The Inland Chumash Research Project (1975–1980): Wringing Out the Old

https://escholarship.org/uc/item/6mn257m5

Journal of California and Great Basin Anthropology, 33(2)

0191-3557

Walsh, Michael R.

2013

Peer reviewed
The Inland Chumash Research Project (1975–1980): Wringing Out the Old

MICHAEL R. WALSH
Cotsen Institute of Archaeology, University of California, Los Angeles

Data recovered and analyzed by UCLA’s Inland Chumash Research Project (ICRP) between 1975 and 1980 continue to hold promise for furthering our understanding of the greater inland Chumash. This conclusion is remarkable, considering several of the challenges that faced ICRP from its inception, as well as the astonishing changes that have taken place in the discipline over the last 30 years. ICRP data from the Conejo Corridor region of southern California (Fig. 1) include publications, curated artifacts, faunal and floral remains, and associated archival materials. I suggest that these data should be neither dismissed nor forgotten in view of their inherent utility and—frankly—because the data in any case represent essentially our one and only window into a significant sub-region of the overall inland Chumash adaptation.

In 1973, C. William Clewlow, Jr., became the first full-time Chief Archaeologist for UCLA’s Archaeological Survey. Within two years he began the Inland Chumash Research Project, focused largely on the Conejo Corridor in southeastern Ventura County. Although intermittent work on inland Chumash sites had been a UCLA tradition for almost two decades (Wells et al. 1979; Whitley 1979; Whitley et al. 1980), inland Chumash studies greatly expanded and became unified under Clewlow (Walsh and Tabares 2011). What follows is the brief story of how Clewlow set this expansion into motion. Next, subsequent work on the inland Chumash is briefly summarized, focused on the Santa Ynez region in central Santa Barbara County, located a little over 100 km. west-northwest of the Conejo Corridor. Although the Santa Ynez and Conejo Corridor regions feature differing environmental characteristics, several models designed to characterize the Santa Ynez inland Chumash are assessed in light of the data recovered from the Conejo Corridor by the ICRP. We will see that data recovered by the ICRP compare favorably with those from several modern studies of the inland Chumash, which in some sense suggests the continued viability of the ICRP data.

The ICRP data are not without their limitations. Some of these are simply historical—few projects bear close scrutiny after nearly four decades. Others derive from external forces beyond archaeological control, including a rather unwieldy sampling procedure imposed upon the Project. Still other shortcomings are methodologically perplexing and not so benevolently explained. The ICRP nevertheless remains a source of data worth exploring, particularly because the inland Chumash are still better defined on geographic grounds than they are in social, political, or economic terms. The inland Chumash data collected by the ICRP, shortcomings and all, provide an important source in terms of which inland-coastal relationships may be compared and contrasted among differing regions, and in terms of which particular inland adaptations themselves may be compared to one another.
THE INLAND CHUMASH RESEARCH PROJECT

In 1975, numerous land developers had big plans for the Conejo Corridor, a large stretch of real estate located along the 101 Freeway between Agoura and the Conejo Grade overlooking the Oxnard Plain (Fig. 1). The Conejo Corridor and its surroundings were of great archaeological interest, owing largely to the late-1960s work of Linda King (1969, 1982) and others at the Medea Creek Cemetery (CA-LAN-243) at the eastern end of the Conejo Corridor. King looked at nearly 450 grave lots that clearly indicated the existence of a lineage-based social hierarchy among the Late Prehistoric inland Chumash, including a system of ascribed social status (see also Green 1999; Martz 1992). This was not news as far as the Chumash in general were concerned, but it strongly suggested that the inland Chumash were permanent residents of inland regions with their own sense of social hierarchy, and were something more than a simple seasonal extension of the coastal Chumash.

Archaeologists were eager to expand on King’s findings and to study the inland Chumash for their own sake, with no necessary reference to the coast. During the late 1960s and early 1970s, these efforts included limited (but often commendable) tests of sites here and there in the classical tradition of “salvage archaeology.” By the mid-1970s, large-scale development plans provided an opportunity to increase the scale of these projects immensely. But it must be emphasized that Cultural Resource Management (CRM) as we know it today was still in its infancy, and so the question was not truly resolved: Could archaeologists get in there well ahead of the bulldozers? That is, was it possible to conduct investigations without the urgency that was the hallmark of “salvage archaeology?” The way that Clewlow resolved this problem was extraordinary.

Figure 1. Selected locations in the Conejo Corridor (adapted from Whitley et al. 1979).
Clewlow convinced a few developers that it was in their own legal and financial interest to donate money to the UCLA General Fund, from which the Archaeological Survey at UCLA would then finance preliminary survey and limited test excavations. UCLA eventually sponsored several field schools at selected sites that indicated fairly substantial deposits were present, and a corps of students was employed full-time during the summer months. Developers’ donations were also used to fund student publications by underwriting the costs of several monographs dedicated to the inland Chumash. As it turned out, the donations were sufficient to further underwrite Clewlow’s own brainchild, the *Journal of New World Archaeology* (published between 1975 and 1987). Finally, developers’ contributions were used to endow scholarships for young Native Americans to attend UCLA field schools, engendering some appreciation for why archaeologists do things in such peculiar ways. All told, Clewlow persuaded at least seven different developers to contribute money and utilize the services of the UCLA Archaeological Survey.

However, individual developers came around to this idea in their own time. As a consequence, the overall project involved a patchwork of dozens of geographically-distinct development parcels that were investigated piecemeal and in a sequence dictated by developers’ schedules. From an archaeological perspective, a structured, unified sampling design was not truly feasible. But a program of methodical survey, test, and mitigation (intensive excavation of selected sites) was possible for individual parcels at a rate somewhere between the frantic pace of a salvage effort and the careful design of an academic project.

UCLA’s involvement in the development of the Conejo Corridor could only go so far, however. A labor force consisting of students alone was not qualified to meet professional standards except in limited and carefully supervised contexts. On a practical level, students could not work year-round to finish archaeological investigations, even within the expanded time frames provided by developers. For these reasons, a great deal of the survey, test, and mitigation that was carried out was subject to competitive bidding by a small but growing body of professional CRM firms. Contrary to the gossip of the day, existing relations between Clewlow, UCLA, and the developers had no hand in the actual selection process for the granting of archaeological contracts, which were awarded by local Planning Agencies and selected from multiple competitive bids. No single CRM company could keep up with the pace of development in the Conejo Corridor during the 1970s, and no fewer than eight CRM firms contributed archaeological assessments, testing, and mitigation.

The ICRP was faced with devising a research plan for a patchwork of discontinuous parcels of varying sizes and configurations. These parcels, drawn with complete disregard for anthropological concerns, perforce became the basic units of analysis. This unwieldy circumstance was further complicated when competing CRM firms held the contracts for contiguous parcels. (In at least one case, a site was bisected by a parcel boundary and investigated by different CRM firms.) To nobody’s credit, there was little or no coordination of effort among the competing CRM firms, which by that time included Clewlow’s own Ancient Enterprises, Inc.

Within a few short years after the end of the ICRP, remarkable gains were made in our understanding of the prehistoric Chumash, especially along the Santa Barbara coast and on the Channel Islands (see summaries in Arnold and Walsh 2010:110–124; Gamble 2008:52–54; Glassow et al. 2007). These advances originated largely through the work of the faculty and students at UC Santa Barbara, not UCLA, and the ICRP was virtually buried in an avalanche of refinements to, and a recasting of, Chumash social, political, and economic prehistory. But the inland Chumash have never been entirely forgotten, and indeed efforts to establish their place within the larger Chumash sphere of influence appear to be undergoing a resurgence (e.g., Bernard 2008; Robinson 2007; and studies detailed below). Several important questions concerning the inland Chumash remain unresolved, and I intend to show that the ICRP may still make a contribution to their resolution.

SYNOPSIS OF ICRP GOALS

No project within or near the Conejo Corridor was viable without a recognition of Linda King’s (1969) findings at the Medea Creek Cemetery (note that her dissertation on Medea Creek [1982] was completed after the close of the ICRP). Her analysis of grave lots and their spatial distribution within the cemetery suggested
the existence of ascribed status differences that cross-cut
gender and age groups. Certain burials also suggested
the presence of lineal ties to coastal elites, evidenced by
redwood plank-canoe fragments within certain grave
lots (a decidedly useless form of transport in the Conejo
Corridor). In all, the Medea Creek cemetery suggested a
permanent residence by something more than the simple
country cousins of the coastal Chumash.

Clewlow (1978) devised a set of very general
research questions that were mindful of both King’s
findings at Medea Creek and of the limitations imposed
by the arbitrary development parcels. That is, the
research design was driven largely by the sampling
procedure, rather than the reverse. In the end, a series
of “site complexes” were identified which largely
conformed to development parcels (some of which
are shown in Fig. 1). In addition to the archaeological
imperative of establishing a chronological context for
all of the sites encountered, the primary question to be
explored concerned the functional nature of sites that
were clustered in space, and whether component sites
reflected an independent settlement system or were
remote collecting localities for populations based at
coastal villages. A second question concerned the nature
and extent of exchange relationships between inland
and coastal populations. A third question asked whether
a ranked social hierarchy was evident at additional
locations within the Conejo Corridor, commensurate
with that encountered at the Medea Creek cemetery.

These questions were addressed with varying
degrees of success in some 49 papers, most of which
were written in whole or in part by students (Clewlow
et al. 1978a, 1978b, 1979; Clewlow and Whitley 1979;
Prichett and McIntyre 1980; Whitley et al. 1980). A
complete summary of the results is clearly beyond the
scope of this paper, but it should be possible to assess
whether the overall conclusions are relevant to modern
research into the inland Chumash. To do this I examine
selected post-ICRP studies (i.e., subsequent to 1980),
each focused beyond the Conejo Corridor, in order to
identify questions which still intrigue inland Chumash
scholars. Selected analogous studies conducted by
the ICRP are examined to see whether the ICRP can
contribute to the resolution of these questions.

In the following discussions of the Ynezeño
Chumash and the Conejo Corridor, there is a great deal
of painstaking work that is reduced to a few sentences,
and I apologize in advance to the scholars involved. The
thumbnail sketches presented here furthermore neglect
to mention some individuals who made important direct
as well as indirect contributions to inland Chumash
studies. Notable among these are Thomas Blackburn,
Robert Gibson, Chester King, Nelson Leonard, Clay
Singer, Joseph Tainter, and a host of others who are duly
recognized in the bibliographical entries of the works I
do cite (see also Holmes and Johnson 1998).

COMPARATIVE STUDIES
OF THE INLAND CHUMASH

Santa Ynez Region

It should be emphasized at the outset that the greater
Santa Ynez Valley region and the Conejo Corridor
differ from one another in several important respects.
The Santa Ynez region is the richer in terms of virtually
all important natural resources. The Santa Ynez region
enjoys greater rainfall than the Conejo Corridor, as
well as greater differences in regional elevation, both
of which are attended by increased floral and faunal
diversity and abundance. The lower elevations of the
Santa Ynez Valley are not only plentiful in oak, they
feature marshland, true riparian habitat, streams with
permanent and anadromous fish, and surrounding
mountains consisting of Piñon-Juniper Woodland and
Montane Conifer Forest (Horne 1981:98–110, appendices
C and E; Spanne 1975). In contrast, the Conejo Corridor
features a habitat consisting primarily of Oak Grassland
with scattered, very small or intermittent streams
with sub-riparian corridors and hillside chaparral. The
Ynezeño furthermore enjoyed access to rich sources
of high-quality and highly-sought Franciscan Chert, as
well as serpentine used to manufacture beads (Horne
1981:20, 50). Finally, I do not wish to sound flippant, but
the Ynezeño were simply closer to “downtown” than the
Ventureño of the Conejo Corridor. Population estimates
and reconstructed power bases for the greater coastal
Chumash clearly show the primacy of the Santa Barbara
Coast, if measured only by the number of major (large)
villages (Gamble 2008:71, 72, figures 6 and 7). In short,
the Ynezeño simply had more to offer and to gain from
mutual ties with the nearest coastal villages.
What resources did the Conejo Valley Ventureño have? They held the corner on the valuable fused-shale market, a material that was plentiful at Grimes Canyon and at selected nearby localities in Ventura County (Arnold 2011; Hughes and Peterson 2009; Rosen 1979). Or at least we thought they had a monopoly on the resource. Recently, the Santa Ynez region has revealed its own fused shale source, albeit a far more limited source than that found in Grimes Canyon (Erlandson et al. 2004:23, 2008:79; see also Arnold 2011:19). Instead of high-quality Franciscan Chert and sources of Monterey Chert, the Conejo Corridor had siliceous siltstone, a grainy, somewhat friable silty chert (Whitley and Clelowl 1979a:125). In all, the Ynezeno and the inland Ventureño Chumash lived in considerably different environmental circumstances, and arguably their most prominent common denominator was their shared standing as “inland Chumash.” This may be a good thing: the two sub-regions provide a comparative data set that transcends mere geographical differences. We proceed now to an examination of selected efforts to understand these differing inlanders.

Glassow et al. (2011; see also Glassow 1979) has considered the occupation of the central Santa Ynez Valley prior to about 5,000 B.P. and proposed three alternative, abundantly testable scenarios concerning early inland populations. The first proposes that coastal and inland groups maintained distinct settlement systems, each with separate residential village bases and associated territories, but tied together by close exchange relationships. These relationships benefitted both inland and coastal peoples, particularly in times of localized subsistence stress, and was akin to the pattern observed in the ethnographic present (Blackburn 1974:100). This suggests a deep history to the adaptation, which in turn suggests its significance to both coastal and inland populations. The second alternative proposes that one population maintained seasonal bases in both coastal and inland contexts. A third proposes that people residing primarily on the coast made only short-term seasonal forays for inland resources. The authors (Glassow et al. 2011:69) caution that the data for resolving these questions are at present insufficient for definitive answers and, indeed, are scanty enough to provide some measure of support for any or all of the above propositions. They are also careful to suggest that any or all of the above propositions may in fact have obtained at differing locales within the Santa Ynez Valley, or in slightly differing time frames.

Stephen Horne’s (1981) overview of the greater Santa Ynez Valley region focused on the later time frames. His work was largely conducted synchronously with the ICRP, though neither project acknowledged the on-going efforts of the other. In the briefest possible terms, Horne favored a separate-but-equal version of Chumash prehistory. This scenario had inland and coastal peoples autonomously organized along dialect lines (e.g., Ynezeno vs. Barbareño), and the inland Chumash were “...not a version of coastal Chumash culture which had been merely transported inland” (Horne 1981:5). Inland and coastal Chumash, however, engaged in ever-increasing interaction (exchange) beginning at about 500 B.C., presumably spurred by population pressure and resource depletions, particularly in inland locations (Horne 1981:46). Horne’s conjecture for the Late Prehistoric inland Ynezeno was later supported by analyses spearheaded by Hildebrandt (2004:95–97), which showed that coastal resources, particularly fish and shellfish, were supplied to inland villages concomitant with proposed artiodactyl overexploitation. Horne further suggested that increased complexity, including status differentiation and craft specialization, proceeded in lock-step for both coastal and inland populations (Horne 1981:50–53). Sometime after A.D. 1100, smaller inland villages aggregated into fewer settlements of increased size, accompanied by synchronous changes in economic and social organization along the coast (Horne 1981:54).

Within a few years, Johnson’s (1988, 1990) work with mission-era marriage records focused on the nature of inferred inter-village alliances. Cluster analysis of 804 exogamous marriages documented in mission records suggested a trend toward inter-regional (including coastal-inland) marriages during the ethnohistoric era (Johnson 1990:161). That is, marriages occurred with some frequency across ecological zones, and this suggested an effort to cement economic ties among environmentally diverse villages, presumably for the benefit of access to resources of differing seasonality and/or reliability (Johnson 1990:168, 2000:317). Although this finding does not contravene Horne’s suggestion of inland autonomy, Johnson’s (1990:167) data suggested
that individuals in federated, politically-allied villages tended to intermarry, and so formal political ties between coastal and inland villages cannot be wholly discounted. Although geographic proximity played a central role in marriage-partner selection, Johnson and Houghtaling (2004:15) found a good number of distant marriage partnerships, which suggested a more complex network of inter-village social ties, both within inland contexts and in coastal-inland interactions.

Finally, Armstrong (2011) has recently investigated the nature of coastal-inland contact by analyzing shellfish remains recovered from four inland sites. After associating various marine shell taxa with specific localities along the mainland coast (rocky shore vs. sandy shore/estuarine habitats), he found that simple distance from coastal sources played the most significant role in predicting the relative frequencies of differing shellfish species recovered from inland sites (Armstrong 2011:94). He further attempted (where possible) to compare his findings with predictions derived from ethnohistoric inter-village marriage patterns (after Johnson 1988; Johnson and Houghtaling 2004). This effort yielded ambiguous results, perhaps a consequence of small sample size—only two sites had both ethnohistoric marriage records and ample shellfish. Of these, one site had coastal-inland marriage ties that corresponded to the expectations derived from shellfish species. It clearly appears that more work along the lines proposed by Armstrong is warranted.

With these four different studies in mind, we now seek to evaluate the capacity of the ICRP to tackle these issues.

Conejo Corridor

The published sources derived from the ICRP do not appear to be able to directly address the significant issues raised by Glassow et al. (2011) for the inland Chumash prior to about 5,000 B.P. Several “Millingstone” era sites were proposed for the Conejo Corridor (Dillon 1978), but dating these was largely hampered by a lack of suitable materials for absolute dating. Where Glassow et al. (2011) relied on numerous radiocarbon dates as well as obsidian hydration, the ICRP of necessity placed almost exclusive reliance on relative dating techniques, including evaluations of broad artifact types and comparisons with nearby known Early Millingstone sites and their assemblages. Abalone shell from the lower reaches of the proposed Late village site CA-VEN-294 (South Complex: Fig. 1) yielded two radiocarbon dates in excess of 5,000 years, but Rosen (1978:14–17) expressed reservations about their reliability in view of overwhelming contradictory evidence that included additional radiocarbon readings, obsidian hydration measurements, and artifact typology.

During the course of the ICRP, numerous small sites with very low artifact densities were proposed as Early Millingstone in age. These assessments were often based on the presence of a few ground stone fragments and/or cobble tools, as well as a relative absence of evidence for hunting. It may be suggested that such sites provide some support for a short-term occupation of inland regions, possibly by coastal peoples. However, the ICRP elsewhere suggested (see below) that the later time frames were characterized by permanent inland villages with off-site gathering stations, so whether these foraging sites are “satellites” of local or coastal villages remains an open question, particularly in the absence of firm dates for such small sites. In all, it is wise to follow the lead of Glassow et al. (2011) and suggest that more data are required to adequately address the issue of Millingstone-era adaptations in the Conejo Corridor.

Horne’s (1981) suggestion of a self-sufficient inland population finds support in the ICRP data. Population levels appear to have been fairly stable for all time frames, and thus suggest a permanent resident population. Absolute site size appears to be a function of long-term occupation, and not necessarily the number of residents at any particular time (Whitley 1979:28). The earliest sites suggest that resource procurement was done primarily on-site or near-site, as people moved freely among foraging localities. In contrast, later sites suggest mainly off-site resource collection (Rosen 1978; Wells 1978:180–181). Today we would call this latter pattern “logistical settlement,” which in turn suggests extended residence at inland village sites. The ICRP concluded that the inland Chumash sites in the Conejo Corridor were not simply a seasonal expression of a coastal population.

The degree of interaction between inland and coastal villages proved a more difficult question to answer for the Conejo Corridor. Overall, it appeared that the connection to the coast was a little weaker than expected, given King’s (1969) suggestion of strong lineal...
ties between Medea Creek and coastal villages. For later sites in particular, contact between the Conejo Corridor and the coast was indicated by shell beads, by shellfish remains, and by fish and sea-mammal bone (Hector 1978; Langenwalter 1978; Roeder 1978; Rosen 1979). But the actual degree of interaction did not suggest a people in constant or even extensive contact with the coast (Hector 1978:157). Indeed, based on point styles and other raw materials, Conejo Corridor populations appear to have had far more contact with Takic groups to the east than with distinctly coastal Chumash populations (Rosen 1978:85–86). More recently, Chester King (cited by Gamble and Russell 2002:116) furthered this claim when he suggested that the Chumash of the Santa Monica Mountains specialized in the manufacture and exchange of arrow points with the Tongva of the greater Los Angeles region. Based on ICRP data, it does not appear that the primary direction of material exchange was necessarily toward the coast.

The relatively weak connection to the coast suggested by the ICRP data may be in some part influenced by the excavation procedures used or—more to the point—not used. Contact with coastal sources is inferred from an inland occurrence of shell and (significantly) fish bone, and these data are ideally collected through fine-mesh screening and flotation procedures (Glassow 1980). Screening was limited to 1/8”-mesh and no flotation or other fine-screening procedures were used by the ICRP (Langenwalter 1978:167). The possible influence of Takic peoples on the inland Chumash is, however, intriguing. It would not be unreasonable to suggest that an entire sphere of inland-coastal interaction is unrecognizable per se, if the inland Chumash served as exchange conduits between the coast and parts farther east.

A direct ICRP analog to Armstrong’s (2011) attempt to reconstruct specific bonds between the Ynezeño and the coastal Chumash was presented by Drews (1979). Using the same methodology as Armstrong, Drews found that the habitats of certain shellfish species were useful for suggesting ties with either of the coastal locations of the villages of Muwu or Humaliwo (Fig. 1). These major villages feature, respectively, sandy-bottom lagoon/estuarine habitat and sub-littoral, rocky habitat (Drews 1979:134). Drews found, by and large, that ease of coastal access along specific major drainages was a significant factor in the distribution of habitat-restricted shell species at inland sites. Shellfish from sites within the Oak Park North and South and the Century Ranch complexes appear to correspond to Humaliwo’s coastal habitat, while the Running Springs Ranch, Ring Brother’s, and MGM complexes appear to correspond to that of Muwu (Fig. 1), no matter which time period is in question (Drews 1979:135, Table 5). This finding is compatible with the absolute-distance findings of Armstrong for the Santa Ynez region, assuming that “least-cost” routes to and from the coast followed major drainages.

The concordance of the conclusions arrived at by Drews and Armstrong from different data sets provides some support for the notion that both studies are on the right track, and that the ICRP faunal component still has much to contribute, notwithstanding the lack of fine-mesh screening. It may prove worthwhile to assess the degree to which (or even whether) the relative strength of interaction between the coast and inland localities differs between the Santa Ynez and Conejo Corridor sub-regions of the inland Chumash.

Finally, in the concluding paper in the third and closing volume of the Oak Park monographs, Whitley and Clewlow (1979b) provide an ambitious but cautious set of general conclusions about social, economic, and political hierarchies linking the coastal and inland Chumash (cf. Johnson 1988, 1990). Unfortunately, the paper presents something of a project gestalt, a distillation that generally lacks specific citations to hard data although implying that they are to be found within the corpus of the Oak Park monograph series. Nevertheless, Whitley and Clewlow present a reasonable reconstruction of linkages between coastal villages at Point Mugu and Malibu with specified points inland. These linkages are largely inferred by the authors from the evidence of shellfish species recovered from inland contexts, although their conclusions reach farther and are more speculative than those presented by Drews. While Whitley and Clewlow are cautious in stating that proposed linkages do not necessarily indicate the direction of hierarchical relationships (Whitley and Clewlow 1979b:171, Fig. 24), ethnohistoric data provided by Brown (1967) and by J. P. Harrington’s unpublished notes clearly suggest coastal hegemony over inland provinces, and Whitley and Clewlow let this observation speak for itself. In the end, however, they suggest that archaeological data
do not reflect the ethnohistoric data with precision (Whitley and Clewlow 1979b:167, 172). In this regard, the degree to which the ethnohistoric record even should directly reflect the archaeological record remains an open question, given inherent biases in the collection of ethnohistoric information (Gamble 2008:41), differences in the time scale of the archaeological and ethnohistoric observations (Armstrong 2011:97), and even the possibility that the ethnohistoric period was drought-ridden and a poor reflection of much of prehistory in any event (Larson et al. 1995).

Unfortunately, it ultimately proved impossible for the ICRP to address the significant issue of social hierarchy raised by King’s work at Medea Creek. No cemeteries were found, although several isolated burials were uncovered at or near habitation sites, but never more than one per site and each unassociated with identifiable features (such as house floors). Only one burial yielded “unusual” grave goods (bone whistles), and these did not clearly suggest lineal or ascribed hierarchies. The meaning of isolated burials among the Chumash is still somewhat unclear (see the interchange in Arnold and Green 2002 and Gamble et al. 2002), and it is possible that these few isolated burials may make some small contribution toward clarifying the distinction in burial context. In any case, the ICRP made no effort to address the issue of cemetery versus non-cemetery burial.

This does not necessarily mean that there are no more cemeteries in the region, however, and the failure to find cemetery locations may have been “made luck” rather than “bad luck.” Developers were required to leave a percentage of land undeveloped, as “open spaces” designed to preserve the illusion of a rural atmosphere for future home owners. Not surprisingly, many developers chose as “open space” those parcels which suggested substantial habitation sites, thus releasing them from the cost of large-scale mitigative excavation. Chumash cemeteries were usually placed adjacent to village sites, and may simply lie in undisturbed open spaces.

SUMMARY

The ICRP was singled out by Van Horn (1987:68) as an “explicitly problem-oriented” program that placed more emphasis on defining the “problems rather than resolving them,” a view seconded by Dillon and Boxt (1989:140). This is an unwarranted criticism. Few projects actually live up to every detail of a pre-stated research design. And if critics wished (for reasons of their own) to take potshots at what was then still being called the “New Archaeology,” they picked the wrong target anyway. In the end, explicit problem-orientation does not appear to have played a central role in the actual conduct of the investigations, nor in the almost purely descriptive content of most of the individual papers that make up the various publications. But the fact is that the site descriptions provided by the ICRP were by and large very good, albeit with an occasional use of out-dated time frames and typological schemes (particularly for beads). Some of these, curiously, were outdated at the time (Glassow 1980), and have only become more outdated as a natural consequence of advances in Chumash studies as a whole. This will necessitate some effort at translation for future scholars who may wish to reassess the ICRP data. But the data are there, published and curated and ripe for interpretation and reinterpretation. This is far more than we can say for many CRM-driven projects, particularly from that era (Tartaglia 1980:323), and it is especially important for the Conejo Corridor region, because current development restrictions among the component municipalities mean that few new data are apt to be forthcoming. A project of the size and scope of the ICRP within the Conejo Corridor is simply no longer possible. In short, the ICRP data may well represent just about all the data we have, or will ever have, for this significant inland province.

There are several critical questions remaining to be answered regarding the inland Chumash as a whole, and some would benefit greatly through comparative references to ICRP data. Among these questions are those concerning the issue of coastal-inland interactions and how these varied from one inland region to the next. In particular, in the ethnohistoric period at least, the Ynezeño were dialectically distinct from the nearby coastal (Barbareño) Chumash, while the Conejo Corridor populations appear to have shared a dialect (Ventureño) with the coast (see Horne 1981:64, Fig. 7). Are these linguistic differences manifest in the nature or structure of the inland-coastal relationships? Next, the issue of interregional interaction between inland Chumash groups is one which, to my knowledge, has not been explicitly investigated. Our image of the inland populations has them looking mainly southward, toward the coast,
and not east and west toward one another. Finally, the Conejo Corridor region abuts the ethnohistoric territory of the Tongva, a people that exhibited a social, political, and economic organization that was loosely analogous to that of the Chumash (Gamble and Russell 2002). The complex interactions among the Chumash and the Tongva may have imparted a singular significance to the Conejo Corridor. Did the Corridor provide a buffer or a conduit for these polities? I am confident that these worthwhile questions (and more) will be answered someday, but not without reference to data collected along the Conejo Corridor. The inclusive term “inland Chumash” masks an enormous amount of variability that is best approached through a comparative, multi-regional approach.

In the spirit of this issue, I have come to praise Caesar, not to bury him. It is with genuine and unrepentant affection that I have tried to find the best possible light to shine on Billy Clewlow and therefore the ICRP, and I am sure it shows. But casting a positive light on the project turned out (I must confess) to be easier than I thought it would be. Despite a few cobwebs, it appears that the ICRP still has a future. This remarkable observation emerges from the shovel work, laboratory processing, and analyses of Clewlow and the principal participants, many (but by no means all) of whom were cited in this paper. And it must be emphasized that the operative word here is “cited.” It is ultimately a genuine tribute to Clewlow and the members of the ICRP that their efforts resulted in a series of published monographs and journal articles rather than lie moldering in the gray maw that is the CRM literature.

3 In a personal communication, Clewlow noted the discovery of an isolated burial with at least three bear-bone whistles. Immediately upon discovery of the remains of a possible shaman, as suggested by the whistles, excavation was halted and back-filled at the direction of Native American monitors. The whistles were identified in the field by Clewlow as derived from bear, based on similar items he had observed elsewhere in California. The burial remains in situ within an undisclosed, undeveloped “open area.”

ACKNOWLEDGEMENTS

I thank Billy Clewlow for clarifying a few points, and Helen Wells and Russ Kaldenberg for asking me to contribute to this issue. Jeanne Arnold, Todd Braje, and an anonymous reviewer provided very helpful commentary, and Bill Hildebrandt suggested useful reference material. Tyshanna Belcher of ASM Affiliates kindly adapted Figure 1. I am responsible for the final presentation and interpretation.

REFERENCES

Armstrong, Matthew

Arnold, Jeanne E.

Arnold, Jeanne E., and Terisa M. Green

Arnold, Jeanne E., and Michael R. Walsh

Bernard, Julie

Blackburn, Thomas

Brown, Alan K.

NOTES

1 Materials are curated at two different locations. The lion’s share of artifacts, notes, and associated materials are accessible through the Curator of Archaeology, Fowler Museum, UCLA. Owing to the desire of Thousand Oaks in particular to retain possession of their archaeological heritage (expressed toward the close of the ICRP), some materials are housed at the Stagecoach Inn Museum, Thousand Oaks.

2 Clewlow readily credits this idea to a mid-1970s interview he had with Roger Desautels, a largely unsung pioneer of CRM in California. Desautels was particularly skillful at selling developers on the idea that the public relations benefits of funding pre-development archaeological work could far outweigh the cost of excavation and analysis.
Clewlow, C. William, Jr.

Clewlow, C. William, Jr., Helen Fairman Wells, and Allen G. Pastron (eds.)
1978a The Archaeology of Oak Park, Ventura County, California, Volume I. [Institute of Archaeology Monograph V.] University of California, Los Angeles.

Clewlow, C. William, Jr., Helen Fairman Wells, and Allen G. Pastron (eds.)
1978b The Archaeology of Oak Park, Ventura County, California, Volume II. [Institute of Archaeology Monograph V.] University of California, Los Angeles.

Clewlow, C. William, Jr., and David S. Whitley (eds.)
1979 The Archaeology of Oak Park, Ventura County, California, Volume III. [Institute of Archaeology Monograph XI.] University of California, Los Angeles.

Clewlow, C. William, Jr., David S. Whitley, and Ellen L. McCann (eds.)
1979 Archaeological Investigations at the Ring Brothers Site Complex, Thousand Oaks, California. [Institute of Archaeology Monograph XIII.] University of California, Los Angeles.

Dillon, Brian D.

Dillon, Brian D., and Matthew A. Boxt

Drews, Michael P.

Erlandson, Jon M., Todd J. Braje, and Torben C. Rick

Erlandson, Jon M., Torben Rick, and René L. Vallanoweth

Gamble, Lynn H.

Gamble, Lynn H., and Glenn S. Russell

Gamble, Lynn H., Philip L. Walker, and Glenn S. Russell

Glassow, Michael A.

Glassow, Michael A., Lynn H. Gamble, Jennifer E. Perry, and Glenn S. Russell

Glassow, Michael A., Joan Brandoff-Kerr, Lisa C. Hosdale, and Dan Reeves
2011 Early Settlement Systems in the Middle Santa Ynez Valley, Santa Barbara County, California. California Archaeology 3:53–74.

Green, Terisa M.

Hector, Susan M.

Hildebrandt, William R.
Holmes, Marie S., and John R. Johnson

Horne, Stephen P.

Hughes, Richard E., and Polly A. Peterson

Johnson, John R.

Johnson, John R., and Dinah Houghtaling

King, Linda

Langenwalter, Paul E., III

Martz, Patricia

Prichett, Jack, and Allen McIntyre

Robinson, David W.

Roeder, Mark

Rosen, Martin D.

Spanne, Laurence W.

Tartaglia, Louis J.

Van Horne, David
1987 Trade and Subsistence in Humaliwu: A Focused Review of Two Decades of Archaeology in the Conejo Corridor. *Pacific Coast Archaeological Society Quarterly* 23(1).
Walsh, Michael R., and A. Natasha Tabares
2011 The Inland Chumash Research Project: Not a Chief in Site. Paper read at the 76th annual meeting of the Society for American Archaeology, Sacramento.

Wells, Helen Fairman

Wells, Helen F., C. W. Clewlow, Jr., and Martin D. Rosen

Whitley, David S.

Whitley, David S., and C. William Clewlow, Jr.

Whitley, David S., Molly Schneider, and Michael P. Drews

Whitley, Davis S., Helen F. Wells, and C. William Clewlow, Jr.