THE REDISTRIBUTION OF RUTHENIUM IN UO2 IN A TEMPERATURE GRADIENT

Zhou, S.Y.

1981

Peer reviewed
THE REDISTRIBUTION OF RUTHENIUM IN UO₂ IN A TEMPERATURE GRADIENT

S.Y. Zhou and D.R. Olander

January 1981

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
1. INTRODUCTION

It is well known that at high temperature and in a high temperature gradient the fission products in oxide fuel elements redistribute. The redistribution of these species has a significant influence on the performance of the fuel element. It is believed that thermal diffusion might play an important role in the redistribution of fission products dissolved in the fuel matrix. By using estimated parameters, Nichols et al. (1) theoretically analyzed the kinetics of redistribution of barium in irradiated UO$_2$ fuel based on thermal diffusion. Beisswenger et al. (2) studied the thermodiffusion in system UO$_2$-CeO$_2$.

Ruthenium is one of the fission products and together with Rh, Tc, Pd and Mo, forms metallic inclusions distributed along grain boundaries or in the central void of the fuel element. Originally these fission products are uniformly produced throughout the element; why they move to the high temperature region and by what mechanism are not known. It was believed that the metallic inclusions migrate bodily in UO$_2$ at high temperatures and in steep temperature gradients (3-5). However a recent experiment (6) has shown that metallic inclusions such as W, Mo, Ru do not migrate as entities. The present study is concerned with the temperature gradient-driven mobility of ruthenium in UO$_2$ as a means of better understanding the redistribution of metallic fission products in oxide fuel elements.

2. EXPERIMENTAL

The experiments were carried out in the high temperature - temperature gradient furnace described in Ref. 6 and shown in Fig. 1. The temperature
Fig. 1 Temperature gradient furnace

4. tungsten filament 5. tungsten crucible
6. black body hole 9. specimen
11. cooling contact ring 14. molybdenum cooling rod
measurement was made by pyrometer, with an accuracy of about ± 20°C.
The pyrometer was calibrated with W - Re thermocouple up to 2200°C.
By heating the top of the tungsten crucible and cooling the bottom end
of the sample with a molybdenum rod, the furnace can produce 1500 -
2000°C K/cm temperature gradient.

The samples were made by General Electric Company. Before
sintering, nuclear grade UO₂ powders were mixed uniformly with 99%
pure Ru powders having particle sizes ranging between 1μm - 10μm. The
samples were sintered in hydrogen atmosphere at 1700°C for 4 hours. A
recheck of the stoichiometry showed the samples to be UO₂.000. Two
0.001" thick rhenium foil disks were placed on the top and the bottom
of the sample in order to prevent possible reaction between tungsten
crucible and UO₂. Thanks to the rhenium foils, the sample could be
extracted after the experiment without breaking the tungsten crucible,
which is very expensive.

In order to simulate the temperature distribution in a UO₂ fuel
element under irradiation and to maximize the thermal diffusion effect,
the highest possible temperature of the hot end of the sample was chosen.
The maximum temperature achieved was ~2800 K, which is about the tempera­
ture near the central void of a fast reactor fuel element. The temperature
of the cold end of the sample was ~1700 K, which corresponds to that of
the equiaxed grain zone of the fuel element.

One way to measure the heat of transport (the characteristic para­
meter of thermal diffusion) is to let the system reach equilibrium in a
temperature gradient; the heat of transport can be then obtained from the
slope of the plot of $\ln C$ VS $\frac{1}{T}$ (7,8). In the UO$_2$ - Ru system, rough estimates indicate that even at the highest possible experimental temperature (say 2800 K) and the shortest sample (say 0.25 cm), the time to reach equilibrium would be at least 20 days. However, such an experiment is not feasible. Even if the furnace could sustain such a long time at high temperature, the sample would certainly shrink considerably by evaporation. The other method chosen in this study is to measure the heat of transport in a non-equilibrium condition, which can much shorten the duration of experiment. Suppose the experiment is run with specified temperature, temperature gradient, length of sample and time, and the distribution of Ru after the anneal is measured. The calculated distribution of Ru can be obtained by solving the thermal diffusion equation numerically. The heat of transport appearing in the theory is adjusted to give the best fit of the experimental and theoretical profiles.

Each experiment lasted about 28 to 34 hours in order to produce detectable redistribution. After the experiments, the samples were either cut with a diamond saw into slices 30μm - 50μm thick or else layers of about the same thickness were ground off one by one for X-ray fluorescence analysis, which had previously been calibrated with standard Ru/UO$_2$ samples. The detection limit is a Ru/U atom ratio of 2x10$^{-4}$, and the accuracy of the analysis is around 10 - 15% depending on the quality of Ru contained in the sample. Optical microscopy and SEM were used for visual examination of the samples before and after the experiments.
3. RESULTS

A. Temperature Gradient Experiments

Three experiments were conducted at different temperatures, temperature gradients, sample thicknesses, and times. Initially the concentration of Ru in the samples was uniform. After the experiments, the Ru particles partially dissolved into the UO$_2$ grain boundaries, and Ru redistributed along the thermal gradient. Microscopic observation of the sample (Fig. 2) showed that the radii of the Ru particles did not change; instead, voids were created in the centers of the particles. There were no gaps between Ru particles and the matrix. After the experiments, a second phase identified as URu$_3$ was observed along the UO$_2$ grain boundaries. These had the same appearance as those reported in Ref. 6.

The Ru concentration profiles are shown in Figs. 3-5. The results show that large amounts of Ru diffused up the temperature gradient and accumulated at the hot ends. Because the temperature at the cold end is much lower, the Ru concentration here is essentially unchanged. Ru is depleted in the middle parts of the samples, leaving a concave-shaped Ru concentration profile. Ru in the low temperature regions could not diffuse sufficiently rapidly to compensate for the loss of Ru in the middle region. It is very obvious from Figs. 3-5 that the higher the temperature, and the steeper the temperature gradient, the more ruthenium diffuses towards the hot zone.

After the experiment the Ru concentration should satisfy mass conservation, but it is seen from Figs. 3-5 that there has been some loss of Ru. This loss might have resulted from severe evaporation at the hot end, where the temperature reached 2800 K, well above the melting points
Fig. 2 Ruthenium Particles Showing Voids in the Centers

\[T_h = 2800 \text{ K}; \quad G = 1931 \text{ K/cm}; \quad L = 0.51 \text{ cm}; \quad t = 33 \text{ hrs} \]
Fig. 3 Redistribution of Ruthenium Along Sample No. 1;

\[T_h = 2800 \text{ K}; \ G = 1930 \text{ K/cm}, \ L = 0.51 \text{ cm}, \ t = 33 \text{ hrs} \]
Fig. 4 Redistribution of Ruthenium Along Sample No. 2

\[T_h = 2770 \text{ K}; \ G = 1660 \text{ K/cm}; \ L = 0.57 \text{ cm}, \ t = 33.6 \text{ hrs.} \]
Fig. 5 Redistribution of Ruthenium Along Sample No. 3

\[T_h = 2780 \text{ K}; \ G = 1440 \text{ K/cm}; \ L = 0.76 \text{ cm}, \ t = 27 \text{ hrs} \]
of Ru and URu$_3$ ($T_{\text{Ru}} = 2523$ K, $T_{\text{URu}_3} = 2170$ K). The UO$_2$ sample and some Ru might have evaporated, resulting the differences between theoretical and experimental curves. Actually each sample had a concave top, the depth of the depression being about $0.3 - 0.4$ mm.

B. Isothermal Annealing Experiment

In order to make sure that the redistribution described above was due to the thermal gradient rather than to reaction of ruthenium with the crucible metal, an isothermal anneal was performed (fig. 6). The Ru concentration in the main part of the sample did not change. The low Ru concentrations on the top and the bottom surfaces are believed to be due to loss by evaporation. The vapor pressure of Ru at 2470 K is 2×10^{-3} atm (9), while that of UO$_2$ at the same temperature is 1×10^{-4} atm (10). Also, from microscopic observation, the original Ru particles on the end surfaces had disappeared, leaving holes of the same size. These results show that neither the tungsten crucible nor the rhenium foils influence the distribution of ruthenium in UO$_2$ during the high temperature experiments. The second phase, which has been identified as URu$_3$, was observed in the grain boundaries of the UO$_2$.

C. Stoichiometry

The original stoichiometry of the samples was UO$_{2.000}$. During the high temperature gradient experiments, the tungsten crucible reduces the oxide, and oxygen in the resulting UO$_{2-x}$ redistributes. A sample was sliced into wafers after temperature gradient experiment to determine the stoichiometry change along its length. The stoichiometry of each slice was determined by thermogravimetric method (11). Fig. 7 gives
Fig. 6 Ruthenium Concentration Profile Along a Sample After Isothermal Annealing at $T = 2370$ K for 3 hrs and $T = 2470$ K for 1 hr; Both Ends Covered with Ruthenium Foil.
stoichiometry profile along the sample. Oxygen migrated down the
temperature gradient and accumulated at cold region, thus depleting
the hot region. After the experiment, the average stoichiometry is
O/U = 1.998, which indicated that the tungsten crucible reduced
stoichiometric urania. Assuming that the profile represents the
equilibrium distribution of oxygen in the sample in the temperature
gradient at temperature, the heat of transport of oxygen vacancies
in UO₂, by the plot shown in Fig.8, is -138 ± 53 KJ/mole, which is
comparable with that found by other investigators, -125 ± 60 KJ/mole(12).

4. DISCUSSION
A. Model

Before the experiment, the Ru particles were uniformly distributed
in the samples. Under the temperature gradient, the Ru particles
dissolve in the grain boundaries, in which the Ru also diffuses. The
rate-controlling step of the dissolution of Ru into the grain boundaries
is the diffusion from surfaces of particles into grain boundaries.
Transport from the inside to the surfaces of Ru particles seems faster
compared to dissolution from the surfaces to the grain boundaries so
that there are no gaps between the UO₂ and the particles. We assume that
the Ru particles are spherical with constant radius R₀, the temperature
gradient along the sample is constant and on every cross section perpen-
dicular to the thermal gradient the temperature is constant. The problem
is thus one dimension, and the thermal diffusion equation can be expressed
as:

\[\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D \left(\frac{\partial C}{\partial x} + \frac{QC}{RT^2} \frac{dT}{dx} \right) \right] + 4πR₀D(C_s - C)N \quad (1) \]
Fig. 7 Stoichiometry Change Along Sample Following Thermal Gradient Annealing
Fig. 8 Determination of the Heat of Transport of Oxygen in UO_{2-x} from the Distribution of Fig. 7
where

\[C = \text{concentration of dissolved Ru in UO}_2, \text{ g-atoms Ru/g-atom U} \]
\[N = \text{number of Ru particles per unit volume of UO}_2 \]
\[Q = \text{heat of transport of Ru in UO}_2, \text{ Kcal/mole} \]
\[T = \text{temperature K} \]
\[K = \text{gas constant} \]
\[D = \text{diffusivity of Ru in UO}_2, \text{ cm}^2/\text{s} \]
\[\chi = \text{distance, measured from hot face cm} \]
\[C_s = \text{terminal solubility of Ru in UO}_2 \]
\[C_s = C_{so} e^{-H/KT} \]
\[t = \text{time} \]

The first term in the brackets is the ordinary diffusion term, the second is the thermal diffusion term and the third represents the dissolution, which is related to the size of the central hole in the Ru particles by:

\[\frac{d}{dt} \left(\frac{4}{3} \pi R^3 N c_{Ru} \right) = 4 \pi R_0 D (C_s - C) N \rho_U \]

or

\[\frac{dR^3}{dt} = \frac{3 R_0 (C_s - C) \rho_U}{\rho_{Ru}} \] \hspace{1cm} (2)

where

\[R = \text{radius of the central void in the Ru particle} \]
\[\rho_{Ru} = \text{density of solid ruthenium, g-atoms/cm}^3 \]
\[\rho_U = \text{density of solid uranium, g-atoms/cm}^3 \]

the total concentration of Ru in UO\(_2\) is:
\[C_t = C + \frac{4}{3} \pi \left(R_o^3 - R^3 \right) N_{\text{Ru}} + C_p \]

\[C_p = \text{concentration of precipitated Ruthenium as URu}_3 \]

Assuming

\[\frac{dT}{dX} = G, \]
\[D = D_0 \exp\left(-\frac{E}{RT} \right) \]
\[T_h = \text{the temperature on the hot end of the sample} \]
\[T = T_0 + Gx \]

equation (1) becomes

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + v \frac{\partial c}{\partial x} + wc + S \]

where

\[v = D \left(\frac{G(Q+E)}{K(T_0+Gx)^2} \right) \]
\[w = \frac{DG^2Q}{K(T_0+Gx)^3} \left(\frac{E}{(T_0+Gx)} - 2 \right) + 4\pi R_0 DN \]
\[S = 4\pi R_0 DNC_s \]

I.C.

\[C(X,0) = 0 \]
\[C_t(X,0) = C_0 \]
\[R(X,0) = 0 \]

B.C.

\[J = 0 \] at \(X=0, X=L \)

where \(J = \text{flux of dissolved Ru in UO}_2 \)
\[L = \text{Length of the sample} \]
An attempt at an analytical solution of the thermal diffusion equation shows that the solution cannot be expressed in terms of analytical functions \((13)\). Furthermore, the equation here now has another term \([4R_cD(C_s - C)N]\) which is related to a nonlinear ordinary differential equation of dissolution, Eq. (2), when \(R\) equals \(R_o\), this term disappears in Eq. (1). Thus the equations have to be solved by numerical methods \((14)\).

The numerical analysis shown in the Appendix is used in solving the thermal diffusion and dissolution equations. The method is similar to Marino's method \((14)\) but there are some differences:

1. Marino's method only applies to equilibrium conditions, (i.e., the concentration of solute maintained at the terminal solubility limit) whereas the method used here can handle the non-equilibrium concentration case.

2. Marino's method does not consider the appearance of a second solid phase, which can be handled by the method used here.

In order to compare the calculated redistribution profiles of Ru with the data, the theoretical curves are presented in Fig. 3-5. The apparent diffusivity and effective solubility of Ru in \(UO_2\) for the theoretical curves labelled #1 were taken from Ref. 6:

\[
D = 155 \exp \left(-127.7 \text{ KCal/KT} \right)
\]

\[
C_s = 0.64 \times 10^n \exp \left(-147.2 \text{ KCal/KT} \right)
\]

For comparison, another pair of \(D\) and \(S\) were also used in the calculations which are:

\[
D = 0.03 \exp \left(-70 \text{ KCal/KT} \right)
\]

\[
C_s = 0.13 \times 10^9 \exp \left(-112 \text{ KCal/KT} \right)
\]

In both cases, the heat of transport of Ru was chosen as
Q = -180 KCal/mole

B. Comparison of Experiment and Theory

Comparing the experimental redistribution profiles (Figs. 3-5) and the curves from theory, shows that in the cold regions the Ru concentration essentially remains unchanged due to low diffusivity; in the middle part of the sample, Ru is depleted due to thermal diffusion and lack of Ru replenishment from the low temperature region; in the high temperature region, Ru accumulates except at the top of the sample where severe evaporation occurs. The similarity of experimental and theoretical curves means that to a certain extent, thermal diffusion describes the process which occurs in the sample under a temperature gradient.

From a quantitative point of view, the redistribution of Ru in the experiments is relatively more extensive than predicted by the theory. The difference between experiments and theory may have resulted from use of incorrect parameters. For example, the terminal solubility of Ru in UO₂ used in the theoretical computation is an "apparent solubility", which may be much larger than the real solubility of Ru in UO₂ \(^{6}\). The overestimated terminal solubility of Ru in UO₂ causes a large back concentration-gradient diffusion to counterbalance the thermal diffusion. Actually it may be that most of Ru treated theoretically as "dissolved" Ru here may actually exist as the URu₃ compound which does not contribute to the back diffusion. The fact that Ru accumulates in hot zone implies that the heat of transport of Ru in UO₂ is larger than the activation energy of the real terminal solubility of Ru in UO₂. Second, the differences are partly due to the evaporation of Ru on the top of the samples which makes the
redistribution of Ru in UO\textsubscript{2} larger.

5. CONCLUSIONS

1) The redistribution of Ru in UO\textsubscript{2} in a thermal gradient is substantial, with Ru moving up the temperature gradient. The apparent heat of transport of Ru in UO\textsubscript{2} is negative. This is believed to be the same mechanism which causes fission product Ru to redistribute in oxide fuels.

2) The tungsten crucible reduces stoichiometric urania and the oxygen in UO\textsubscript{2} under steep temperature gradient moves down the temperature. The heat of transport of oxygen vacancy in UO\textsubscript{2} is -138 ± 53 KJ/mole.
APPENDIX:

The numerical analysis method used in computing the theoretical redistribution profile of Ru in UO₂ is briefly described as below.

(1) The specimen is divided into M elements and M+1 nodal planes.

(2) \(R_0, D, S, G \) are known, initial conditions are \(R(X, 0) = 0 \);
\(C(X, 0) = 0 \); \(C_t(X, 0) = C_0 \); \(DX \) and \(DT \) are the space step and the time step, respectively.

(3) Compute \(C \) by using finite difference method. Eq.(1) of the text becomes:

\[
A_1(j)C_{j+1,K+1} + A_2(j)C_{j,K+1} + A_3(j)C_{j-1,K+1} = A_4(j)
\]

where

\[
A_1(j) = \frac{-1}{2}(D_1 + V_1) \\
A_2(j) = 1 - \frac{1}{2}(W_1 - 2D_1) \\
A_3(j) = \frac{-1}{2}(D_1 - V_1) \\
A_4(j) = \frac{1}{2}(D_1 + V_1)C_{j+1,K+1} + \frac{1}{2}(W_1 - 2D_1)C_{j,K+1} + S_1(j)
\]

\[
D_1 = \frac{D \cdot DT}{DX^2} \quad ; \quad V_1 = \frac{V \cdot DT}{2 \cdot DX} \\
W_1 = W \cdot DT \quad ; \quad S_1 = S \cdot DT
\]

(4) The boundary conditions are:

\[
\frac{aC}{aX} + \frac{QC}{KT^2} = 0 \quad \text{at } X = 0, \text{ and } X = L
\]

where \(L \) is the length of the sample.

(5) Compute \(R \) by using the finite difference form of Eq.(2).

(6) Check if \(R \geq R_0 \) when \(R \geq R_0 \), set \(R = R_0 \).
(7) Check C and R if they are consistent with mass conservation by using the following formula:
\[\int_0^L C \, dx = \int_0^L \frac{4}{3} \pi R^3 N \rho_{Ru} \, dx \]

(8) Check if C exceeds the terminal solubility, there will be precipitation, when \(C \geq C_s \), then \(C_p = C - C_s \), and set \(C = C_s \).

(9) Compute \(C_t \):
\[C_t = C + \frac{4}{3} \pi N \rho_{Ru} (R_o^3 - R^3) + C_p \]

(10) Check if the total mass conserves by using the following formula:
\[\int_0^L C_t \, dx = C_0 L \]
REFERENCES

ACKNOWLEDGMENT

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract W-7405-ENG-48.