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Abstract

Natural marine hydrocarbon seeps on continental margins today represent a small source of methane in the global atmosphere budget,

which is dominated by anthropogenic sources and contributions from wetlands in the tropics and northern high latitudes. In glacial times with

lowered sea level, exposed seeps must have vented directly to the atmosphere and the portion of methane that was formerly dissolved and

oxidized in the ocean contributed to the global atmospheric methane budget. We estimate that during lowered sea level 40–100!1012 g/yr of

methane were added to the atmosphere from gas seeps on the exposed shelves. This source could account for much of the atmospheric

methane during glacial episodes because major wetlands were largely absent prior to the Holocene.

q 2005 Elsevier Ltd. All rights reserved.
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1. World methane budget today

The global atmosphere methane budget is of obvious

interest because methane is a potent greenhouse gas,

20 times or more effective in irradiative heating than carbon

dioxide (Khalil and Rasmussen, 1995). It is estimated at

present that between 535 and 598 Tg/yr (Houghton et al.,

2001; IPCC, 2001; Prather et al., 1995) (1 Tg (Teragram)

equals 1012 g) enters the atmosphere of which 375 Tg are

from anthropogenic and 160 Tg from natural sources

(Prather et al., 1995; Table 1). The more recent estimates

given in the report of the Intergovernmental Panel for

Climate Change (IPCC) are a total of w600 Tg/yr with 60%

anthropogenic (w360 Tg/yr) leaving w240 Tg/yr as the

natural contribution (IPCC, 2001). That report does not

indicate a preferred partitioning of sources so we use the

study of Prather et al. (1995) for subdivisions in Table 1

while also identifying ranges of values. The majority of the

methane is biogenic; geologic methane, which is
14C-depleted, makes up about 20% of present sources
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(Cicerone and Oremland, 1988; Quay et al., 1999). Geologic

methane is also distinguished from biogenic methane by

more positive values of d 13C (Hunt, 1996). The most

significant natural methane sources today are tropical and

northern high latitude wetlands providing about 70% or

more of the natural flux or at least 115 Tg/yr (Crutzen, 1995;

Hein et al., 1997; Prather et al., 1995). Other natural

methane sources include continental and marine hydro-

carbon seepage (Etiope and Klusman, 2002; Hornafius et al.,

1999; Hovland et al., 1993), mud volcanoes (Dimitrov,

2002; Hedberg, 1980; Judd et al., 2002) decay of organic

matter in marine and lake sediments (Hovland et al., 1993;

Judd and Hovland, 1992), fires, termites, leakage from

coal beds, enteric fermentation in animals (Khalil and

Rasmussen, 1995; Prather et al., 1995) and geothermal

systems (Etiope and Klusman, 2002). Reeburgh (2003) has

reviewed some of the difficulties and uncertainties in the

estimation and partitioning of source strengths.

Natural geologic methane sources previously have been

estimated to contribute from about 10 (Khalil and

Rasmussen, 1995) to 45 Tg/yr (Kvenvolden and Rogers,

2004) to the global budget. Kvenvolden et al. (2001)

estimated a modern contribution of 10–30 Tg/yr to the

atmosphere from marine hydrocarbon gas seeps alone.

Because almost half of the world’s hydrocarbon basins are

located offshore (Hornafius et al., 1999), the global flux
Marine and Petroleum Geology 22 (2005) 591–596
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Table 1

Present day annual global methane budget compared to likely glacial

methane budget (with range)

Global methane Holocene Glacial

535 Tg/yra (410–660) 80 Tg/yrb

Anthropogenic 375a (300–450) None

Natural 160a (110–240) 80b

Wetlands 115a (55–150) 15b

Marine HC seeps 20c (18–48) 40b (40–100)

Other 25b 25b

a IPCC (2001) and Prather et al. (1995).
b This paper.
c Hornafius et al. (1999).
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should be even higher if seepage rates onshore and offshore

are similar. Present estimates of the geologic methane

contributions from onshore seeps are estimated at more than

11.5–23.3 Tg/yr (Etiope and Klusman, 2002).
2. Natural marine hydrocarbon seeps

Gas and oil seepages associated with hydrocarbon

deposits are found onshore and on continental shelves

(Wilson et al., 1974). Present day hydrocarbon seepage from

reservoirs beneath the world’s continental margins dis-

charge oil and natural gas (including methane) into the

ocean and atmosphere. Marine seeps have received

increasing interest in part because they indicate the presence

of hydrocarbon deposits (Hovland et al., 1993; Hunt, 1996)

and because they are sources of regional ocean and air

pollution (Hornafius et al., 1999). This observation includes
Fig. 1. Location and map of Coal Oil Point marine seep field in southern California

shading. These were mapped by sonar methods (Hornafius et al., 1999; Quigley et

seeps are named including Shane and Seep Tent (Table 2).
oil slicks, dissolved oil and hydrocarbon gas in the ocean,

floating and beach tar balls, and methane and reactive

organic gases discharged into the atmosphere.

On the northern continental shelf of the Santa Barbara

Channel, California the Coal Oil Point marine seep field

discharges at least 100,000 m3 of gas into the atmosphere

and 100 bbl of oil into the ocean per day (Hornafius et al.,

1999; Quigley et al., 1999; Fig. 1). The hydrocarbons seep

from faulted anticlines in the Neogene Monterey and

Sisquoc Formations. These seepage rates were determined

from a combination of calibrated sonar surveys (Hornafius

et al., 1999; Quigley et al., 1999) and in situ gas and oil

capture at the sea surface (Clester et al., 1996a,b; Egland,

2000; Washburn et al., 2001). At the sea surface the gas is

between 60 and 80% methane (Clark et al., 2003; Leifer

et al., 2000). Therefore, the Coal Oil Point seep field emits

daily at least 40 metric tons of methane to the atmosphere. d
13C values are between K40 and K45‰ indicating that the

methane is thermogenic in origin (Boles et al., 2001).

Hovland et al. (1993) and Hornafius et al. (1999) used

emissions measured at the Coal Oil Point seep field to

estimate the total contribution of marine seeps to the global

atmospheric methane budget. The estimates, which range

between 18 and 48 Tg/yr (Hornafius et al., 1999), were

constructed by assuming that the Coal Oil Point field is one

of the larger or largest marine sources of methane in the

world. Judd et al. (1997) (Table 2) estimate that the methane

discharge from the Coal Oil Point seep is 10 times larger

than the next largest known seep in the world. It then was

assumed, following Wilson et al. (1974), that marine seeps

are log-normally distributed in size, as is the case for world
on shelf of northern Santa Barbara Channel. Seep bubble plumes shown in

al., 1999). About 105 m3 of gas is emitted to the atmosphere each day. Major



Table 2

Gas compositions (%) at sea bed and sea surface in the Coal Oil Point Seep

Field, California

Seep Depth (m) CH4 N2 O2

Shanea 1 76.7–79.5 12.6–14.4 4.5–6.0

20 81.9–84.2 1.4–2.5 0.2-0.3

Seep tentb 1 62.8 22.8 7.69

65 87.5 0.79 0.14

Locations: Shane seep, 34824.3700 N; 119853.4280 W. Seep tent seep,

34823.0600 N; 119853.4100 W.
a Clark et al. (2003).
b Leifer et al. (2000).
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oil fields; these assumptions lead to a global mean flux value

by using the Coal Oil Point values as a calibration point. The

global mean flux then was multiplied by the area of the

continental shelves thought to have a high potential for

seepage K1.7 million km2 (Wilson et al., 1974) to give total

global flux estimates.

Oceanographic observations at Coal Oil Point show that

up to half the volume of methane vented at the sea floor

dissolves in the water column during transport of hydro-

carbon gas bubbles 20–70 m to the ocean surface (Clark

et al., 2000, Fig. 2a); the remaining half enters the

atmosphere. The dissolved methane is advected away from

the seeps by currents and dissipates throughout the waters of

the Southern California Bight (Cynar and Yayanos, 1992;

Ward, 1992). Ultimately this dissolved methane is oxidized

by microbes in the ocean or escapes to the atmosphere

(Scranton and Brewer, 1978; Valentine et al., 2001). The

relative amounts due to these processes are unknown

(Valentine et al., 2001), but a significant proportion of the

dissolved methane is oxidized to carbon dioxide in the ocean

(Hovland et al., 1993; Reeburgh, 2003). Kvenvolden et al.

(2001) estimated that between two-fifths and two-thirds of

the total methane seepage vented to the seabed dissolves and

is oxidized in the ocean and the remainder enters the

atmosphere. The degree and rate of oxidation of dissolved

methane in near-surface waters (the mixed layer) is not yet

fully understood. However, we assume all of the dissolved

methane is oxidized so that we can present an end-member

case. This is a crucial assumption for our argument below.
3. Low sea level

Because sea level has varied about 100–120 m during the

last several glacial stages (e.g. Fairbanks, 1989; Weaver

et al., 2003; Yokoyama et al., 2001), most present day marine

hydrocarbon seeps on the continental shelves would all have

been subaerial as recently as 14 ka. Sea level changes,

therefore, probably significantly affected global atmospheric

methane budgets (Judd et al., 2002; Luyendyk et al., 2002).

About 27 million km2 of shelf (Gross and Gross, 1996) would

have been exposed including regions with hydrocarbon

basins such as the Persian Gulf, Sunda shelf, Argentina shelf,
Timor Sea and Gulf of Mexico. Ice sheets likely covered high

latitude hydrocarbon shelves such as in the North Sea and

could have conceivably reduced the volume of seep

emissions in these areas (Judd et al., 2002). On the exposed

shelves, gas escaped directly to the atmosphere and tar

mounds and pits formed at seep vents (Fig. 2b). Furthermore,

during low sea level gas seeps on the upper continental slope

became shallower, thereby decreasing the portion of

methane from these seeps that was oxidized in the water

column and increasing the contribution to the atmosphere.

Sea level fall also resulted in decreasing hydrostatic

pressures over seeps and thereby increased seepage rates.

This pressure drop enhancing effect on seepage rates is so

pronounced that it can be detected during tidal cycles (Boles

et al., 2001; Chanton et al., 1989). Lowered sea level in

places also exposed organic rich sediments in estuaries and

deltas that rapidly discharged methane as marine regression

progressed (e.g. Yim et al., 2002).

As a result of glacial sea level fall methane that was

formerly dissolving in the ocean and oxidizing was directly

released into the atmosphere adding to the methane that was

already escaping to the atmosphere during high sea level.

During glacial episodes there was no anthropogenic input of

methane and major wetlands ecosystems were very limited

or non-existent (Adams et al., 1990; Gajewski et al., 2001;

Kennett et al., 2003); therefore, exposed hydrocarbon gas

seepages on the continental shelves may have been a major

contributor to the global atmosphere methane budget.
4. Discussion

The greenhouse effect of the increased methane input

from seeps to the atmosphere would have served as a

negative feedback to other factors driving the decrease in

global temperatures during glacial episodes (e.g. Paull et al.,

1991). Other factors including erosion and desiccation of

wetlands, burial of continental and continental shelf seeps

by advancing ice sheets, and advance of permafrost in high

latitudes could have provided positive feedback (Judd et al.,

2002). The increased release of methane from the world’s

continental shelf could have reduced the extent of global

cooling that might otherwise have been greater. Because

about half of the methane emitted at the seabed dissolves

and oxidizes in the oceans at present, we speculate that

during low sea level the amount entering the atmosphere

doubled from present estimates of 18–48 Tg/yr (Hornafius

et al., 1999, Table 1) to between 40 and 100 Tg/yr. This

additional source could in effect replace much of the

contribution lost from wetlands that were then very

restricted due to an expanded cryosphere, global aridity,

and low sea level (Kennett et al., 2003).

Long-term records of methane from ice cores indicate that

during glacial times atmospheric mixing ratios were about

50% of pre-industrial interglacial levels (Chappellaz et al.,

1990). Assuming similar residence times as today this



Fig. 2. (a) Model for the marine seeps system at Coal Oil Point California. Open arrows are gas fluxes, shaded arrows are oil fluxes, and negative signs indicate

sinks including microbial consumption (oxidation). HC, hydrocarbons. Gas is vented at the sea floor forming a bubble plume. Methane and other higher

hydrocarbons diffuse out of the bubbles and into the water effectively dissolving part of the bubble. At the same time dissolved air in the ocean enters the

bubble. Methane, dissolved in the ocean, is in turn oxidized by microbial activity. The bubbles that survive upward transport burst at the surface releasing

hydrocarbon gas and air into the atmosphere. Oil traveling upward with the plume partly dissolves with the remainder forming a slick at the sea surface.

(b) Diagram for a marine seep system that has been exposed due to lowered sea level and changed to a subaerial seep. Methane that dissolved in the ocean when

the seep was submarine now enters the atmosphere directly. Vented oil forms tar pits and mounds.
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implies a global flux during glacial episodes of half the

natural flux today or about 80 Tg/yr. A problem in explaining

the methane budget in glacial episodes is that major wetland

systems were much reduced then (Kennett et al., 2003).

Wetlands today are the main source of natural methane

(110–115 Tg/yr; Prather et al., 1995). Continental ice sheets,

dryer climate (Adams et al., 1990; Crowley, 1995;

Petit-Maire, 1999; Sarnthein and Diester-Haass, 1977),
lowered sea level (Fairbanks, 1989) and lowered water

tables probably reduced wetland areas in glacial compared to

interglacial episodes resulting in less methane contributions

from these sources. Other sources are needed to account for

much of atmospheric methane during glacial periods.

Increased source strength of geological methane was likely.

An alternative to increased geologic methane source strength

during glacials is a decreased efficiency of methane sinks
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(Cicerone and Oremland, 1988; Reeburgh, 2003) prior to

Holocene time. At present the most significant methane sink

is atmospheric OH (Cicerone and Oremland, 1988; Ree-

burgh, 2003). Soils also are sinks but much less so (about 2%,

Reeburgh, 2003).

Added methane introduced from exposed marine seeps

on the continental shelves could resolve the problem of

requiring wetlands as a major source of methane during

lowered sea level of the Last Glacial Maximum (LGM; ca.

21.5–18.3 ka) and other glacial episodes, in order to account

for the concentrations of methane found in glacial ice

bubbles.

Significant methane sources during the Last Glacial

Maximum and other glacial episodes of low sea level are

likely to have been the following: exposed marine gas seeps

on the continental shelves and submerged seeps on the

upper continental slope, onshore gas seeps and outcrops,

methane released from continental shelf sediments

(including possibly a transient burst as organic rich

sediments were exposed as sea level fell), termites and

wild animals, remnant wetlands, lakes, fires, and geothermal

systems. Methane released suddenly from the conversion of

gas hydrates (Kennett et al., 2003) is another potential

source of large magnitude although shelf depths are

generally too shallow to maintain a stable reservoir of

methane hydrates. The implication of our hypothesis is that

in the absence of major wetland sources the methane

sources during glacial episodes were largely geologic

methane. This methane would be relatively enriched in
13C and depleted in 14C (for the more recent glacial times of

the LGM and Younger Dryas—although Cicerone and

Oremland (1988) suggested that some 14C depleted methane

is now being released from wetlands).
5. Conclusions

The global methane flux during the Last Glacial

Maximum and other glacial episodes was possibly around

80 Tg/yr (Table 1). Without major wetlands as a significant

methane source (Kennett et al., 2003) other sources are

needed to account for that budget. Obvious candidates are

either exposed marine seeps or methane hydrate decompo-

sition or both. Exposed marine seeps could have been a

major contributor of atmospheric methane accounting for

half or even the entire budget, with other sources like those

at present being minor components. This hypothesis can be

tested by carbon isotope analysis of methane in ice sheets.

The discovery of 13C enriched (thermogenic) methane in

glacial episode air (e.g. Schaefer et al., 2003) should rule out

wetlands as a major source and support our hypothesis that a

significant portion of glacial episode methane was from

hydrocarbon gas seepage directly into the atmosphere.
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