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1. Introduction

Stochastic modeling of microstructural evolution in substitu-
tional binary alloys using Monte Carlo methods is a relatively 
mature field. In lattice kinetic Monte Carlo simulations, alloy 
configurations are generated randomly, typically by direct 
atom exchange (the so-called ‘Kawasaki’ dynamics) [1–5], or 
by (local) vacancy-mediated solute transport [3–13]. The time 
scale is recovered by using physical jump frequencies that 
depend on the energies of the configuration before and after the 
exchange in such a way that detailed balancing holds. These 
energies are calculated using a suitable Hamiltonian func-
tion, which—in most cases—depends only on the chemical 
nature of the species participating in an exchange, as well as 
on their separation distance. Such methods, aptly called ‘AB’ 

or ‘ABV’—in reference to the atomic species involved—, 
generally express the Hamiltonian as a cluster expansion trun-
cated to first or second nearest neighbor distances [3–5, 7, 8, 
11], [12, 14]. The order of the cluster expansion is variable, 
although it is generally restricted by computational consider-
ations to second order [3–6, 8], [12–14]. However, it is often 
advantageous to express the cluster expansion Hamiltonian 
in terms of an Ising model where the site occupancy vari-
ables reflect the nature of the different species involved. This 
is because of the extensive mathematical and computational 
infrastructure associated with the Ising system, which is one 
of the most widely studied, and whose behavior is best under-
stood, models in computational physics [3–5, 8, 14–17].

ABV models are also of interest in irradiated materials, to 
study non-equilibrium phenomena such as radiation enhanced 
diffusion and segregation, and indeed have been applied 
numerous times in irradiation damage scenarios [11, 18–21]. 
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However, by their very nature, ABV simulations obviate the 
existence of self-interstitial atoms (SIA), which are com-
panion to vacancies during defect production in the primary 
damage phase [22]. Neglecting SIA (as well as mixed inter-
stitial) involvement in solute transport can often be justified 
when interstitial diffusion is orders of magnitude faster than 
that of vacancies, and—as importantly—occurs in a (quasi) 
one-dimensional manner. This results in a point defect imbal-
ance when SIAs reach defect sinks on time scales that are 
much shorter than those associated with vacancy motion, 
leaving vacancies as the sole facilitators of atomic transport 
[18, 23]. However, in certain cases interstitials play an impor-
tant role in mediating solute diffusion, and their effect can no 
longer be dismissed when formulating global energy models 
for solute transport. A case in point is the recent discovery of 
solute drag by so-called ‘bridge’ interstitial configurations in 
W-Re/Os alloys [24], although several other examples exist 
[25–27]. In such cases, the ABV Hamiltonian is insufficient to 
capture the contribution of SIAs to microstructural evo lution. 
This has prompted the development of cluster expansion 
Hamiltonians that include interstitials as well as vacancies as 
defect species [28–33]. To date, however, an extension of such 
Hamiltonians to the Ising framework has not been attempted. 
That is the central objective of this paper.

Here, we propose a generalization of the ABV Ising model 
to ABVI systems of binary alloys subjected to irradiation. 
The paper is organized as follows: after this introduction, we 
describe our methodology in detail in section 2, providing a 
recipe to perform the ABV  →  ABVI extension. Subsequently, 
in section 3 we provide three different verification exercises 
in increasing order of complexity using published works. We 
end with a brief discussion and the conclusions in section 4.

2. Theory and numerical methods

2.1. Cluster expansion Hamiltonians for binary alloys

The most common approach to study the energetics of sub-
stitutional alloy systems is the cluster expansion method, in 
which the energies of the different crystal configurations are 
defined by specifying the occupation of each of the N sites of 
a fixed crystal lattice by a number of distinct chemical spe-
cies (which may include solvent and solute atoms, defects, 
etc). This problem can quickly become intractable, given the 
combinatorial nature of arranging N distinguishable atomic 
sites, and a number of approaches have been proposed to 
reduce the dimensional complexity of the problem [34–36]. 
A common simplification is to assume that the Hamiltonian H 
of the system can be calculated as the sum of all possible pair 
interactions, defined by their bond energies:

n
,

- -∑=
α β

α β α βεH (1)

where α and β refer to a pair of lattice sites, n is the total number 
of different bond types, and ε are the energy coefficients.

Further, a binary system containing two types of atoms 
(matrix) A and (solute) B, as well as vacancy defects is termed 
the ‘ABV’ system, for which the pairwise cluster expansion 

Hamiltonian (1) can be expressed as an Ising Hamiltonian of 
the following form [3–5, 37]:

K U J
i j

nn

i j
i j

nn

i j j i
i j

nn

i j0
,

2 2

,

2 2

,

( )∑ ∑ ∑σ σ σ σ σ σ σσ= + + + +H H (2)

where i j,⟨ ⟩ refers to a pair of lattice sites i and j, and σ are the 
occupancy variables:

1 A matrix atom
0 V vacancy
1 B solute atom

   (   )
   ( )

 (   )

⎧
⎨⎪
⎩⎪

σ =
−

 (3)

0H  in equation (2) is a constant independent of the configura-
tion of lattice sites. The three coefficients K, U, and J are:

K

U

J

1
4

2

1
4

1
2

1
4

2

A-A B-B A-B V-V A-V B-V

A-A B-B A-V B-V

A-A B-B A-B

( ) ( )

( ) ( )

( )

= + + + − −

= − − −

= + −

ε ε ε ε ε ε

ε ε ε ε

ε ε ε

Together with the activation energy parameters, which will 
be described in section  2.3.2, these constants determine the 
kinetic behavior of the ABV system. The second term in the 
rhs of equation (2) gives the relative importance of vacancies 
in the system. A large value of this term implies low vacancy 
concentrations, which in the limit of a single vacancy in  
the crystal converges to a constant value of K z 1N

2( )−′ , where 

K 21
4 A-A B-B A-B A-V B-V( ) ( )= + + − +′ ε ε ε ε ε , and z is the 

coordination number [5]. The asymmetry factor U determines 
whether there is more affinity between A atoms and vacancies 
or B atoms and vacancies. U  >  0 indicates a preference of A-V 
pairs. J determines the thermodynamics of the system, with 
J  >  0 leading to an ordered solid solution, J  <  0 to a phase-
separated system, and J  =  0 resulting in an ideal solid solution. 
This Hamiltonian can be trivially extended from 1st nearest 
neighbors (nn) to higher nn by summing over all contributions:

nn nn1 - 2 -st nd= + +!H H H (4)

2.2. Generalization of the ABV Ising Hamiltonian to systems 
with interstitial atoms

Next, we expand equation (2) to a system containing A and 
B atoms, vacancies, and interstitial atoms, which we term 
‘ABVI’. Interstitial atoms can be one of three distinct types, 
but in all cases two (otherwise substitutional) atoms share 
a single lattice position: AA denotes a self-interstitial atom 
(SIA), AB represents a mixed interstitial, and BB is a pure 
solute interstitial. Adding these extra species to the cluster 
expansion Hamiltonian brings the total number of species to 
six, which results in the following expression:

i j

nn

i j
, ,

-∑∑ λ λ=
α β

α β
α βεH (5)

where , A, B, V, AA, AB, BBα β =  and the occupancy vari-
able 1iλ =

α  if lattice site i is occupied by type α and zero 
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otherwise. The total number of independent terms in equa-
tion  (5) is 36. However, assuming that a pair vacancy-inter-
stitial is unstable up to several nearest neighbor distances, we 
can eliminate all the V-I

V Iλ λε  (where I  =  AA, AB, BB) terms 
in the equation, thus reducing the total number of terms to 30.

In the spirit of the ABV Ising model, we assign spin varia-
bles of different types to each of the species of the Hamiltonian:

2 AA self-interstitial atom
1 A matrix atom
0 V vacancy and AB mixed interstitial
1 B solute atom
2 BB solute--solute interstitial

   (   )
   (   )
   ( )     (   )

 (   )
 (   )

⎧

⎨
⎪⎪

⎩
⎪⎪

σ =
−
−

 (6)

Although the set of spin variables for the ABVI model is not 
unique, the one chosen above uses the lowest-order integer pos-
sible and preserves the magnetization of the Ising model, i.e. the 
excess amount of solvent after the solute has been subtracted 
out. The convenience of choosing a zero spin variable for both 
the V and AB species brings about some complications in the 
Hamiltonian, however, which will be dealt with in section 2.2.1.

From their definition in equation (5), the six independent 
λα variables can be written in terms of the spin variables fur-
nished in equation (6):

( )

( )

( )

( )

( )

λ σ σ σ σ

λ σ σ σ σ

λ λ σ σ

λ σ σ σ σ

λ σ σ σ σ

= + − −

= − − + +

= = − +

= − + + −

= − − +

1
24

2 2

1
6

4 4

1
4

5 4

1
6

4 4

1
24

2 2

AB

AA 4 3 2

A 4 3 2

V 4 2

B 4 3 2

BB 4 3 2

 

(7)

Inserting the above expressions into equation  (5) and oper-
ating, the cluster expansion Hamiltonian is transformed into a 
generalized Ising system with integer spins:

∑ σ σ σ σ σ σ σ σ σ σ

σ σ σσ σ σ σ σ σ σ

σ σ σσ σ σ σ σ σσ

σσ σ σ σ σ

σ σ σ σ

= + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

C C C

C C C

C C C

C C C

C C C

i j
i j i j i j i j i j

i j i j i j i j i j

i j i j i j i j i j

i j i j i j

i j i j

,
44

4 4
43

4 3 3 4
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4 2 2 4

41
4 4

33
3 3

32
3 2 2 3

31
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22
2 2

21
2 2

11 40
4 4

30
3 3

20
2 2

10 00

H [ ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ]

 
(8)

where Cmn are the coefficients of the cluster expansion.

2.2.1. Corrections to the Hamiltonian to separate V and AB 
contrib utions. By construction, both vacancies and AB 
interstitials share 0σ =  in equation  (8), which in turn makes 

1V ABλ λ= =  leading to miscounting of both contributions. 
Corrections must therefore be adopted to recover the correct 
energy from the Hamiltonian. These corrections can simply be 
subtracted from the uncorrected Hamiltonian in equation (8) as:

correction termscorrected uncorrected [   ]= −H H (9)

The correction terms can be readily identified on inspection 
of equation (1):

= + +
+ + +

n n n
n n n

correction terms V-V AB-AB AB-AB V-V A-V A-AB

V-B AB-B A-AB A-V AB-B V-B

ε ε ε
ε ε ε

[   ]

 (10)
where n -α β are numbers of bonds. Tracking the number of 
bonds in simulations takes extra computational effort, and 
also implies deviating from a purely Ising treatment. It is thus 
desirable to express nAB-AB, nV-V, nA-AB, nAB-B, nA-V, and nV-B as 
summations of powers of the spin variables, as in equation (8). 
In this fashion, the correction terms do not add any additional 
cost to the evaluation of the Hamiltonian but, instead, only 
alter the value of the coefficients in equation (8). First, how-
ever, we must obtain expressions for all n -α β in terms of the 
spin variable σ.

After discounting the nV-I terms (with I  =  AA, AB, BB), 
there are 18 n -α β and therefore 18 independent equations are 
needed. 10 of them can be obtained from the summations of 
σ-polynomials:

∑σσ = + − − +
− − + + +

n n n n n

n n n n n

4 2 2 4
2 2 4

i j AA-AA AA-A AA-B AA-BB A-A

A-B A-BB B-B B-BB BB-BB
 

(11)

∑σ σ σσ+ = + − + +
− − −

n n n n n

n n n

16 6 2 2 2

2 6 16
i j i j
2 2

AA-AA AA-A AA-B A-A A-BB

B-B B-BB BB-BB

 

(12)

∑σ σ = + + + +
+ + + + +

n n n n n

n n n n n

16 4 4 16

4 4 16
i j
2 2

AA-AA AA-A AA-B AA-BB A-A

A-B A-BB B-B B-BB BB-BB
 (13)

∑σ σ σσ+ = + − −
+ − − + +
+

n n n n

n n n n n
n

32 10 10 32

2 2 10 2 10
32

i j i j
3 3

AA-AA AA-A AA-B AA-BB

A-A A-B A-BB B-B B-BB

BB-BB
 (14)

∑σ σ σ σ+ = + + +
− − − −

n n n n

n n n n

64 12 4 2

4 2 12 64
i j i j
3 2 2 3

AA-AA AA-A AA-B A-A

A-BB B-B B-BB BB-BB
 (15)

∑σ σ = + − − +
− − + − +

n n n n n

n n n n n

64 8 8 64

8 8 64
i j
3 3

AA-AA AA-A AA-B AA-BB A-A

A-B A-BB B-B B-BB BB-BB
 (16)

∑σ σ σσ+ = + − +
+ − − −

n n n n

n n n n

64 18 14 2

14 2 18 64
i j i j
4 4

AA-AA AA-A AA-B A-A

A-BB B-B B-BB BB-BB
 (17)

∑σ σ σ σ+ = + + +
+ + + + +
+

n n n n

n n n n n
n

128 20 20 128

2 2 20 2 20
128

i j i j
4 2 2 4

AA-AA AA-A AA-B AA-BB

A-A A-B A-BB B-B B-BB

BB-BB

 

(18)

∑σ σ σ σ+ = + − +
+ − − −

n n n n

n n n n

256 24 8 2

8 2 24 256
i j i j
4 3 3 4

AA-AA AA-A AA-B A-A

A-BB B-B B-BB BB-BB
 (19)

∑σ σ = + + + +
+ + + + +

n n n n n

n n n n n

256 16 16 256

16 16 256
i j
4 4

AA-AA AA-A AA-B AA-BB A-A

A-B A-BB B-B B-BB BB-BB
 (20)
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However, the above equations do not contain any n -α β with α 
or β = V, AB. Six more equations that do contain these terms 
can be obtained by counting the numbers of six species Nα:

zN n n n n n2AA AA-AA AA-A AA-AB AA-B AA-BB= + + + + (21)

zN n n n n n n2A AA-A A-A A-V A-AB A-B A-BB= + + + + + (22)

zN n n n2V A-V V-V V-B= + + (23)

zN n n n n n2AB AA-AB A-AB AB-AB AB-B AB-BB= + + + + (24)

zN n n n n n n2B AA-B A-B V-B AB-B B-B B-BB= + + + + + (25)

zN n n n n n2BB AA-BB A-BB AB-BB B-BB BB-BB= + + + + (26)

where z is the coordination number. Combining equations (11) 
through (26), we have 16 equations  with 18 unknowns. In 
order to solve the system, we express everything parametri-
cally in terms of two bond numbers, nAB-A and nAB-B

2, and 
solve for the rest of the n -α β. nAB-A and nAB-B are then the only 
bond numbers that must be calculated on the fly in the kMC 
simulations.

2.2.2. The corrected Ising Hamiltonian. After solving for all 
n -α β, the corrected Hamiltonian can be obtained by substitut-
ing equation (10) into equation (9). Except for an additional 
term C0, the final expression of the corrected Hamiltonian is 
the same as the uncorrected one in equation (8). However, the 
coefficients Cmn are now ‘corrected’ to account for the AB/V 
conflict. Based on the physical characteristics of each coef-
ficient, each term in the Hamiltonian of the ABVI system can 
be grouped into three different configurational classes and one 
non-configurational group:

∑

∑

∑

∑

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σσ

σ σ σ σ σ σ σσ

σ σ σ σ σσ σσ

σ σ σ σ σ σ

σ σ

= + + + +

+ + + +

+ + + + +

+ + + + +

+ + + + + +

+ + + +

C C C

C C

C C

C C C

C C C

C C C

Class 1

Class 2

Class 3

Non-configurational

i j

nn

i j i j i j i j

i j

nn

i j i j i j i j

i j i j i j i j

i j

nn

i j i j i j i j

i j

nn

i j i j i j

i j

corrected
,

44
4 4

42
4 2 2 4

22
2 2

,
43

4 3 3 4
41

4 4

32
3 2 2 3

21
2 2

,
33

3 3
31

3 3
11

,
40

4 4
30

3 3
20

2 2

10 00 0

H [ ( ) ]  (   )

[ ( ) ( )

( ) ( )]  (   )

[ ( ) ]  (   )

[ ( ) ( ) ( )

( ) ]  ( )
 (27)
The expressions for each of the constants Cmn are given in the 
appendix.

In the standard ABV model, defect (vacancy) hops do not 
change the global species concentrations. That means that the 
non-configurational class of terms in the Hamiltonian (27) 
does not change merely by vacancy jumps. However, the ABVI 
model now allows for defect transitions that change the global 

balance of species3. Specifically, there are two types of trans-
itions that affect the species concentrations when they occur. 
The first one involves vacancy-interstitial recombinations:

AA V A A
AB V A B
BB V B B

→
→
→

+ +
+ +
+ +

The second type is related to the interstitialcy mechanism, by 
which an interstitial atom displaces an atom from an adjacent 
lattice position so that it becomes the interstitial in its turn, 
able to displace another atom. This mechanism includes four 
reactions:

AA B A AB
AB A B AA
AB B A BB
BB A B AB

→
→
→
→

+ +
+ +
+ +
+ +

Except when one of the above reactions occurs, the incre-
mental energy formulation used to compute energy differ-
ences between the initial and final states allows us to discard 
the non-configurational terms during calculations.

In order to truly represent a generalized Hamiltonian, the 
ABVI model Hamiltonian must reduce to the AV and ABV 
models in their respective limits (AV: no solute, vacancies; 
ABV: solute plus vacancies). Indeed, we have conducted 
verification tests of both particular cases and we have found 
matching results. This is the subject of section 3, where we 
have simulated the time evolution of ABV and ABVI sys-
tems using the generalized Hamiltonian presented above. Our 
method of choice is kinetic Monte Carlo (kMC), which we 
describe in detail in the following section.

2.3. Kinetic Monte Carlo simulation

In this section we discuss relevant details of the kMC simu-
lation method in relation to our extended ABVI model. All 
simulations are conducted on a rigid lattice generated from 
trigonal (primitive) representations of face-centered cubic 
(FCC) and body-centered cubic (BCC) crystals. The primi-
tive cells employed for each crystal structure are provided in 
figure 1. The simulations are generally conducted in the grand 
canonical ensemble, to allow for irradiation damage simula-
tions when required [38]. All kinetic transitions are assumed 
to be due to defect hops. In particular, we consider the 
vacancy and interstitialcy mechanisms to enable atomic trans-
port. After every transition, the configuration of the system is 
updated and a new transition is considered.

2.3.1. Residence-time algorithm. We use the residence-time 
algorithm (RTA) [39] to track the kinetic evolution of the sys-
tem through a series of thermally activated transitions. The 
transition rates Rij connecting an initial state i to a final state j 
are calculated as:

r
E

k T
expij

ij

B

⎛
⎝⎜

⎞
⎠⎟ν= −

∆
 (28)

2 This choice is justified both by the fact that neither A-AB nor AB-B bonds 
are very likely to appear in the simulations, and because—as will pointed 
out below—AB interstitialcy jumps are the likeliest to change the global 
concentration of species, which results in the need to update the non- 
configurational constants in the ABVI Hamiltonian (see equation (27)). 3 The most obvious one being a vacancy-interstitial recombination.
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where E 0ij∆ >  is an activation energy that will be discussed 
below, ν is the attempt frequency, and k T1 B/  is the reciprocal 
temperature. With the system in configuration i, an event is 
randomly chosen with a probability proportional to its rate, and 

the time advanced per kMC step is on average t ri j ij
1( )δ = ∑
−

. 

In addition to thermally activated transitions such as those rep-
resented by equation (28), we consider spontaneous events—
for which, strictly speaking, Eij∆  may be negative—such as 
recombination between vacancies and interstitials, absorption 
at sinks, etc. These events occur instantaneously with t 0δ = .

2.3.2. Activation energy models. There are several models 
proposed to describe the activation energy, which are based on 
different interpretations of the atomic migration process (see 
e.g. [32] for a recent review). The first model is the so-called 
saddle-point energy model (also known as ‘cut-bond’ model 
in [11]) [10, 18, 40]. The activation energy is given by:

E Eij XY
n

X n
p X

Y p
SP

- -∑ ∑∆ = − −
≠

ε ε (29)

where Y refers to the defect (e.g. a vacancy) and X to the atom 
exchanging positions with Y. The later two summations are 
the bonding energies between X, Y and the adjacent neighbor 
sites n and p and represent the energy of the system at the ini-
tial state. These summations can be computed using the ABVI 
formulas described in section  2.1. The saddle-point energy 
EXY

SP  is generally taken to be a constant [18], or is computed 
as a special sum of bond energies of the jumping atom at the 
saddle point: EXY q Xq

YSP SP,= ∑ ε , where the subindex q represents 
the local neighbors of the jumping atom [10, 40].

The second model is the so-called kinetic Ising model [12, 
41] (or final-initial system energy, as is referred to by Vincent 
et al [11]). In this model, the activation energy is dependent on 
the energy difference of the system ij∆H  between the initial 
i and final states j, as well as a migration energy Em, which is 
a constant determined by the type of defect-atom exchange. 

Two different forms of activation energy are proposed within 
this model. The first form is given by [12]:

E
E

E

, if 0
, if 0ij

ij ij

ij

m

m

 
   

⎧⎨⎩∆ =
+∆ ∆ >

∆ <
H H

H
 (30)

This form assumes that the energy barrier of transitions from 
higher to lower energy states is the migration energy Em, and 
E ijm+∆H  otherwise. An alternative, which is used in this 
work, is given by [11, 41]:

E E
2

ij
ij

m∆ = +
∆H

 (31)

In this case, the migration energy is considered to be the 
energy difference between the saddle point and the average 
energy between states i and j, E E 2i jm

SP ( )/= − +H H . This 
definition of Em results in an expression for Eij∆  that does 
not depend of the final state energy jH . A schematic diagram 
showing the different activation energy models discussed here 
is provided in figure 2. It can be shown that all the three activa-
tion energy models satisfy the detailed balance condition, i.e.:

r

r k T
expij

ji

ij

B

⎛
⎝⎜

⎞
⎠⎟= −

∆H
 (32)

The different characteristics of each of these models have been 
discussed in detail by Soisson et al [32]. In the saddle-point 
energy model, the height of the energy barrier is not depen-
dent on the energy of the final state, which agrees with the 
theory of thermally-activated processes. Also, the energy bar-
rier dependence on configurations can be fitted directly from 
empirical potentials or ab initio calculations. Recently, a more 
realistic saddle-point energy model has been proposed, where 
the migration energy depends on the local solute concentra-
tion [42, 43]. This model requires a larger parameter data-
base, with the consequent extra cost in atomistic calculations 
or experimental parameterization. For its part, the kinetic 
Ising model assumes that the migration energy depends on 
the average of the energy difference between the initial and 

Figure 1. Primitive cells for (a) FCC and (b) BCC lattices showing all eight vertices as red spheres. The vectors →a1, 
→a2, and →a3 are the 

primitive basis of the crystal, with a0 the lattice parameter.
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final states. This approach links the energy barrier to the local 
chemical environment, with the advantage that no knowledge 
of the saddle-point energy is required. It is also possible to 
evaluate energy barriers of events other than defect jumps 
such as recombination and surface reactions (defect annihila-
tion and vacancy creation), described below in section 2.3.4.

2.3.3. Computing bond energies from electronic-structure 
calculations. Bond energies to parameterize equation  (27) 
and its associated constants Cmn can be calculated using suit-
able atomistic force fields such as semi-empirical potentials, 
density-functional theory (DFT), etc. Considering 2nd-nn 
interactions, the following parameters can be used to write a 
set of equations from which to calculate the bond energies:

 • The cohesive energy of the pure metal A or B can be 
written as:

E
z z
2 2coh

A 1
A-A
1 2

A-A
2( ) ( )= − −ε ε (33)

E
z z
2 2coh

B 1
B-B
1 2

B-B
2( ) ( )= − −ε ε (34)

  where z1 and z2 are coordination numbers of the first 
and second nearest neighbor shells, and the superindex 
(i) refers to the nn shell. Care must be exercised when 
computing each cohesive energy to ensure that the crystal 
lattice corresponds to the equilibrium crystal lattice at the 
desired temperature.

 • The pair interactions between an A atom and a B atom 
A-Bε  can be obtained from the enthalpy of mixing:

ε ε ε

ε ε ε

( )

( )

( ) ( ) ( )

( ) ( ) ( )

=− + −

− + −

E
z

z
2

2

2
2

mix
1

A-A
1

B-B
1

A-B
1

2
A-A
2

B-B
2

A-B
2

 
(35)

 • The formation energy of vacancy is calculated by 
removing an atom from a perfect lattice position and put-
ting it on the surface of the system. For a vacancy in a 
perfect A-atom matrix containing N lattice sites:

E N E N E z z1f
V

coh
A

coh
A

1 A-V
1

2 A-V
2( ) ( ) ( )= − − + +ε ε (36)

 • Similarly, the formation energy of an interstitial pair in an 
A-atom matrix can be written as:

E E z zf
I

coh
A

1 A-I
1

2 A-I
2( ) ( )= + +ε ε (37)

  where I  =  AA, AB, BB.

2.3.4. Events. In kMC the kinetic evolution is determined 
by a series of independent events that represent state trans-
itions. Within the ABVI model, we consider five distinct types 
of events mediated by point defect mechanisms, discussed 
below.

 (i) Defect jumps: vacancies move by exchanging positions 
with one of the z1 1st nn atoms:

a aV V→+ +

  where a  =  A, B. Interstitials, for their part, move via the 
interstitialcy mechanism introduced above. They can 
adopt either the dumbbell or crowdion structure, i.e. two 
atoms sharing one lattice site:

a a a a a aI I1 2 1 1 2 1( ) → ( )− + + −

  where an interstitial composed of two atoms a1 and a2 
(a a,1 2  =  A,B) jumps into a neighboring lattice site occu-
pied by atom a1, giving rise to a new interstitial composed 
of atoms a2 and a1.

 (ii) Recombination: when a vacancy and an interstitial are 
found within a distance less than a critical distance rc, a 
recombination event occurs. The generic reaction is:

a a V a aI 1 2 1 2( ) →− + +

  Recombination events occur spontaneously, with t 0δ = .
 (iii) Annihilation at defect sinks: in this work two types of 

defect sinks are used. The first one, as suggested by 
Soisson [29], is a thin slab of the simulation box designed 
to act as a perfect defect sink (a simple model of grain 
boundary). When a defect jumps into a lattice position 
belonging to the slab, it instantly disappears. To preserve 
the alloy composition, a ‘reservoir’ is used such that when 
a vacancy is absorbed at the sink, an atom is randomly 
chosen from the reservoir and placed at the sink site; for 
interstitials, one of the two atoms is randomly chosen and 
stored in the reservoir; the other atom remains on the sink 
site. Another inexhaustible sink is a free surface. The lat-
tice beyond the free surface is considered to be part of a 

Figure 2. The three different models of activation energy.
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‘vacuum’ such that atoms adjacent to vacuum lattice sites 
are defined as ‘surface atoms’. When a vacancy jumps 
onto a site occupied by a surface atom, it first switches its 
position with the atom, and then the vacancy becomes a 
vacuum site:

a a vV s s→+ +

  where as refers to a surface atom, and v is a vacuum site. 
The mechanism for interstitial annihilation is more com-
plex. When an interstitial jumps onto a surface atom site, 
an instantaneous recombination between the interstitial 
and the vacuum site occurs (vacuum sites are a special 
class of vacancies). The reaction can be described as:

a a v a aI 1 2 1 2( ) →− + +

 (iv) Thermal vacancy emission: material inhomogeneities 
such as surfaces, grain boundaries, dislocations, etc, can 
act as thermal sources of defects. Due to the relatively 
high energy of interstitial defects compared to vacan-
cies, interstitial emission is often considered negligible. 
A thermal emission can be regarded as the inverse of a 
vacancy annihilation event. For a free surface, a vacancy 
is created just below the surface by having a vacuum site 
exchange positions with a surface atom:

v a a Vs s→+ +

  The rate of vacancy emission can become sizable at high 
temperature, and—as an efficient vacancy generation 
mechanism with a strong effect on the system kinetics—
should not be discarded.

 (v) Frenkel pair generation: when considering irradiation 
with light particles (e.g. electrons), V-I pairs are gener-
ated in the lattice. As implemented in our method, when 
a Frenkel pair insertion occurs, two lattice sites are 

randomly chosen, one becomes a vacancy and the other 
becomes an interstitial formed by the two atoms involved:

a a a aV I1 2 1 2→ ( )+ + −

  Frenkel pairs are introduced at a rate consistent with the 
imposed irradiation dose rate (usually measured in dis-
placements per atom per second, or dpa·s−1).

A compilation of all the reactions and events discussed in this 
section is provided in table 1.

3. Results

This section consists of various verification checks undertaken 
to ensure the correctness of our approach. The first tests are 
designed to check the ‘downward’ consistency of our model, 
i.e. comparing against AV and ABV models with reduced 
complexity w.r.t. the ABVI Hamiltonian4. Subsequently, we 
compare our method with KMC simulations of three different 

Table 1. Event reactions considered in this work.

Vacancy jumps Interstitial jumps Recombinations Frenkel pair generation

V  +  A  →  A  +  V AA  +  A  →  A  +  AA AA  +  V  →  A  +  A A  +  A  →  AA  +  V
V  +  B  →  A  +  B AA  +  B  →  B  +  AA AB  +  V  →  A  +  B A  +  B  →  AB  +  V

BB  +  A  →  B  +  AB BB  +  V  →  B  +  B B  +  B  →  BB  +  V
BB  +  B  →  B  +  BB

AB  +  A
 

+
+

A AB
B AA{→

AB  +  B
 

+
+

A BB
B AB{→

Defect annihilation

Thermal emissionIdeal sink Surface

V  →  A V  +  As  →  As  +  v v  +  As  →  As  +  V
V  →  B V  +  Bs  →  Bs  +  v v  +  Bs  →  Bs  +  V
AA  →  A AA  +  v  →  A  +  As

BB  →  B BB  +  v  →  B  +  Bs

AB 
A
B{→ AB  +  v→

⎧⎨⎩
+
+

A B
B A

s

s

Note: V: vacancy, A: matrix atom, B: solute atom, AA: self interstitial, AB: mixed interstitial, BB: pure solute interstitial, v: vacuum atom, As: surface matrix 
atom, Bs: surface solute atom.

Table 2. Bond energies for the Fe–Cu ABV system.

1st-nn interactions (eV)
Migration  

energy (eV)

( )ε A-A
1 ( )ε A-B

1 ( )ε B-B
1 ( )ε A-V

1 ( )ε B-V
1 Em

V-A −EV B
m

−0.611 −0.480 −0.414 −0.163 −0.102 0.62 0.54

2nd-nn interactions (eV)
Jump  

frequency (s−1)
( )ε A-A
2 ( )ε A-B

2 ( )ε B-B
2 ( )ε A-V

2 ( )ε B-V
2 νA

V νB
V

−0.611 −0.571 −0.611 −0.163 −0.180 ×6 1012 ×6 1012

Note: A represents Fe atoms, B Cu atoms, and V is the vacancy.

4 The AV case—as studied by Reina et al [12]– was trivially reproduced by 
our method, and for brevity we omit any further discussion on it.
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ABVI systems published in the literature. In all simulations, 
atoms are initially assigned randomly to lattice sites so as to 
achieve a perfect solid solution as a starting configuration.

3.1. ABV system: precipitation of Fe–Cu alloys

First we simulate the system considered by Vincent et al [11]: 
a Fe-0.6% at. Cu alloy occupying a periodic BCC lattice 
arranged into computational box with 80 80 80× ×  primi-
tive cells containing 512 000 atoms and a single vacancy. The 
Hamiltonian includes 2nd-nn interactions with energy coef-
ficients given in table 2. The energies of mixing for 1st and 
2nd-nn are 0.26 and 0.24 eV, which suggest a strong tendency 
toward phase separation [44]. The temperature is fixed at 773 K. 
During the simulations, the vacancy may become trapped in 
solute precipitates, which does not result in net microstruc-
tural evolution and may stall the simulations. To correct for 
this, Vincent et al proposed to increment the kMC time only 
when the vacancy is surrounded by at most one solute atom. 
Further, to account for an unrealistically high vacancy concen-
tration, the kMC time step is rescaled according to:

t
C

C
tV

kMC

V
0 kMCδ δ= (38)

where C E k Texp fV
0 V

B( / )= −  is the thermodynamic vacancy 
concentration. The rescaling factor in equation  (38) only 
reflects the true time acceleration when there is no solute 
present, or while there is no precipitation. When the system 
is undergoing precipitation, the vacancy concentration is 
environment-dependent and must be updated as the simula-
tion progresses [45]. Alternatively, rescaling can be avoided 
by introducing a vacancy source/sink, which has recently 
been proposed [46–50]. However, using a vacancy source/sink 
requires that an exchange energy be defined, which introduces 
another source of uncertainty. Vincent et al adjust their kMC 
timescale by comparing the kinetic evolution directly with 
experiments. Specifically, they matched a cluster mean radius 
of 0.9 nm in their simulations to a time of 7200 s. For consis-
tency, we adopt the same approach here. The initial and final 
configurations are shown in figure  3. The kinetic evolution 

of precipitation is quantified by calculating the cluster mean 
radius of solute atoms as a function of time. It is assumed that 
a B atom belongs to a cluster if one of its 1st-nn is also a B 
atom of the cluster. The cluster size is computed assuming a 
spherical shape from the expression [9]:

R a
N3

8
0

1
3¯ ⎜ ⎟⎛

⎝
⎞
⎠π= (39)

where R̄ is the cluster mean radius, N is the number of solute 
atoms in the cluster, and a0 is the lattice constant of the 
BCC lattice. As in [11], clusters containing three or fewer 
atoms are not counted towards the calculation of R̄. To cap-
ture the statistical variability of the simulations, we perform 
five independent runs under the same conditions and extract 
the time evolution of the average value of R̄. Error bars are 
extracted by calculating the standard deviation for a represen-
tative data point subset consisting of 31 points. Our results 
are provided in figure  4, together with the data of Vincent 
et  al. After taking into account statistical errors and simu-
lation conditions, it can be seen that Vincent et al’s results 
are generally within the error bars of our simulations. With 

Figure 3. Initial (a), t  =  0, and final (b), =t 28 368 s alloy configurations. The red dots represent solute atoms (B atoms). Solvent atoms 
and the vacancy are omitted for clarity.

0

1

2

3

4

102 104 106

R −
 (

nm
)

Adjusted time (s)

This work
Vincent et al. [11]

Figure 4. The cluster mean radius of the ABV Fe–Cu system. The 
red line represents the results in this work; the black filled squares 
are the data from Vincent et al [11].
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this, we consider our Hamiltonian sufficiently verified for the 
ABV system.

3.2. ABVI system: solute segregation at sinks

In this test, we reproduce the work of Soisson [29]. The system 
consists of a BCC 256 64 64× ×  triclinic crystal lattice con-
taining an A-5%B alloy, vacancies and interstitials defects. A 

perfect planar defect sink is placed in the middle of the crystal 
and kMC simulations of (radiation-induced) segregation at the 
defect sink are performed. Frenkel pairs are generated at a rate 
of G  =  10−6 dpa · s−1 following the mechanism described in 
section 2.3.4.

Segregation at the sinks is governed by the onset of solute 
fluxes in the system. These fluxes are mediated by defect migra-
tion to and absorption at the sink. The solute flux can be controlled 

Table 3. Parameters for the ABVI system (after Soisson [29]).

Kinetic parameters

ABVI-1 ABVI-2 ABVI-3 ABVI-4

High solubility Low solubility

Enrichment Depletion Enrichment Depletion

ν ν ν ν= = =A
V

B
V

A
I

B
I ×5 1015 ×5 1015 ×5 1015 ×5 1015

=ε εA-A B-B −1.07 −1.07 −1.07 −1.07
εA-B −1.043 −1.043 −0.985 −0.985
=ε εA-V B-V −0.3 −0.3 −0.3 −0.3
=ε εA I B I- - 0 0 0 0

Em
V-A 0.95 1.1 0.8 1.05

Em
V-B 1.05 0.9 1.2 0.95

Em
I-A 0.5 0.35 0.55 0.2

Em
I-B 0.5 0.65 0.45 0.8

Note: ‘A’ and ‘B’ denote solvent and solute atoms respectively. ‘V’ represents vacancies and ‘I’ all types of interstitial defects. All energies given in eV. 
Attempt frequencies given in Hz.

Figure 5. Spatial solute concentration profiles at different doses for the undersatured alloy for the (a) solute enrichment and (b) solute 
depletion cases at T  =  800 K. The supersatured case for (c) solute enrichment and (d) solute depletion at T  =  500 K are also shown. The 
nominal solute concentration of the alloy is =C 0.05B  and the dose rate is 10−6 dpa · s−1.
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by setting the defect migration energies such that exchanges 
with B atoms are preferred over exchanges with A atoms (or 
vice versa), resulting in enrichment or depletion of solute at the 
defect sink. While Soisson uses a saddle-point model to obtain the 
activation energy (see section 2.3.2), our implementation of the 
ABVI Hamiltonian has been designed to employ a kinetic Ising 
model. In order to make both approaches as close to one another 
as possible, we use Soisson’s bond energies directly and adjust the 
migration energies Em so as to match the kinetic evolution. The 
parameters used are shown in table 3. There are four sets of param-
eters. The first two, ABVI-1 and ABVI-2, correspond to a system 
with relatively low energy of mixing (E 0.216mix =  eV), repre-
senting undersaturated solid solutions with high solubility limits. 
The other two, ABVI-3 and ABVI-4, correspond to a system 
with E 0.680mix =  eV leading to supersaturated solid solutions. 
Systems ABVI-1 and ABVI-3 are such that a net flux of B atoms 
develops toward the sink (E Em

V-A
m
V-B< ; E Em

I-A
m
I-B> ), whereas 

ABVI-2 and ABVI-4 result in solute depletion at the sink –the so-
called inverse Kirkendall effect—(E Em

V-A
m
V-B> ; E Em

I-A
m
I-B< ). For 

simplicity, migration energies of vacancies and interstitials are set 
to produce the same segregation tendency for each set of param-
eters. Other details considered by Soisson, such as recombination 
radii, event sampling, etc, are also followed here5. The spatial 
solute concentration profiles are shown in figure 5.

In the undersaturated alloy, no precipitation in the bulk is 
observed. As the dose increases, the concentration of B atoms 
near the sink is enhanced (reduced) for the enrichment (deple-
tion) parameter set. For the enrichment case ABVI-1, a solute 

concentration drop at the center of the system is observed. This 
can be rationalized in terms of interstitialcy jumps. After the 
solute concentration raises near the sink, interstitials must trav-
erse a solute-rich region in order to reach the sink. As inter-
stitials penetrate the near-sink region, they will increasingly 
become of the AB type. Because A-B B-B>ε ε , A atoms located in 
this solute-rich region are energetically unfavorable. Therefore, 
interstitials jumps favor the avoidance of A-B bonds, which 
results in enhanced matrix atom transport to the sink. This 
phenom enon was not observed in Soisson’s work because they 
used a saddle-point energy model that gives a nonlocal activa-
tion energy (does not depend on the atomic environment of the 
jumping atom). Increasing the driving force for solute transport 
toward the sink (e.g. by setting E E0.6, 0.4m

I-A
m
I-B = = ), the 

drop at the sink disappears. Snapshots for ABVI-1 and ABVI-4 
at three different doses are shown in figure 6.

Figure 6. Snapshots of ABVI-1 system (undersaturated, enrichment) at (a) × −2.56 10 3 (b) × −2.01 10 2 and (c) 2.01 dpa. For the ABVI-
4 case (supersaturated, depletion), configurations are shown at (d) × −8.78 10 4 (e) × −2.63 10 2 and (f) 0.258 dpa. Only solute atoms are 
shown.

Table 4. The parameters for the Au–Cu ABVI system.

Bond energies (eV)

εX-Y εV-X εAA-X εAB-X εBB-X

−0.1425 −0.016 25 0.246 25 0.128 75 0.146 25

Migration energies (eV)

Em
V-A Em

V-B Em
I-AA Em

I-AB Em
I-BB

0.88 0.76 0.3 0.377 0.12
Conversion energies (eV)

→Ec
AA AB →Ec

AB AA →Ec
BB AB →Ec

AB BB

0.3 0.5 0.12 0.32

Note: ‘A’ are Cu atoms, ‘B’ are Au atoms. X, Y  =  A, B.

5 With one exception: the Frenkel pair distance is not set in this work.
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For the low solubility alloy, on the other hand, bulk pre-
cipitation does occur, as one would expect given the low mar-
ginal difference between bulk and sink segregation driving 
forces. As figure 5 shows, the solute spatial profiles exhibit 
much more fluctuation than their high solubility counterparts, 
especially for the depletion case (ABVI-2 versus ABVI-4). 
This of course is a manifestation of the formation of pre-
cipitates in bulk. The mean free path for solute diffusion is 
quite low, due to a high number density of precipitates acting 
as trapping sites, which makes depletion dynamics slow. 
Soisson observed a less intense bulk precipitation than shown 
here, possibly also due to the difference in activation energy 
models employed. In any case, the global qualitative features 
of the alloy evolution kinetics are matched by both methods.

These results show that the saddle point energies are cru-
cial in establishing the relative solute fluxes to sinks. This is in 
agreement with Le Bouar and Soisson [40], who showed that 
the effect of (concentration dependent) saddle point energies 
on the kinetics can be felt dramatically at low temperatures, 
when atomic transport is slowed down.

3.3. ABVI system: radiation-induced segregation at surfaces

The last verification example that we undertake in this paper 
is that of a finite system containing free surfaces. This mimics 
the case considered by Dubey and El-Azab, which studied a 
binary Au–Cu alloy under irradiation using a two-dimensional 
continuum reaction-diffusion model that included a free sur-
face [51]. These authors used mean-field rate theory to solve 
the ordinary differential equation system representing defect 
kinetics with spatial resolution. As such, our method differs 
fundamentally in that it relies on a discrete lattice description, 
and so the comparison between both approaches must account 
for this distinction. Our lattice system, however, is constructed 

so as to create two free surfaces along one of the dimensions 
of the computational cell, with periodic boundary condition 
used in the other two. Adjacent to the free surfaces, several 
layers of ‘vacuum’ atoms are introduced (see section  2.3.4 
for the mechanisms involving these vacuum atoms). In this 
fashion, the surface is always univocally defined as the inter-
face between atomic lattice sites and vacuum sites, which 
provides a convenient way to study the surface roughness as 
the simulation progresses. Atoms connected to the vacuum, 
regardless of their chemical nature, have bond energies in the 
direction along the surface normal equal to:

as
2

AAε γ ε= − (40)

where a is the bond length (depends on surface orientation), 
γ is the surface energy, and AAε  is a standard ‘bulk’ bond 
energy.
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Figure 7. Solute concentration profile and associated error bars at different doses for the Au-10% at. Cu alloy at T  =  650 K . The dose rate 
is 1.0 dpa · s−1.
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Figure 8. Evolution of the degree of segregation at different 
temperatures. The total solute concentration is 10% at. The dose 
rate is 1.0 dpa · s−1.
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Additionally, considering free surfaces introduces both a 
defect sink and a defect source. In addition to Frenkel-pair 
generation by irradiation, point defects can also be emitted 
thermally from the surface. Following Dubey and El-Azab, 
Frenkel-pair generation rate is set at 1.0 dpa · s−1. Regarding 
defect emission from the surface, the high formation energy 
difference between interstitial defects and vacancies allows us 
to discount thermal emission of SIAs, as done in [51], while 
vacancies can be created at all surface sites. In each step, the 
rates of all the possible creation paths, i.e. all 1st-nn jumps 
from surface sites towards the interior of the box, are calcu-
lated and added to the global kMC event list. Vacancy emis-
sion can occur from any surface site. Given the potentially 
large number of such sites, we pre-compute all the thermal 
emission rates at the beginning, and then simply update the 
list when the local chemical environment around a surface 
site changes during the kMC simulation. The large majority 
of these emission events do not result in a successful vacancy 
injection into the bulk but, rather, just in an emission imme-
diately followed by re-absorption at the surface. Considering 
these transitions (the so-called ‘flickering’ problem: not 
encountered in continuum mean field approaches) is exceed-
ingly inefficient. To deal with the problem, especially at 
elevated temperature, one can apply the following method: 
calculate numerically the conditional probability that, if an 
emission event occurs, the emitted vacancy will make it to a 
depth where the surface attraction is no longer felt. In other 
words, the probability that an emission/re-absorption event 
is uncorrelated (diffusive) as opposed to correlated. This 
enhances the computational efficiency per kMC step signifi-
cantly, while providing a very accurate approximation to the 
‘brute force’ method.

The annihilation of defects at surfaces is also considered, 
as described in section  2.3.4. After Dubey and El-Azab, 
we study a face-centered cubic binary Au-10% at. Cu alloy 
using the energetics provided in table 4 based on a study by 
Hashimoto et  al [52]. The computational box dimensions 
are 660 270 4× ×  primitive cells, with a vacuum buffer of 
20 atomic layers on either side of the free surface, along 
the x-direction. In this case, jumps of mixed interstitials are 
calculated considering both directional possibilities, e.g. 
AB  +  A  →  B  +  AA, or AB  +  A  →  AB  +  A (see table  1), 
with their total rate weighted by a factor of 1

2
 to preserve the 

correct sampling statistics.

The differences between kMC simulations and the con-
tinuum model are also exhibited in energy parameters. Dubey 
and El-Azab defined global parameters for their simulations 
such as defect formation energies, and surface energies. In 
kMC simulations, however, one needs to express all energies 
in terms of bond energies. In this work, we set the vacuum 
energy level as the zero reference, i.e. 0v X =−ε  (where X  =  A, 
B, V, v), and the energies of atoms on the surface are simply 
tallied in terms of the number of missing surface bonds. The 
defect bond energy parameters then can be obtained from 
formation energies of vacancy and interstitial using the form-
ulas described in section 2.3.3. The surface energy per area 
and defect formation energies are taken from Dubey and 
El-Azab’s paper. In addition, after Hashimoto et al, a conver-
sion energy is applied when interstitial defects change their 
type after a diffusive jump. On some occasions, the activation 
energy for interstitialcy jumps can become negative, which we 
simply interpret as a spontaneous event within the kMC cycle.

Our kMC simulations are run up to a maximum dose of 
0.04 dpa. As in section 3.1, we perform five independent runs 
to study the statistical variability and provide error bars to the 
simulation results. In this case, we take the average and statis-
tical deviation at each point along the x-coordinate. The spa-
tial solute concentration profiles at 650 K as a function of dose 
are shown in figure 7. For the five simulations performed, the 
statistical errors are on the order of 20%, approximately. From 
the figure, the enrichment of solute atoms near the surfaces can 
be clearly appreciated, which is accompanied by local deple-
tion in the subsurface region. Segregation near the surfaces 
increases with dose, in agreement with Dubey and El-Azab’s 
work. These authors also studied the degree of segregation as 
a function of time M(t), defined as:

M t C x t C x, d
l

0

s

( ) ( ( ) ¯ )∫= − (41)

where ls is an arbitrary segregation distance, C(x, t) is the 
instantaneous solute concentration profile, and C̄ is the average 
solute concentration of the whole system. Here, we replace the 
integral by a discrete sum over lattice positions, with ls defined 
as the distance from the surface at which the local concentra-
tion is within 10% of the background global concentration. To 
avoid noise due to lattice fluctuations, we apply a Savitzky–
Golay smoothing filter [53] prior to the determination of ls. 
M represents the deviation of the local concentration w.r.t. 

Figure 9. Snapshots of surface roughness at (a) t  =  0, and (b) t  =  0.02 s for the Au-10.0 at. Cu system alloy for a computational box of 
× ×660 32 32 primitive cells at 500 K. Red dots represent solvent (A) atoms, while solute atoms (B) are represented as green dots.  

The dose rate is 1.0 dpa · s−1.
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the average global concentration, integrated across the entire 
sample thickness. As such, an increasing value of M reflects a 
higher degree of heterogeneity in the solute distribution.

The evolution of M as a function of dose and temperature is 
shown in figure 8. Our results are in agreement with those of 
Dubey and El-Azab, with M increasing with dose monotonically 
in all cases. However, the evolution with temperature shows two 
distinct trends. First, M increases with temperature up to a critical 
value of approximately 650 K. Then, it gradually decreases until, 
at T  =  900 K, the degree of segregation is practically zero. The 
causes behind this behavior are well understood [54]. Essentially, 
at low temperatures, vacancy mobility is limited, leading to high 
excess vacancy concentration and high recombination rates. As a 
consequence, segregation is low due to small defect fluxes to sur-
faces. At higher temperatures, vacancy and interstitial diffusion 
are activated resulting in net solute segregation. However, above 
650 K, significant numbers of vacancies start to be emitted from 
the surfaces, leading to high back diffusion rates and again high 
recombination rates. The two effects result in a reduced solute 
segregation to the surfaces. Therefore, the maximum degree of 
segregation occurs at intermediate temper atures, consistent also 
with Dubey and El-Azab’s findings.

KMC simulations are capable of providing morphological 
features that continuum methods cannot furnish. For example, 
our method can be used to study the evolution of the surface 
roughness, an example of which is shown in figure  9. The 
figure contains two snapshots of the surface for a system with 
a computational box size of of 660 32 32× ×  primitive cells 
at 500 K at different accumulated doses, where clear surface 
morphology changes can be appreciated. Additionally, surface 
roughness is accompanied by a concomitant increase in the 
concentration of solute atoms, which occurs by the mech-
anisms explained above.

4. Summary and conclusions

We have proposed an extension of the standard ABV 
Hamiltonian to discrete binary systems containing interstitial 
defects. The chosen framework for this extension is the Ising 
model, where three new values for the spin variables are con-
sidered: ‘ +2’, representing pure self-interstitials (A-A), ‘−2’, 
representing pure solute interstitials (B-B), and ‘0’, for mixed 
interstitials (A-B). The reason for choosing these values is to 
preserve one of the essential magnitudes of the Ising model, 
the magnetization N i i

1 σ∑− , or, in the ABVI context, the excess 

solute concentration. The main advantage behind expressing 
a cluster expansion Hamiltonian as an Ising Hamiltonian is 
that thermodynamic information about the system can more 
easily be construed in the Ising framework. For example, the 
values of the constants of class 3 identified in equation (27) 
uniquely determine the thermodynamic phase diagram of the 
ABVI model (much like constant J in equation (2) determines 
the structure of the ABV system). Indeed, one of the aspects 
of greatest interest associated with the ABVI model is to study 
how the presence of interstitials alters the behavior of substi-
tutional binary alloys.

However, we leave this thermodynamic analysis for a spe-
cific binary system with well characterized bond energetics for 
a future study, and, instead, in this paper we have focused on 
verification by comparing against a number of selected pub-
lished studies. The main tests that we have conducted include 
discrete lattice ABV and ABVI for dilute Fe–Cu alloys, as well 
as comparison against a spatially-resolved mean-field study of 
solute segregation at free surfaces in irradiated Au–Cu alloys. 
In all cases, basic metrics related to the timescale and/or some 
governing kinetic parameters were reproduced with good 
agreement. In terms of computational cost, our Ising ABVI 
model scales in a similar manner as second-order cluster 
expansion Hamiltonians with similar cutoff radius—as it 
should, given that no advantage is lost by simply recasting a 
cluster expansion Hamiltonian into the Ising form.

Thus, in conclusion, we present an ABVI Hamiltonian, cast 
as an Ising model Hamiltonian, for discrete event simulations 
that can be considered a generalization of ABV models. Our 
model has been verified against existing parameterizations of 
cluster expansion Hamiltonians using kinetic Monte Carlo sim-
ulations, with good agreement observed. We will study the ther-
modynamic behavior of our Hamiltonian in a future publication.
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Appendix. ABVI Hamiltonian constants

The explicit expression for the coefficients Cmn in equa-
tion (27) are:

Class 1

ε ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε ε

{( )

( ) ( )
( )}

{( )

( ) ( )
( )}

{( )

( ) ( )
( )}

= − − + − − +

+ − + + − + −
+ + +

= − + + − + + −

+ − + − + − +
+ − − −

= − − + − − +

+ − + + − + −
+ + +

C

C

C

1
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8 8 2 8 8

12 12 12 48 48 48
16 32 16

1
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20 20 2 20 20

36 36 36 216 216 216
64 128 64

1
576

32 32 2 32 32

60 60 60 960 960 960
256 512 256

44 AA-AA AA-A AA-B AA-BB A-BB B-BB BB-BB

AA-AB AB-AB AB-BB A-V V-V V-B

A-A A-B B-B

42 AA-AA AA-A AA-B AA-BB A-BB B-BB BB-BB

AA-AB AB-AB AB-BB A-V V-V V-B

A-A A-B B-B

22 AA-AA AA-A AA-B AA-BB A-BB B-BB BB-BB

AA-AB AB-AB AB-BB A-V V-V V-B

A-A A-B B-B
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Class 2

= − − + + −
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0
A-AB
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AB-AB A-AB AB-AB AB-B
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This way of grouping the Cmn is not unique. We have chosen 
the three classes above to represent a given physical behavior 
along the lines of the coefficients K, U, J of the ABV Ising 
model. Loosely speaking, the physical meanings of each of 
the three classes is as follows:

 • Class 1 (even–even power terms) gives the relative impor-
tance of interactions between point defects (vacancies 
and interstitials).

 • Class 2 (even–odd power terms) gives the affinity between 
atoms and point defects.

 • Class 3 (odd–odd power terms) determines the equilib-
rium phase diagram.
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