Lawrence Berkeley National Laboratory

Recent Work

Title
THE IDENTIFICATION, ISOLATION, AND SEQUENCE OF THE REACTION CENTER PROTEIN GENES OF THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOPSEUDOMONAS CAPSULATA

Permalink
https://escholarship.org/uc/item/6mt4d4q2

Author
Hearst, J.E.

Publication Date
1984-07-01
THE IDENTIFICATION, ISOLATION, AND SEQUENCE OF THE REACTION CENTER PROTEIN GENES OF THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOPSEUDOMONAS CAPSULATA

J.E. Hearst

July 1984

This is a Library circulating copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE IDENTIFICATION, ISOLATION, AND SEQUENCE OF THE REACTION CENTER PROTEIN GENES OF THE PHOTOSYNTHETIC PURPLE BACTERIUM RHODOPSEUDOMONAS CAPSULATA

John E. Hearst

Department of Chemistry
University of California

and

Division of Chemical Biodynamics
Lawrence Berkeley Laboratory

Berkeley, California 94720

Presented as a Plenary Lecture at the Ninth International Congress on Photobiology July 3, 1984 - Philadelphia
ABSTRACT

Reaction centers in photosynthetic membranes are the centers to which electronic excitation due to light absorption is transferred. This excitation brings about a charge separation between a bacteriochlorophyll molecule and two quinone molecules which ultimately leads to the formation of a hydroquinone. The reduced hydroquinone is then utilized to produce a proton gradient across the membrane and ultimately to produce ATP. We have focused our interest on the structure of the reaction center in the photosynthetic purple bacterium, *Rhodopseudomonas capsulata*, with the intention of establishing a detailed understanding of these first chemical steps in the natural fixation of sunlight. In this manuscript, I outline the methods that I and my coworkers have used to identify and isolate the genes for the three reaction center subunits, L, M, and H, in *Rps. capsulata*.

These genes have then been sequenced, and the sequences analyzed in detail for their similarity with sequences of comparable proteins from more advanced photosynthetic bacteria such as *Anabena*, from algae such as *Euglena* and *Chlamydomonas*, and from higher plants such as *amaranthus*, soybean, tobacco and spinach. Homology was found which has been tentatively interpreted to be in the region of quinone binding in all of these reaction centers. There is growing optimism that there will be substantial structural similarity between the reaction centers of the purple bacteria and those of photosystem II in higher plants. This conclusion is important because the X-ray crystal structures of several of the purple bacteria reaction center complexes are presently being worked on and will ultimately be solved.
We initiated a research program in the Melvin Calvin Laboratory at the University of California on the molecular genetics of photosynthesis about three years ago. We selected Rps. capsulata as the organism of choice entirely because of the prior activity of Professor Barry Marrs whose laboratory had developed gene transfer systems for this organism and had completed the mapping of several bacteriochlorophyll biosynthesis genes and carotenoid biosynthesis genes related to photosynthesis (Yen and Marrs, 1976). Marrs (1981) had isolated a plasmid, a derivative of an R factor, RP1, which grew in E. coli, could be conjugated into Rps. capsulata, and which contained a Rps. capsulata gene cluster capable of complementing all photosynthesis mutants that had been isolated at that time. This plasmid is called pRPS404, contains 116 kilobasepairs of DNA of which the 45 kb section contained between the IS 21 elements or between map positions 23 and 68 in Figure 1 is the Rps. capsulata photosynthesis gene cluster. Figure 1 contains a restriction map worked out by the joint activities of the Marrs laboratory and this laboratory.

Next we developed procedures for the transposon mutagenesis of pRPS404 in E. coli which allow for easy mapping of the positions of the transposon insertions (Youvan et al. 1982). In order to improve the stability of the mutants generated in this way, we created a new transposon called Tn5.7 which has the transposition characteristics of Tn5 and the antibiotic resistance characteristics of Tn7 (Zsebo, Wu and Hearst (1984). Upon conjugation of the mutated pRPS404 into Rps. capsulata, site directed mutation occurs at the same map position in the Rps. capsulata genome as it occurred in the E. coli clone from which it was derived. Recombination is not accompanied by complex DNA rearrangements or deletions (Zsebo and Hearst, 1984). By screening both the
earlier mutants generated by the Marrs laboratory and the transposon mutant generated in this laboratory for fluorescence in the infra-red, we were able to identify two map positions separated by 35 kb which were prime candidates for DNA sequencing. They contained the sequences of the reaction center proteins (Youvan, Hearst and Marrs, 1983).

Youvan et al. (1984b) have just reported the primary sequence of these two 4000+ basepair fragments of *Rps. capsulata* which code for the light harvesting I polypeptides, B870α and B870β, the three reaction center polypeptides H, M, and L, and for some presumed regulatory functions relating to the synthesis of these components of the photosynthetic membrane (Zsebo and Hearst, 1984). From the deduced amino acid sequences of the reaction center subunits it was concluded that the H subunit is a hydrophilic protein with a very hydrophobic amino terminus of thirty amino acids. The H subunit is a polypeptide 254 amino acids long with a molecular weight of 28,534 daltons. The L and M subunits are both very hydrophobic proteins with 282 and 307 amino acids respectively. Their molecular weights calculate to be 31,565 and 34,440 daltons, indicating that they have anomalous SDS PAGE electrophoretic mobilities because of their hydrophobic characters. Hydropathy plots suggest that the L and M subunits are transmembrane proteins which may cross the membrane five times.

Feher and Okamura (1978) have shown that the H subunit is not essential to the electron transfer activities of the reaction centers in *Rps. sphaeroides*. While the H, M, and L subunits always occur in equimolar quantities in reaction centers, the H subunit is thirty-five kilobasepairs away from the operon containing the LH B870α, LH B870β, L subunit, and M subunit in *Rps. capsulata* (Youvan et al., 1984a) and so the H subunit gene is clearly under separate transcriptional control from the other structural proteins in the reaction center. Chory et al. (1984) have suggested that the
H subunit serves as the structural anchor in the membrane around which the reaction center forms and evidence is presented suggesting that the H subunit can be found in membrane fractions isolated even from aerobically grown cells.

We are therefore at a point where it is generally accepted that the only two polypeptides essential for reaction center activity are the L and M subunits in *Rps. sphaeroides*. These two subunits must contain binding sites for the strongly bound and weakly bound ubiquinones, Q_A and Q_B, for the Fe(II), and for the bacteriochlorophylls and the bacteriopheophytins. Of these interactions, I consider the sites for binding the quinones most crucial since they serve the roles of preserving or stabilizing very labile anion radicals which are one electron intermediates in the quinone to hydroquinone reduction pathway. This model supposes that pigment binding functions are more variable and therefore less tightly conserved in evolution.

Hearst and Sauer (1984a, 1984b) have discovered that there is a highly conserved pattern of sequences of amino acids which is common to the L and M subunits of *Rps. capsulata* and the Q_B-protein of chloroplast thylakoid membranes in spinach and tobacco. The conservation has survived an estimated three billion years of evolution (J. M. Olson, 1981). Such a striking conservation of amino acid sequence suggests that these portions of all three proteins, all of which are approximately 60% in from the amino terminus, are at the functional centers of these proteins. It is their hypothesis that these highly conserved sequences of amino acids are involved in quinone binding and function.

There is a large literature of physical measurements on thylakoid membranes from higher plants which establish the functional and compositional similarities between photosystem II reaction centers in these membranes and
the reaction centers of *Rps. capsulata* and *Rps. sphaeroides*. The sequences of the corresponding proteins in plants and purple bacteria now have proven the evolutionary relationships between these reaction center proteins. I would like to suggest here that all PS II reaction centers are likely to contain two similar protein subunits with molecular weights between 30 kd and 40 kd with roles analogous to those of the L and M subunits in the reaction centers of photosynthetic purple bacteria. I am stressing quinone binding here although common features of pigment binding might also prevail. The strongest evidence in favor of this position comes from the recent nucleic acid sequence data of J.-O. Rochaix et al. (1984) and of O.F. Rasmussen et al. (1984). Rochaix et al. (1984) present the nucleic acid sequence of the *psbD* locus of the *Chlamydomonas reinhardii* chloroplast genome. The *psbD* gene codes for the D2 polypeptide which has been associated with photosystem II (Chua and Gillham, 1977) together with its partner, the D1 polypeptide, which is coded by the *psbA* gene and which corresponds to the 32 kd herbicide binding protein or Q_B protein of higher plants. Rochaix et al. make the striking observation that while the overall homology between the Q_B protein and the D2 protein of *C. reinhardii* is only 27%, there are several domains where one can find homology ranging between 33% and 58%. Q_B contains 352 amino acids while D1 contains 339 or possibly 350 amino acids. The putative quinone binding region is highly conserved in both proteins, with Q_B corresponding best with the L subunit of *Rps. capsulata* and D2 corresponding best with the M subunit of *Rps. capsulata*.

Rasmussen et al. (1984) have sequenced the corresponding *psbD* gene from the higher plant chloroplast genome, *Pisum sativum* or pea. Their D2 protein is 353 amino acids long and shows an 84.7% homology to the D2 protein of *C. reinhardii*. Again the putative quinone binding region is the most highly
conserved region of the protein relative to the M subunit of *Rps. capsulata*.

Figure 2 shows an alignment of the amino acid sequences of the L subunit of *Rps. capsulata* (Youvan et al., 1984b) with the Q_B proteins of spinach and tobacco (Zurawski et al., 1981), of soybean (Spielmann and Stutz, 1983), of *Amaranthus hybridus* (Hirschberg and McIntosh, 1983), of *C. reinhardii* (Erickson et al., 1983), of Euglena (Hallick, 1984), and of *Anabena I* (Hazelkorn, 1984). Overall, there is 21.5% homology between the L subunit and the Q_B protein of spinach, 21.0% homology between the L subunit and the Q_B protein of *C. reinhardii* and 92.3% homology between the two Q_B proteins. The most striking feature of this figure is the strong homology between all seven proteins in the hypothetical quinone binding region:

$$N----PFHMLG----F------AMHG-LV-S.$$

Figure 3 shows an alignment of the amino acid sequences of the M subunit of *Rps. capsulata* (Youvan et al., 1984b), the D2 protein of pea (Rasmussen et al., 1984) and the D2 protein of *C. reinhardii* (Rochaix et al., 1984). Overall, there is 20.8% homology between the M subunit and the D2 protein of pea, 19.5% homology between the M subunit and the D2 protein of *C. reinhardii* and an 84.7% homology between the two D2 proteins. The most striking feature of this figure is the strong homology between all three proteins in the hypothetical quinone binding region:

$$F---H-N---NPFH----A---G-ALL-A-HGAT.$$

In conclusion, I am suggesting that the *psbA* and *psbD* loci of chloroplast genomes encode for the photosystem II analogs of the L and M reaction center subunits of *R. capsulata* and other photosynthetic purple bacteria. While the corresponding chloroplast proteins, D1 and D2, appear to have molecular weights of 32 to 34 kd by SDS PAGE, they are very hydrophobic membrane bound proteins which may cross the membrane five or more times. Their true molecular weights will be between 38 and 40 kd (Zurawski et al.,
1981 and Rasmussen et al., 1984). Hearst and Sauer, 1984a and 1984b have proposed that the most highly co-conserved sequences between the L subunit, the M subunit and the Q_B protein are involved in quinone binding. While Wolber and Steinback (1984) have proven that the tryptic peptide of the Q_B protein which contains the presumptive quinone binding site also contains the major site for the covalent linkage between azidoatrazine and the herbicide binding protein in thylakoid membranes, direct physical evidence relating to quinone binding remains elusive and requires further experimentation. In this spirit, it must be remembered that identification of the Q_B protein with the weak quinone binding site, and the D2 protein with the strong binding site relates to a model and cannot yet be considered experimental fact.

ACKNOWLEDGEMENTS

This work was supported by the National Institutes of Health, Grant # GM30786 and by the Office of Energy Research, Office of Basic Energy Sciences, Biological Energy Research Division of the U. S. Department of Energy, Contract DE-AC03-76SF00098.
BIBLIOGRAPHY

Spielmann, A., Stutz, E. (1983). Nucleotide sequence of soybean chloroplast DNA regions with contain the psb A and trn H genes and cover the ends of the large single copy region and one end of the inverted repeats. Nucleic Acids Research 11, 7157-7167.

FIGURE LEGENDS

Figure 1. Physical map of pRPS404. Arrows indicate IS21 elements which bracket the Rps. capsulata DNA. The Tn5.7 insertions generated during the transposon mutagenesis studies are named for their positions in kilobases on this map.

Figure 2. An amino acid sequence alignment for the L subunit reaction center polypeptide of Rps. capsulata, the herbicide binding thylakoid membrane protein, Q$_B$, of spinach and tobacco, of soybean, of Amaranthus hybridus, of C. reinhardii, of Euglena, and of Anabena. This figure was created with the kind assistance of Professor Richard Hallick of the University of Colorado in Boulder.

Figure 3. An amino acid sequence alignment for the M subunit reaction center polypeptide of Rps. capsulata, the D2 protein of pea, and the D2 protein of C. reinhardii. The two D2 proteins are encoded by the psbD loci of the chloroplast genomes of their respective organisms. There are 64 matches and 20.8% homology between the M and D2 pea, 60 matches and 19.5% homology between the M and D2 chlamydomonas, and 287 matches and 84.7% homology between D2 chlamydomonas and D2 pea.
Figure 2
MAEYQNFQNQVQVGAPAEMLKEDVDTZERTPAEGMFN1LGWMGNNADQ1QYLYLGIAGTVSLAFODWFFTIGVWYQAGFDPIFMRLFLFMTIALGKFTKDOMDLFDIMDDWLRDRDFVPVFVGWSGGLLEFPCAYFAVGCWFTGTTTFVTSWYTHSLASLYEOCNFLTAAVSTPANSLAHM
MTIALQMYEKRWFDDADDWLRQDRDFVPVFVGWSGGLLEFPCAYFALGQWLTGTTTFVTSWYTHSLASLYEOCNFLTAAVSTPANSMAH

FFSLLEPPPAEYQLIAAPLQQQQVQQIASSLMAISVIAWWVWVYTRADQLMGKHMIAWAPLSAIWLWSVLFWRPMILMGWSWSVAPPYQIFS
SLLLWQDEAOLQLTRWQ.loggedInTEQFLVATHGAFGLIGFMRQFELARSVQLPYNAIFSPAPIAVFVSFVFLYPLGQSGWFFAPSF6VAASLLFVWGDEAOOGDFTRWQloggedInEQLWAFVALHGAFGLIGFMRQFELARSVNLRPYNAIAFSAP1AVFVSFVFLYPLGQSGWFFAPSF6VAAS

HLDSHTQNSLDNGMLFYMPFNLSSIALYOSALLFAMHGATIIAVTRFGGERELEQIQVDRGTASERAALFWRWMTGYNATMEGIHR
IFRFILFPQGFHNWTLNPFFNMMGVAGVLAALLCALHGATVENTLFEDGDANTFRAFNFQAEETYSMYTANRFWSOIFGVAFSNKR
IFRFILFPQGFHNWTLNPFFNMMGVAGVLAALLCALHGATVENTLFEDGDANTFRAFNFQAEETYSMYTANRFWSOIFGVAFSNKR

GAIWMAMATLTGGIGILLSGTVVDNWVYVQAQVHGAPVTPLHFFFFVFVPTGLWSALGVGLALNLRAYDFVSQEIRAEDPFEFETFYTKNILLNEGIRAWMATODOPHENLIFPEEVLPRGNAL

Amino Acid Sequence Alignments for:

M Subunit Rhodopsseudomonas capsulata (307 amino acids)
D2 Protein (psbD) Pism sativum (353 amino acids)
D2 Protein (psbD) Chlamydomonas rainhardii (352 amino acids)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.