These analyses excluded the 233 participants whose residence was located in a zip code that was not included in the UCMR3 database.

RESULTS AND DISCUSSION

Of the 1566 participants in our study, 109 (7%) lived in a residence whose zip code was supplied by a PWS that had detected at least one PFAA in its water at least once during the UCMR3 monitoring period, 1224 participants (78%) linked to a zip code whose water was supplied by a PWS that had not been detected in any of the PWSs that serve their residential zip code; and 193 (12%) do not link to the UCMR3 database.

Table 2. PFAAs: Comparison of Serum Concentrations (ng/mL) among 1333 Study Participants with and without Detectable Levels in Drinking Water

<table>
<thead>
<tr>
<th>PFAA compound detected in drinking water^b</th>
<th>PFAA serum concentration (ng/mL)^c</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>mean</td>
<td>geo. mean</td>
<td>median</td>
<td>P_{25}</td>
<td>P_{75}</td>
</tr>
<tr>
<td>PFHpA</td>
<td>detected</td>
<td>35</td>
<td>2.2</td>
<td>0.12</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>not detected</td>
<td>1,298</td>
<td>82.9</td>
<td>0.09</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>PFHxS</td>
<td>detected</td>
<td>31</td>
<td>2.0</td>
<td>1.87</td>
<td>1.35</td>
<td>1.48</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>not detected</td>
<td>1,302</td>
<td>83.1</td>
<td>2.29</td>
<td>1.66</td>
<td>1.60</td>
<td>1.04</td>
</tr>
<tr>
<td>PFOA</td>
<td>detected</td>
<td>70</td>
<td>4.5</td>
<td>4.06</td>
<td>3.47</td>
<td>3.46</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>not detected</td>
<td>1,263</td>
<td>80.7</td>
<td>2.99</td>
<td>2.45</td>
<td>2.51</td>
<td>1.69</td>
</tr>
<tr>
<td>PFOS</td>
<td>detected</td>
<td>93</td>
<td>5.9</td>
<td>11.02</td>
<td>8.51</td>
<td>9.11</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>not detected</td>
<td>1,240</td>
<td>79.2</td>
<td>8.42</td>
<td>6.76</td>
<td>7.08</td>
<td>4.45</td>
</tr>
</tbody>
</table>

^aNumber of study participants excludes 233 participants whose residential zip code at blood draw was not included in the UCMR3 database.
^bDetected = the particular PFAA compound was detected in a public water system (PWS) that serves the zip code of residence at blood draw; not detected = the particular PFAA compound was not detected in a PWS that serves the zip code of residence at blood draw (as reported by UCMR3 Occurrence Data, 2013–2015).
^cgeo. mean = geometric mean; P_{25} = 25th-percentile; P_{75} = 75th-percentile; max. = maximum.
^dPercentages are expressed as percent of total number of study participants, including those that did not link to the UCMR3 (n = 1,566) and therefore do not sum to 100%.
P^d = p-value calculated from Wilcoxon Rank Sum Test.
that drinking water with relatively low levels of PFAAs may contribute to higher serum levels among exposed women, are consistent with human pharmacokinetic modeling. It has been previously established that, on average, ongoing exposure to PFOA in drinking water increases serum PFOA concentrations in a serum: drinking water ratio of 100:1 or greater,²⁵,³⁷ while based on half-lives and clearance factor differences, PFOS in drinking water is estimated to increase serum concentrations at a ratio of 172:1 or more.³⁸ Therefore, assuming no other significant sources of exposure, at the mean drinking water concentration of 0.028 μg/L among those with detectable levels of PFOA in water, we would expect a mean serum level of 2.8 ng/mL, and at the mean drinking water concentration of 0.058 μg/L among those with detectable levels of PFOS in water, we would expect a mean serum PFOS level of 9.98 ng/mL. The mean serum levels in our participants with detectable measures of PFOA and PFOS in drinking water of 4.06 and 11.02 ng/mL, respectively, are marginally higher, but generally consistent with these predictions. Overall, the PFOA and PFOS data in this study suggest that drinking water can be an important source of human exposure to PFAAs.

This study has a number of limitations worth noting. Most importantly, because UCMR3 monitoring was designed to assess population exposures, not to assign exposures to individuals, it does not provide the data elements necessary to link definitively a contaminated water sample to a specific home. UCMR3 data are based on samples collected from multiple points of entry within a PWS; PFAA detection in one sample does not necessarily represent the PFAA occurrence in water throughout the entire PWS distribution system. Additionally, in the infrequent instance when a residence is located in a zip code that is serviced by more than one PWS it is not possible to definitively identify the PWS. Furthermore, the MRLs of the UCMR3 data are relatively high compared to the levels of detection available from many certified laboratories; thus it is likely that PFAAs were present in some samples but were not detected by the UCMR3 monitoring. Given these limitations of the UCMR3 data, our proxy measure for PFAAs in drinking water is likely to introduce some misclassification of exposure. Thus, the true difference in serum levels between those with and without PFAA exposures from drinking water is likely to be greater than what we observed in this study.

As issues related to drinking water contamination were not part of the original aims of the CTS, additional uncertainties in exposure were introduced by a lack of information about whether participants routinely drink their home tap water or consume water from private wells. Information about other potential sources of PFAA exposure, including diet, indoor dust, and occupational exposures,³⁸,¹⁸,¹⁹,⁴¹ also was lacking. Occupational exposures, however, are unlikely to be important in our study population, and there is no reason to postulate that these other exposure sources would be correlated to detection of PFAAs in drinking water. Thus, although it is possible that our findings are spurious due to uncontrolled confounding, it seems unlikely.

It should also be noted that this study population was composed of CTS members who had participated in a nested breast cancer case-control study, and thus the selection of study participants was not designed to produce a representative sample of the California population. Nevertheless, results were similar among the subset of participants who served as controls in the breast cancer study and overall the PFAA serum concentrations in our study population were consistent with levels reported among adult women in recent U.S. biomonitoring data.⁴⁵

Under its 2016 PFOA and PFOS Drinking Water Health Advisories, the U.S. EPA recommends that when PFOA and PFOS concentrations, individually or combined, are found to exceed 70 μg/L, water systems should “quickly undertake additional sampling to assess the level, scope and localized source of contamination to inform next steps.”³⁶ The UCMR3 data do not provide sufficient information to identify specific localized sources of PFAA contamination to drinking water supplies. California, like many states, however, has known PFAA contamination in groundwater and in waste water that discharges to surface water from the use of AFFF,⁴³ and this may contribute to PFAA contamination of drinking water supplies. Additional point sources could come from manufacturers who produce or use PFASs industrially. The UCMR3 data could help pinpoint geographic “hot spots”, offering a useful starting point to identify and remediate specific sources of exposure, as well as to target populations for future health evaluations (see California Map of UCMR3 data in Supporting Information, Figure S1).

There is evidence that many of the health end points of concern associated with some of the PFAAs may be elicited by levels in the range of serum PFAAs observed in our study population.³,⁵,²⁵,⁴⁴,⁴⁵ Thus, the elevated serum PFAA concentrations found among our study participants who were potentially exposed to PFAAs in drinking water underscore the potential public health importance of these findings and the need for further study. Given the health implications of these results, validation of our approach and replication of these findings in other study populations with biomonitoring data should be a research priority.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.estlett.6b00154.

Table S1. Demographic Characteristics and Detection of PFAAs in Drinking Water for Study Participants (n = 1566). Table S2. PFAAs: Serum Concentrations (ng/mL) among Subset of Study Population that were Controls (n = 944): Comparison of Serum Concentrations (ng/mL) between Study Participants with and without Detectable Levels in Drinking Water. Figure S1: Zip codes in California serviced by a public water system (PWS) with detectable levels of PFAAs (PDF).

AUTHOR INFORMATION

Corresponding Author

Susan Hurley. Email: Susan.Hurley@cpic.org. Office phone: (510) 608-5189. Fax: (510) 608-5095.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported, in part, by funds provided by The Regents of the University of California, California Breast Cancer Research Program, Grant Number 16ZB-8501 and National Cancer Institute, Grant R01 CA77398. The opinions, findings, and conclusions herein are those of the authors and do not necessarily represent those of the California Department of Toxic Substances Control, The Regents of the University of California, or any of its programs. We express our appreciation to all the participants in the California Teachers Study and to the researchers, analysts and staff who have contributed so much for
the success of this research project. We also thank Christine Duffy for overseeing field data and biospecimen collection, Martin Snider, Suhash Harwani, Wendy Duong for analytic support, Linnah Marlow for creating the Table of Contents original graphic, Andrew Hertz for cartography and geocoding support, and the California Teachers Study Steering Committee members who are responsible for the formation and maintenance of the cohort within which this study was conducted but who did not directly contribute to the current paper: Jessica Cлагued-Hарт, Christina A. Clarke, Dennis Deapan, James V. Lacey Jr., Yani Lu, Huiyan Ma, Susan L. Neuhausen, Hannah Park, Rich Pinder, Fredrick Schumacher, Sophia S. Wang, and Argyrios Ziogas.

REFERENCES

(2) Lau, C. Perfluorinated compounds. EXS 2012, 101, 47−86.

(36) United States Environmental Protection Agency (US EPA). Lifetime Health Advisories and Health Effects Support Documents for

