Title
THE SPIN OF RUBIDIUM-81 m

Permalink
https://escholarship.org/uc/item/6ms1f49m

Authors
Hubbs, John C.
Nierenberg, William A.
Shugart, Howard A.
et al.

Publication Date
1956-07-05
UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Radiation Laboratory and Department of Physics
Berkeley, California
Contract No. W-7405-eng-48

THE SPIN OF RUBIDIUM-81 m
J. C. Hubbs, W. A. Nierenberg, H. A. Shugart, and H. B. Silsbee

July 5, 1956

Printed for the U. S. Atomic Energy Commission
THE SPIN OF RUBIDIUM-81 m†

J. C. Hubbs, W. A. Nierenberg, H. A. Shugart, and H. B. Silsbee

Radiation Laboratory and Department of Physics
University of California, Berkeley, California
July 5, 1956

ABSTRACT

The nuclear spin of 31.5-min Rb81m has been measured by the atomic beam resonance method. The result is \(I = 9/2 \).

† Work supported jointly by the Office of Naval Research and the Atomic Energy Commission.
THE SPIN OF RUBIDIUM-81 m^+

J. C. Hubbs, W. A. Nierenberg, H. A. Shugart, and H. B. Silsbee

Radiation Laboratory and Department of Physics
University of California, Berkeley, California

July 5, 1956

INTRODUCTION

The spins of rubidium isotopes 81 through 87 have been measured. \(^1,2,3,4\) All but perhaps Rb\(^{82}\) are ground-state measurements. Rb\(^{81}\) has an isomeric state whose half life is 31.5 minutes. \(^5\) Rb\(^{84}\) has an isomeric state with a half life of 23 minutes. \(^6\) An attempt has been made to measure the spins of these two isomers. Since the experiment is marginal, the Rb\(^{81m}\) research was successful; the Rb\(^{84m}\) research was not. The spin of Rb\(^{81m}\) is 9/2, in agreement with Doggett's prediction. \(^5\)

EXPERIMENT

The experimental technique is essentially the same as that reported in Ref. 4. The isotopes are prepared by bombarding BaBr\(_2\) with 45-Mev alphas and performing a chemical extraction of the rubidium. Even with the best efforts, the time required to demount the target, perform the chemistry, load the oven, make a beam, and collect three to five samples corresponding to different spins is approximately 1.5 hours. Since the number of atoms of Rb\(^{81m}\) produced in a half-hour bombardment is approximately the same as the number of Rb\(^{81}\) atoms produced, and, in addition, there is an approximately equal amount of Rb\(^{82}\) made, the relative activity of Rb\(^{81m}\) is not large with respect to Rb\(^{81}\) and Rb\(^{82}\). As a result a beam sample collected at a frequency corresponding to an arbitrary spin is expected to show a background of a short-lived component superimposed on a long-lived component of greater magnitude. Therefore the samples collected at different frequencies are each placed in different K x-ray counters to obtain the best possible decay curves with an initial activity of about 10 counts per minute.

+ Work supported jointly by the Office of Naval Research and the Atomic Energy Commission.
Figure 1 is the decay of a sample collected at a frequency corresponding to $I = 9/2$. The curve is analyzed by the least-squares method into a short-lived component with a measured half life of 30 minutes and a long-lived background component with a measured half life of 4.8 hours. For comparison, Fig. 2 is the decay curve of the sample corresponding to $I = 11/2$. The short-life component has been clearly depressed. Figure 3 is the corresponding decay curve of the "full beam" sample. This sample is obtained with all magnetic fields off and all stops removed. When the full-beam curve is compared with Fig. 1, the relatively higher amount of the short-lived component in Fig. 1 is apparent. Since the statistics of one run did not seem to make the assignment sufficiently definite, two other runs were undertaken, with essentially similar conclusions. Some of the results appear in Table 1.

Table 1 shows the enrichment of the 31.5-minute Rb81m for the $I = 9/2$ samples. In each case, the background half life is slightly less for the $I = 9/2$ sample—presumably because of the relative enrichment of Rb81 over Rb82 as a result of the decay of the additional Rb81m. Several even-spin-value settings were made in search for the 23-minute Rb84m, with negative results.

CONCLUSIONS

The spin of Rb81m is $9/2$, in agreement with the value from the decay scheme postulated by Doggett.5 The hyperfine structure is not likely to be measured without some improvement in technique. It is noteworthy that the number of atoms of Rb81m prepared in any run is about 10^{10} to 10^{11}.

The search for the 23-minute Rb84m level did not succeed, presumably because it does not K-capture. As a result the counting rate dropped to the point where the experiment could not be done with the available number of atoms.
Table 1

Summary of decay data
(each button received a 5-min exposure in the apparatus)

<table>
<thead>
<tr>
<th>Run</th>
<th>Button spin</th>
<th>Counter</th>
<th>Short Activity cpm (t=0)</th>
<th>Short Activity $\tau_{1/2}$ (min)</th>
<th>Background cpm (t=0)</th>
<th>Background $\tau_{1/2}$ (hr)</th>
<th>Ratio: Short Activity to Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9/2</td>
<td>1</td>
<td>140</td>
<td>27a</td>
<td>19.0</td>
<td>5.0a</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>16</td>
<td>(b)</td>
<td>36.0</td>
<td>6.4</td>
<td></td>
<td>Rb82 res.</td>
</tr>
<tr>
<td>7/2</td>
<td>2</td>
<td>30</td>
<td>(b)</td>
<td>12.3</td>
<td>5.2</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>9/2</td>
<td>4</td>
<td>107</td>
<td>30a</td>
<td>22.0</td>
<td>4.8a</td>
<td>4.9</td>
</tr>
<tr>
<td>11/2</td>
<td>3</td>
<td>22</td>
<td>(b)</td>
<td>15.0</td>
<td>5.3</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>7/2</td>
<td>1</td>
<td>49</td>
<td>(b)</td>
<td>17.5</td>
<td>5.5a</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>10</td>
<td>Full beam</td>
<td>3</td>
<td>620</td>
<td>32</td>
<td>310</td>
<td>5.5</td>
<td>2.0</td>
</tr>
<tr>
<td>9/2</td>
<td>1</td>
<td>110</td>
<td>30</td>
<td>11.6</td>
<td>4.6</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>7/2</td>
<td>2</td>
<td>30</td>
<td>(b)</td>
<td>11.4</td>
<td>5.8</td>
<td></td>
<td>2.4</td>
</tr>
</tbody>
</table>

a Least-squares analysis

b $\tau_{1/2}$ assumed 31.5 min for extrapolation to $t = 0$.

REFERENCES

FIGURE CAPTIONS

Fig. 1. Least-squares analysis of spin-9/2 decay curve. The spin-9/2 decay (circular points) is analyzed into a 30-minute short-lived activity (square points) superimposed on a 4.8-hour background.

Fig. 2. Spin-11/2 decay. The known half life of Rb81m (31.5 minutes) is used to extrapolate the short-lived activity (square points) to time $t = 0$.

Fig. 3. Decay of full-beam sample. The full-beam sample, taken with all fields off and stops removed, gives an estimate of the constituents of the material leaving the oven.
$T_{1/2} = 5.5 \text{ hr}$

$T_{1/2} = 32 \text{ min}$
The graph shows the decay of a radioactive substance over time. The half-life of the substance, $T_{1/2}$, can be calculated from the graph.

- The half-life is given by $T_{1/2} = 4.8$ hours for the horizontal decay.
- The half-life is also given by $T_{1/2} = 30.2$ minutes for the vertical decay.

The graph is plotted with counts per minute on the vertical axis and hours on the horizontal axis.