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Design strategy for terahertz quantum dot
cascade lasers
BENJAMIN A. BURNETT AND BENJAMIN S. WILLIAMS

Department of Electrical Engineering and California NanoSystems Institute, University of California, Los
Angeles, Los Angeles, California 90095, USA
∗bburnett@ucla.edu

Abstract: The development of quantum dot cascade lasers has been proposed as a path to
obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is
due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that
accompanies discretization of the electronic energy spectrum. We present numerical modeling
which predicts that simple scaling of conventional quantum well based designs to the quantum
dot regime will likely fail due to electrical instability associated with high-field domain formation.
A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids
these problems. Counterintuitively, this involves the resonant depopulation of the laser’s upper
state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model
of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally,
the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting
that the design concept is robust to a moderate amount of statistical variation.

c© 2016 Optical Society of America

OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (250.5590) Quantum-well, -wire and -dot devices;
(140.3070) Infrared and far-infrared lasers.
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1. Introduction

Terahertz quantum cascade lasers (QCLs) are increasingly viable coherent sources in the 1-
5 THz range, having now advanced to pulsed peak power above 1 W [1] and CW power
above 100 mW [2, 3]. However, room-temperature operation remains elusive with the maximum
operating temperature at only 200 K [4]. The primary reason for this limitation is now generally
accepted to be nonradiative relaxation of electrons in the upper radiative state due to thermally-
activated electron-longitudinal-optical (LO-) phonon scattering [5–7]. In a THz QC-laser, the
energy spacing between the upper radiative state “U” and lower radiative state “L” is smaller
than the LO-phonon energy: EUL < ELO (36 meV in GaAs = 8.7 THz). As the electronic
temperature increases, electrons gain sufficient in-plane kinetic energy to emit LO-phonons; this



process rapidly depletes the upper state and prevents lasing at room temperature.
It has been proposed that replacing the quantum wells in a QCL with quantum dots could

offer a solution due to the discretization of the electronic subbands into “sublevels.” In principle
this would lead to a so-called “phonon bottleneck,” where LO-phonon scattering is suppressed
between pairs of sublevels provided they are not resonant with ELO [8–10]. The existence of this
effect has been experimentally confirmed by directly measuring THz intersublevel relaxation
times as long as 1 ns in self-assembled quantum dots at 10 K (extrapolated to tens of picoseconds
at room temperature) [11], as well as the raising of a THz QCL’s operating temperature from
160 K to 225 K by applying a strong magnetic field to discretize the subbands into Landau
levels [12]. The candidate geometries for such a quantum dot cascade laser (QDCL) include
self-assembled quantum dots [13, 14], nanopillars etched from the top-down into QCL active
material [15–17], and nanopillars epitaxially grown from the bottom-up [18, 19].

Due to the challenges of developing the necessary fabrication and growth techniques, sim-
ulation is particularly important to validate the QDCL concept and to guide design. A proper
theoretical treatment cannot rely on the usual Fermi’s Golden Rule rate equation approaches,
because the electron-LO-phonon interaction takes on an entirely new character owing to the
formation of strongly-coupled intersublevel electron-phonon polarons [24]. So far, both nonequi-
librium Green’s function (NEGF) and density matrix models have predicted significant population
inversion and THz gain at room temperature, especially once the high confinement regime is
reached (lateral dimensions of 20-30 nm depending on material) so that only the lowest lateral
state plays a role in transport [20–22]. However, in Refs. [21, 22], an extreme subthreshold
parasitic current channel was predicted when the injector sublevel I from the previous module
aligns with the lower radiative state L. This effect would create a negative differential resistance
(NDR) bias regime beyond the parasitic point. The NDR regime leads to space charge buildup
and high-field domain formation, which effectively renders the intended operaing bias point
inaccessible, and prevents laser operation.

NDR occurs because transport is far more efficient at the parasitic bias compared to the higher
design bias. This is a natural consequence of the lower radiative state having a short lifetime
due to relaxation by LO-phonon emission; this occurs by design by setting the lower subband
energy such that ELI ≈ ELO. In conventional QCLs, this parasitic channel is kept modest by
using thick injection barriers to ensure that the tunneling process — and not the lifetime τL — is
the bottleneck to current flow [23]. In the QDCL, this strategy will not work, because the longer
lifetimes and the longer dephasing times mean that barriers would have to be impractically large
to suppress the parasitic channel.

In this paper, we present a counterintuitive strategy for the design of a THz QDCL which
avoids the expected problem of electrical instability. This is in contrast to previous theoretical
investigations which have for the most part focused upon designs which follow the same design
rules as conventional QCLs. The central concept is to engineer the sublevel spacings so that
resonant-phonon emission occurs from the laser’s upper state, i.e. EUI ≈ ELO, rather than
from the lower state as is widely adopted in ordinary QCLs. This has the effect of ensuring
the maximum current occurs at the design bias, rather than at below. The strategy is tested
theoretically using the density matrix model presented in [22], extended to a level of generality so
that both the original and new designs are tested using the same code. It is predicted that sufficient
gain is available at room temperature and at electrically stable operating points, although the gain
level and saturation intensity are lower than for the conventional strategy. Finally, simulations
of quantum dot size inhomogeneity are performed, which suggest that some amount of size
fluctuation does not necessarily prohibit lasing.

The paper is organized as follows: Section 2 gives an overview of the design concept including
the physics of electron-LO-phonon interaction in quantum dots, Section 3 overviews the density
matrix model used to assess the new strategy, Section 4 gives the calculated results, Section 5
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Fig. 1. (a) Energy eigenstates obtained with (solid) and without (dashed) the polaron coupling
in an InAs QD with varying sublevel separations E2 − E1. Ωpol is given a typical value
of 3 meV. Downward arrows depict start/end states of electron relaxation. (b,c) Relaxation
dynamics for different sublevel energy separations assuming the LO-phonon decay time
of 2.5 ps and for pure dephasing times of T∗2 = ∞,3 ps. Colors correspond to downward
arrows in (c).

addresses the effect of quantum dot size inhomogeneity, and concluding remarks are made in
Section 6.

2. Design concept

2.1. Polaron physics

A brief overview of the relevant polaron physics is given here; for a more detailed discussion the
reader is referred to [22]. The discrete nature of electronic sublevels in quantum dots combined
with the nearly dispersionless LO-phonon spectrum results in a strong coupling of the two and
the formation of electron-phonon quasiparticles known as “polarons”. Because the combined
system does not have a continuum of states, irreversible decay does not occur. Instead, the
electron continually emits and re-absorbs an LO-phonon, resulting in a Rabi oscillation which
continues until the decay of the LO-phonon or another interruption [24, 25].

It can be shown that a given intersublevel electronic transition emits phonons into only a
single mode spatially localized around the transition. The polaron coupling strength to this mode
is defined as Ωpol , which couples for example the product states |ψ2; 0〉 and |ψ1; 1〉, which
are formed from the electron states ψn and phonon mode occupations m. This is illustrated
qualitatively in Fig. 1(a), where we consider the energy eigenstates obtained by diagonalization
of the electron-phonon Hamiltonian in a ficticious InAs quantum dot of variable dimension such
that the intersublevel energy spacing E2 − E1 is varied. The dashed lines are the state energies
without the electron-phonon interaction; inclusion of the interaction causes an anticrossing
behavior between the polaron eigenstates. Full hybridization occurs for an electronic transition
tuned to ELO (29 meV in InAs), whereas for detuned transitions the eigenstates return more so
to their separate “bare” characters, i.e. “electron-like” or “phonon-like.”

LO-phonons can irreversibly decay into various pairs of acoustic phonons, as long as the total
momentum and energy of the pair is conserved. The overall relaxation rate can be computed by
integrating over the continuum of possible pairs, and has been performed in various works [25,26];
here we borrow the results from [26] and approximate a 2.5 ps relaxation time to equilibrium at
room temperature. From this rate, the transition rates between the phonon number (Fock) states
of a given mode, which are the decay and generation of phonons, are deduced.

Fig. 1(b) shows the approximate relaxation dynamics for three different intersublevel energies:
E21 = 10, 20, and 29 meV. Two key characteristics are observed. First, despite the existence of
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Rabi oscillations, the envelope of the relaxation process can be described by an approximate
lifetime. Second, this lifetime increases for smaller E21, as the intersublevel transition becomes
further detuned from ELO, and the polaron becomes less "phonon-like". Fig. 1(c) repeats the
example of Fig. 1(b), only now including a finite pure dephasing time T ∗2 . T ∗2 in quantum dots
has been investigated experimentally using a four-wave mixing experiment in [27], where it
was found to decrease from approximately 90 ps at 10 K to 9 ps at 120 K. Calculations in [28]
indicate that T ∗2 is intricately dependent on the details of the energy structure, but expected values
are a few ps at 300 K. In this work we will use T ∗2 = 3 ps, phenomenologically, which is an order
of magnitude longer than typical values assumed for T ∗2 in quantum wells. As seen in Fig. 1,
the presence of pure dephasing has a fairly small effect on transport, although the effect on the
optical linewidth is more significant; further discussion is found in [22].

2.2. Design strategy

The most successful THz QCL designs are based on the “resonant-phonon” concept, which is
shown in Fig. 2(a) for a simple 3-level laser design (adapted from [22, 33]), with upper radiative,
lower radiative, and injector states labeled U , L, and I respectively. Fast depopulation is ensured
by designing EL − EI ≈ ELO .

We propose the new concept specifically for QDCL design where it is the upper, rather than
the lower, state that is placed to depopulate at resonance with LO-phonons. In other words, the
design is such that EU − EI ≈ ELO. This is shown in the design of Fig. 2(b), which is adapted
from the previous design simply by widening the wells, in contrast to the suggestion in [21]
of widening the barriers. This would certainly not be a useful concept in ordinary QCL design,
as the upper state lifetime would most likely be far too short to support sufficient population
inversion at a reasonable current density. However, here it is imperative that the current maximum
occurs at the intended design bias (where I′ injects into U) rather than at a lower bias (where



I′ injects into L). And indeed, since EL − EI < ELO, depopulation is slowed. However, all of
these things notwithstanding, it will be shown that the laser can in fact still support a sufficient
population even under the condition that the effective lifetime of the upper state is shorter than
the lower.

The condition for electrical stability is that the current at design bias J0 should be greater
than the current at the parasitic resonance Jpara . Although a real estimation of the current at
either point requires a detailed simulation, the design strategy that we employ can be understood
by thinking of the polaron relaxations as leading to effective relaxation lifetimes τU and τL
(similar to shown in Fig. 1). Since the primary bottleneck to transport in a QDCL is the polaron
relaxation, the injector level can be expected to share population with the upper/lower state when
biased to resonance with either, if the further approximation of perfectly selective injection is
made. This leads to an estimation of the currents as:

Jpara ≈
Nsq
2τL

J0 ≈
Nsq
2τU

, (1)

where Ns is the sheet doping density. It is understood through Eq. 1 that the condition τU < τL
is required for electrical stability.

Furthermore, the concept of rates would give the steady-state population inversion in our
system as:

∆N =
J
q
τU

(
1 −

τL
τUL

)
, (2)

which establishes the simple condition that the lower state lifetime τL need only be shorter than
the transition time across the radiative states τUL to yield positive population inversion. A short
upper-state lifetime τU reduces the magnitude of the population inversion, but importantly does
not change the sign. We expect that the condition τUL > τL can be satisfied in our system as long
as the depopulation energy EL − EI is tuned closer to ELO than the radiative energy EU − EL .

3. Density matrix transport model

Transport models in QCLs are often based on a density matrix, because of the fact that scattering
can localize electrons into states whose description requires subband correlations. The general
approach is to describe certain evolution as coherent, driven by a Hamiltonian H through the
Liouville-von Neumann equation i~ ρ̇ = −[H, ρ] (ρ is the density matrix), while other parts of
the evolution are described as incoherent scattering. Effects of tunneling can be recovered by
making a phenomenological basis choice localized on either side of the barrier, and incorporating
transitions and dephasing within this basis [29], or by computing the scattering more generally
where all density matrix elements can be coupled [30, 31]. In the simpler density matrix models,
which can be traced all the way back to the first proposal for a QCL [32], analytic solutions
are derived to give useful equations describing parameter dependencies [33, 34], whereas more
recently numerical solutions have been used to simulate more complex systems. This includes
the generalized scattering approaches which give insight into optical pulse response [30] and
in-plane behavior [31], and also phenomenological approaches in which the steady-state under
coherent, nonperturbative optical excitation is solved for to yield gain spectra [35] and optical
nonlinearities [36].

In the density matrix model used here, described in more detail in [22], the basis of states is
formed by the tensor product of the electronic states in each repetitive module and the occupations
of the relevant phonon modes. Thus, the coherent part of the evolution is composed of the state
energies, tunneling, electron-phonon interaction, and optical field; the incoherent evolution
includes the phonon decay and generation, and the pure dephasing. Periodic boundary conditions
are applied. The Hamiltonian and density matrix are allowed frequency content at dc and the



frequency of the optical field. By solving for the full steady-state of ρ, a fully coherent and
nonperturbative response to the optical field is obtained, from which the current and gain are
extracted.

As was the case in [22], we are again assuming that the pillar diameter is sufficiently small
that only the lateral ground states are relevant to the transport problem. The pillar cross-section
is approximated as circular with a diameter of 30 nm, which results in a separation of 66 meV
between the ground and first excited lateral states in InAs, well above the LO-phonon energy of
29 meV. The phonon interaction is described using three orthogonalized phonon modes which
span the space defined by the three possible intramodule transitions: U-L, U-I, and L-I. This
is an extension of the simulation in Ref. [22], which only included two modes, and allows for
both designs to be simulated using the exact same code. The maximum total occupation in all
modes is allowed to reach up to two — sufficient to capture the relevant phenomena at room
temperature. A schematic of the full electron-phonon product space similar to Fig. 4 in [22] can
be drawn, but with the addition of the extra phonon mode, it is too complicated to reproduce
here.

The modeling in this work is worth comparing to the NEGF approaches [20, 21]. The NEGF
calculations have the advantage over density matrix models of not requiring a phenomenological
basis choice for the electron wavefunctions; however, the complexity of NEGF presents somewhat
of a restriction that only the electron can practically be tracked. This means that the presence
of the LO-phonons enters into the calculation as an averaged field which acts as a bath on
the electrons and is assumed to remain at equilibrium, thus possibly missing effects where
generated nonequilibrium phonons act back on the electron system. A density matrix approach
is computationally lighter than NEGF and thus allows for the LO-phonons to be treated on the
same footing as the electrons, so that the role of the bath is pushed further down to the acoustic
phonons [22].

4. Results

Simulated results of the transport characteristics and bias-dependent small-signal optical gain at
300 K are in Fig. 4. It is assumed for both designs that the pillars are spaced on a square lattice
of 60 nm pitch, and that one electron exists per module, amounting to an overall electron density
of approximately 5 × 1015 cm−3. Due to the very large CPU time required, these simulations
make use of highly-parallel (high-throughput) computing.

The strong parasitic channel is evident in the conventional design at ∼25-30 mV/module, with
a current density approximately 5× larger than at the design bias of 42 mV/module. In contrast,
while the modified design does exhibit a parasitic current channel at 25 mV/module, the current
is much larger at the design point of 29 mV/module. The conventional design is calculated to
exhibit higher gain at design bias than the modified design, but the bias point is unstable making
this gain entirely inaccessible. In fact, hardly any gain at all is predicted in the conventional
design at any stable points. The modified design, on the other hand, still produces a significant
amount of gain (on the order of 100 cm −1) in the region of stability and around the frequency
that is visible from the electronic bandstructure. This result suggests that our concept is valid.

Effects of gain saturation are investigated in Fig. 4. In these simulations, the small-signal
gain at frequency ω is calculated under increased intensity at the frequency of peak small-signal
gain ωpeak , so that cross-saturation of ω by intensity at ωpeak is obtained. Extension of the
model to include multiple frequencies was performed in manner similar to [36]. Results suggest
that in both designs, the saturation is highly nontrivial owing to the complex nature of the
polaron-coupled system; aspects of both homogeneous and inhomegenous saturation are visible.
Importantly, spectral hole burning effects are important even for perfectly uniform quantum dot
size. Fig. 4(c) shows the small-signal gain spectrum peak as a function of saturation by intensity
at ωpeak . The modified design exhibits a saturation intensity around the 10 W/mm2 level, which



Fig. 3. Simulated transport characteristics and bias-dependent small-signal optical gain
at 300 K for the conventional and modified designs, showing regions of electrical stabil-
itiy/instability. The designed and predicted gain in the modified design is circled by the
dashed oval.
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Fig. 4. Simulated effects of saturation on the conventional and modified designs at their
respective design biases. Saturated gain profiles in (a) and (b) are cross-saturation by intensity
at ωpeak (marked by dashed line), and (c) is the peak of these profiles in relation to the
small-signal gain at ωpeak .
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Fig. 5. Simulated gain spectra of 50 different variations of each design, where all length
dimensions vary by a Gaussian distribution of 5% standard deviation. The solid black lines
are the gain in the intended designs, and the solid red lines are the average of all variations.

is approximately one order of magnitude lower than the conventional design. As was done for
the current (1) and gain (2), this can also be understood in terms of effective rates; the saturation
intensity can be written for a three-level laser as:

Isat (ν) =
hν

σ(ν)
[
τL + τU

(
1 − τL

τUL

)] , (3)

where ν is the optical frequency and σ(ν) is the gain cross-section. The low saturation intensity
is caused by the long lower state lifetime, which is a consequence of EL − EI < ELO .

5. Effects of inhomogeneity

Because quantum dot sizes cannot be controlled at the atomic precision level as is possible in
quantum wells, size inhomogeneity can be expected to be an important factor in device operation,
quite possibly dominating the optical linewidth. In the case of self-assembled quantum dots
the growth process is inherently stochastic. Quantum dots defined by bottom up nanopillar
growth and top-down etching have lateral dimensions defined by lithography — nonetheless
some nonuniformity will likely persist. In all cases, due to the complexity of the gain profile
which is split by the nontrivial interplay of tunneling and polaronic couplings, assessment of the
inhomogeneous broadening cannot be simply assumed to follow a normal distribution.

To approximate the effect of inhomogeneity, simulations were run in which all length dimen-
sions (4 layer widths and the diameter) were allowed to fluctuate by a Gaussian distribution
of 5% standard deviation. The small-signal gain is computed for 50 variations on each design,
which are all assumed to be biased at the design bias of the target geometry. This would ignore
the effects of, for example, spatial correlation in dimensions that might be expected in the growth
reactor, and the slightly different biases that each might see due to series combination. However,
this still provides a rough look at the sensitivity of the gain profile to fluctations in quantum dot
dimensions. Results are shown in Fig. 5. The 5% standard deviation in lengths is expected to
reduce the peak gain by approximately one half, although this would remain well above a typical
cavity loss of 25 cm−1.

6. Conclusion

A useful strategy was presented for the design of a THz QDCL that avoids the predicted
problem of electrical instability. The concept is, counterintuitively, to aim for resonant-phonon



depopulation of the laser’s upper, as opposed to lower, state. This creates a parallel current
channel at design bias from U → I that ensures one can reach design bias. This can be considered
conceptually equivalent to the strategy of using a shunt resistance to allow bias of a superlattice
in the NDR regime so as to obtain Bloch gain [39]. Although somewhat lower gain is predicted
in the modified design as compared to a conventional design hypothetically at design bias, this is
still at the level of greater than 100 cm−1 which should be easily sufficient for lasing. A downside
brought about by our modification is an order-of-magnitude lower saturation intensity because
of the long lower state lifetime, which could lead to a lower power level. Finally, simulations of
quantum dot size inhomogeneity were performed, which suggests that at least a 5% uncertainty in
the dot dimensions is tolerable. We should also note that this strategy will likely work only when
EU − EL < EL − EI , such that the radiative transition is further from ELO than the depopulation.
In InAs dots for example, this will limit the photon energy to at most 14 meV (∼3.5 THz).

These results provide a concrete example of the contrast between successful QCL and QDCL
design concepts, which is called for because of the inherently different transport physics. Further
work could focus on more complicated designs involving a larger module, although this would
be outside the practical capability of this modeling approach, or on the inclusion of charging
effects [40].
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