Title
STABILITY CONSTANTS OF ALPHAHYDROXY-ISOBUTYRIC ACID COMPLEXES WITH ACTINIDE ELEMENTS

Permalink
https://escholarship.org/uc/item/6mv7s08p

Authors
Ordenheimer, B. Graus
Choppin, Gregory R.

Publication Date
1956-09-26
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
STABILITY CONSTANTS OF ALPHA-HYDROXYISOBUTYRIC ACID COMPLEXES
WITH ACTINIDE ELEMENTS

B. Graus Odenheimer and G. R. Choppin

September 26, 1956

Printed for the U.S. Atomic Energy Commission
STABILITY CONSTANTS OF ALPHAHYDROXYISOBUTYRIC ACID COMPLEXES
WITH ACTINIDE ELEMENTS

B. Graus Odenheimer and G. R. Choppin

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

September 26, 1956

ABSTRACT

The stability constants of curium and americium alpha hydroxyisobutyrate complexes were determined by means of ion exchange equilibrium measurements on Dowex-50 four percent resin in the ammonium form.

The values obtained for curium alpha hydroxyisobutyrate are: $K_1 = 290, \quad pK_1 = 2.46; K_2 = 93, \quad pK_2 = 1.97; \quad$ and $K_3 = 9, \quad pK_3 = 0.95$. The value for K_1 is probably good to within 10 percent, for K_2 to within 40 percent and for K_3 to within a factor of 2. The total $pK = pK_1 + pK_2 + pK_3 = 5.38$.

For americium alpha hydroxyisobutyrate, only the first stability constant was determined. The value for this constant is $K_1 = 527, \quad pK_1 = 2.72$.
STABILITY CONSTANTS OF ALPHA HYDROXYISOBUTYRIC ACID COMPLEXES WITH ACTINIDE ELEMENTS

B. Graus Odenheimer and G. R. Choppin

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

September 26, 1956

INTRODUCTION

Alpha hydroxyisobutyric acid has been used successfully as an eluting agent in the separation of the actinide elements in ion exchange columns.\(^1\) It was of interest to study the complexes which are formed between alpha hydroxyisobutyric acid and the actinide elements and to determine their stability constants as a means of understanding the elution behavior of the actinides with alpha hydroxyisobutyric acid. The method used was ion exchange equilibrium measurements with a cation exchanger.\(^2\) A similar method has been used by Schubert\(^3\),\(^4\),\(^5\) for the determination of the stability constants of strontium citrates and tartrates.

In a solution containing a cation exchange resin (in the form AR) and a positive ion (M\(^+\)), the following reaction occurs:

\[
AR + M^+ \rightleftharpoons MR + A^+(1)
\]

\[
Q = \frac{(MR)(A^+)}{(AR)(M^+)}
\]

where Q is a constant, (MR) and (AR) are the activities of the cations in the resin phase, (M\(^+\)) and (A\(^+\)) are the activities of the cations in solution.

In the presence of a chelating or other complexing agent, a quantity of the metal ion is retained in solution through complex formation:

\[
A^+ + C^- \rightleftharpoons AC(2)
\]

\[
K = \frac{(AC)}{(A^+)(C^-)}
\]

If a positively charged complex is formed, it may be absorbed on the resin along with the free metal ion. A distribution constant K\(_d\) may be defined for a metal ion in a solution containing a cation exchanger in the presence of a complexing agent as follows:

\[
K_d = \frac{\Sigma M^+_{\text{Resin}}}{\Sigma M^+_{\text{in solution}}}(3)
\]
where $\Sigma M^+_{\text{Resin}}$ = the total amount of cation in the resin phase and $\Sigma M^+_{\text{Solution}}$ = the total amount of cation in solution.

A distribution constant $K'_{d_{o}}$ may be defined for a metal ion in a solution containing a cation exchange resin in the absence of a complexing agent.

$$K'_{d_{o}} = \frac{(MR)}{(M^+)}$$ \hspace{1cm} (4)

where (MR) = activity of cation in resin phase and (M^+) = activity of cation in solution. Similar equations hold true for other than singly-charged ions.

The reactions taking place between alpha hydroxyisobutyrate ion (But^-) and the actinides are as follows:

$$M^{3+} + \text{But}^- \leftrightarrow M\text{But}^+$$ \hspace{1cm} (5)

$$K'_{1} = \frac{(M\text{But}^+)}{(M^{3+})(\text{But}^-)}$$

$$M\text{But}^+ + \text{But}^- \leftrightarrow M\text{But}_2^+$$ \hspace{1cm} (6)

$$K'_{2} = \frac{(M\text{But}_2^+)}{(M\text{But}^+)(\text{But}^-)}$$

$$M\text{But}_2^+ + \text{But}^- \leftrightarrow M\text{But}_3^+$$ \hspace{1cm} (7)

$$K'_{3} = \frac{(M\text{But}_3^+)}{(M\text{But}_2^+)(\text{But}^-)}$$

The resin equilibrium for the NH_4^+ form resin may be represented as follows:

$$M^{3+} + 3 \text{NH}_4^+ \leftrightarrow \text{MR}_3^+ + 3 \text{NH}_4^+$$

$$K'_{R_{1}} = K'_{d_{o}} = \frac{(MR)^3}{(M^{3+})(\text{NH}_4^+)^3}$$ \hspace{1cm} (8)

$$M\text{But}^+ + 2 \text{NH}_4^+ \leftrightarrow M\text{But}_{R_{2}}^+ + 2 \text{NH}_4^+$$

$$K'_{R_{2}} = \frac{(M\text{But}_{R_{2}}^+)(\text{NH}_4^+)^2}{(M\text{But}^+)(\text{NH}_4^+)^2}$$ \hspace{1cm} (9)

$$M\text{But}_2^+ + \text{NH}_4^+ \leftrightarrow M\text{But}_{R_{3}}^+ + \text{NH}_4^+$$

$$K'_{R_{3}} = \frac{(M\text{But}_{R_{3}}^+)(\text{NH}_4^+)}{(M\text{But}_2^+)(\text{NH}_4^+)}$$ \hspace{1cm} (10)
K'\text{d} may then be defined as follows:

\[K'\text{d} = \frac{(\text{MR}_3) + (\text{MButR}_2) + (\text{MBut}_2\text{R})}{(M^{+3}) + (\text{MBut}^{+2}) + (\text{MBut}_2^{+}) + (\text{MBut}_3)} \tag{11} \]

Substituting in equation 11 the values from the above equations we obtain:

\[K'\text{d} = K'_0\frac{R_1}{R_2} (\text{M}^{+3}) + K'_0\frac{R_1}{R_2} (\text{M}^{+3})(\text{But}^-) + K'_0\frac{R_1}{R_2} (\text{M}^{+3})(\text{But}^-)^2 + K'_0\frac{R_1}{R_2} (\text{M}^{+3})(\text{But}^-)^3 \tag{12} \]

simplifying:

\[K'\text{d} = \frac{K'_0\frac{R_1}{R_2} (\text{But}^-) + K'_0\frac{R_1}{R_2} (\text{But}^-)^2 + K'_0\frac{R_1}{R_2} (\text{But}^-)^3}{1 + K'_0\frac{R_1}{R_2} (\text{But}^-) + K'_0\frac{R_1}{R_2} (\text{But}^-)^2 + K'_0\frac{R_1}{R_2} (\text{But}^-)^3} \tag{13} \]

Although the above equations are given for the activities of the various ions, we shall use concentrations as the activities in the resin phase are not known. However, the ionic strength of the solutions is maintained constant, and therefore the activity coefficients may be considered constant at least at the low But concentrations. Thus the stability constants obtained are "concentration" constants rather than thermodynamic constants. All these constants are defined as before and designated without the prime.

To determine the stability constants \(K_1', K_2'\), and \(K_3'\), it is necessary to measure \(K_d\) at various concentrations of alpha hydroxyisobutyrate. \(K_{d0}\) must also be determined. The pH, ionic strength, temperature and \(\text{NH}_4^+\) concentration are all maintained constant as all of these factors affect the equilibria.

EXPERIMENTAL METHOD

Resin and Solutions:

Resin: Dowex-50, 4% cross linked, with a settling rate of 1 to 1.5 cm/min was used in the \(\text{NH}_4^+\) form. The resin had been previously cleaned by washing alternately with hydrochloric acid, water, ammonium hydroxide, water, perchloric acid, water, and hydrochloric acid. It was then analyzed and found to be spectroscopically pure. The \(\text{NH}_4^+\) form resin was then prepared by passing 4 M \(\text{NH}_4\text{Cl}\) through the hydrogen form resin in a column until the pH was that of \(\text{NH}_4\text{Cl}\). It was then washed with conductivity water until the test for chloride was negative. The resin was removed from the column and dried at 40°C overnight.

It was found that drying the resin at a higher temperature caused it to decompose into the hydrogen form by evolution of \(\text{NH}_3\). A moisture
absorption curve was made for the resin, and it was found that the absorption of water was a steady process over the time range studied (see Fig. 1). It was also found that the resin slowly lost water while standing in a dessicator, thereby changing its equivalent weight. An analysis of the resin for nitrogen was made, and 6.02% nitrogen was reported. A subsequent analysis of the same sample which was left in a dessicator for about three months showed an increase in nitrogen to 6.50%. Therefore the resin for each series of experiments was weighed as rapidly as possible at the same time to avoid changes in the equivalent weight either through gain or loss of water.

Alpha hydroxyisobutyric Acid: A 1 M stock solution was prepared by dissolving 104.1 grams of acid (Eastern Chemical Corp.) in a liter of solution. The solution was filtered and further purified by passing through a column of H⁺ form resin. From this stock solution, solutions of the desired concentrations were prepared by dilution with conductivity water. All solutions were standardized with NaOH. The range of concentration of alpha hydroxyisobutyrate ion covered was 4.7 x 10⁻⁴ M to 0.124 M.

Ammonium Perchlorate: A 1 M solution was prepared by weighing Baker's Analyzed C. P. ammonium perchlorate. The Cm²⁴⁴ tracer in 0.1 M HCl solution, about 20 λ in volume, was introduced in 500 ml of 1 M NH₄ClO₄ solution. The chloride concentration was therefore negligible. A similar solution was prepared for the Am²⁴¹ tracer.

Determination of Kₖₒ: A weighed amount of resin, approximately 0.1 g, was introduced into a tube with a ground glass stopper. Five ml. of H₂O and 5 ml. of 1 M NH₄ClO₄ solution containing Cm²⁴⁴ or Am²⁴¹ in tracer concentration were then pipetted into the tube, giving a total volume of 10 ml. The tube was sealed with wax, placed on a revolving wheel in a constant temperature water bath at 25°C ± 0.05°C, and equilibrated overnight. A portion of the solution was removed with a pipette containing glass wool in the tip to act as a filter for the resin. From this filtered solution two 1000 λ samples were withdrawn and the ammonium ion destroyed with aqua regia by evaporation to dryness. 2000 λ of 6 M HCl were then added to each dried sample in the tube to dissolve the tracer, and from this solution, two 500 λ samples were removed, plated, and dried under an infrared lamp, flamed, and the activity measured in a 2 π geometry alpha particle counter.

An assay of the ammonium perchlorate solution containing the activity was made following the same procedure.
\[K_{d0} = \frac{\text{number of counts added}}{\text{number of counts in solution}} \times \text{vol. (ml)} \times \frac{\text{number of counts in solution}}{\text{weight of resin (grams)}} \]

All pipettes used (both macro and micro) were coated with "Desicote" on the tip to prevent adherence of solution. Ionic strength was maintained at 0.5. The pH of each solution was measured after equilibration had been established.

Determination of \(K_d \): The same procedure was followed except that 5 ml of alpha hydroxyisobutyric acid of known concentration were introduced into the tube along with 5 ml of ammonium perchlorate solution containing the tracer. At low concentrations of isobutyric acid (.001 - .01) no correction was made for change in ionic strength or for change in pH. At higher concentration of isobutyric acid (.01 - 0.1), the procedure was slightly different. The pH at which the alpha hydroxyisobutyric acid was half neutralized was determined by titrating a blank with ammonium hydroxide for each concentration of acid in the presence of ammonium perchlorate at \(M = 0.5 \). The amount of ammonium hydroxide required was then added to each tube and the amount of ammonium perchlorate was changed accordingly to maintain constant ionic strength of 0.5 M. In this way the pH, ammonium ion concentration and the ionic strength were maintained fairly constant. Subsequent procedure was the same as in the \(K_{d0} \) determination.

It was found that even at low concentrations of alpha hydroxyisobutyric acid, the pH did not remain constant and therefore a \(K_{d0} \) vs pH curve was determined to observe the effect of pH on \(K_{d0} \) (Fig. 2). At higher concentrations, where the pH was maintained constant, it was found that after equilibration with the resin, the pH rose by about 0.2 units from pH \(\sim 3.6 \) to pH \(\sim 3.8 \).

\(K_a \) of alpha hydroxyisobutyric acid: A series of titrations of alpha hydroxyisobutyric acid with NH\(_4 \)OH were carried out in the presence of NH\(_4 \)ClO\(_4 \) with ionic strengths from 0.1 to 0.8 (Fig. 3). A Beckman pH meter, Model 6 was used. A value of 3.54 was obtained for the \(K_a \) at \(M = 0.5 \). This value was used in calculating the concentrations of alpha hydroxyisobutyrate in solution.

RESULTS

Four series of experiments were carried out with alpha hydroxyisobutyric acid, three of which were with Cm\(^{244} \) and one with Am\(^{241} \).
In the first experiment with Cm^{244}, an attempt was made to determine the first stability constant of the complex formed by using very low concentrations of alpha hydroxyisobutyrate ion. This would enable us to determine K_1 as follows:

Using only the first portion of equation 13,

$$K_d = \frac{K_{d_0}}{1 + K_1 \left[\text{But}^-\right]}$$ \hspace{1cm} (14)

and neglecting the absorption of Cm But^{+2} on the resin, we have:

$$\frac{1}{K_d} = \frac{1}{K_{d_0}} + \frac{K_1}{K_{d_0}} \left[\text{But}^-\right]$$ \hspace{1cm} (15)

Thus a plot of $1/K_d$ vs But$^-$ concentration should give a straight line whose slope is equal to K_1/K_{d_0} and whose intercept is equal to $1/K_{d_0}$. Alternately, since K_{d_0}, K_d and $\left[\text{But}^-\right]$ are all known, K_1 may be determined by a solution of equation 14.

The concentration of But$^-$ in this experiment was very low (6.7×10^{-5} to 2.6×10^{-4}) due to the fact that the pH of the equilibrium mixture was much lower than expected, i.e., 2.6 - 2.7. This indicated that the resin must have been at least partially in the hydrogen form. The resin used in this experiment had been dried at 110°C, and it was found that on heating the resin to this temperature, and even below it, i.e., at about 80°C, the ammonium from resin decomposed giving off ammonia. To avoid this, subsequently the resin was dried at 40°C.

The results of the second series of experiments with Cm244 and alpha hydroxyisobutyric acid are summarized in Tables I and II. A plot of $1/K_d$ vs But$^-$ (see Fig. 4) gave a straight line indicating that the first stability constant K_1 was the most important at these low concentrations from about 5×10^{-4} to 2×10^{-3} and that the absorption of CmB^{++} on the resin could be neglected. The stability constant K_1 was determined by solving equation 14. The values for K_{d_0} were taken from Fig. 2 for the pH at which each K_d was measured. The variation of K_{d_0} with pH is of the magnitude expected for the reaction $\text{MR}_3 + 3\text{H}^+ \leftrightarrow 3 \text{HR} + \text{M}^{+3}$ at these H^+ ion concentrations.

In the third series of experiments with Cm^{244} and alpha hydroxyisobutyric acid, a wide range of isobutyrate ion concentrations up to 0.1 M was studied in an attempt to obtain values for K_2 and K_3. The results of these
experiments are summarized in Tables III and IV. In Table III are the data for low concentrations of alpha hydroxyisobutyrate ions and in Table IV, the higher concentration range.

A plot of $1/K_d$ vs But$^-$ as given in Fig. 5 for low concentrations of But$^-$ 4.7×10^{-4} to 1.3×10^{-3} gave a straight line. The values obtained for K_1 using equation 14 agree fairly well with those obtained in the previous experiment.

Combining the data in Tables III and IV, a plot of the entire range of isobutyrate concentrations covered versus $1/K_d$ gave a curve whose slope changed radically (see Fig. 6) indicating that at higher concentrations of isobutyrate the higher order complexes were being formed. Using the value of K_1 determined previously, and neglecting K_{R_2} and K_{R_3} (the adsorption of CmBut$^{+2}$ and CmBut$^+$), a solution of two simultaneous equations gave values for K_2 and K_3 which seemed fairly reasonable; $K_1 = 290$, $K_2 = 82$, $K_3 = 6$.

Substituting the average value for K_1 of 290 in equation 13 and using the data for the medium concentration range (6.34×10^{-3} to 6.34×10^{-2}) gave the value for $K_2 = 104$, and substituting this value for K_2 in the equation and using the data at 0.124 M alpha hydroxyisobutyrate gave a value for $K_3 = 11$.

The results of the experiment with Am241 and alpha hydroxyisobutyric acid are summarized in Table V. A plot of $1/K_d$ vs B$^-$ (see Fig. 7) gave a straight line. From the slope of the curve and using a value for K_{d_0} obtained from the intercept a value for $K_1 = 527$ is obtained. This value is judged to be good to $\pm 30\%$ only. It is of interest that the value of K_1 for americium is greater than that for curium. This is the opposite of what was expected and seems quite odd.

The values for K_1, K_2, and K_3 for Cm alpha hydroxyisobutyrate calculated on the basis of the above results are approximate and further work will have to be done to determine the constants more exactly. The value for K_1 of 290 is probably good to within 10% while K_2 to within 40% and K_3 to within a factor of 2. The precision obtained in the measurements is good, i.e., within $2\% - 5\%$. However, the main source of error is due to the resin instability.

The pK_1, pK_2, pK_3 and pK_T for Cm alpha hydroxyisobutyrate based on the average values for $K_1 = 290$, $K_2 = 93$, and $K_3 = 9$ are:

$pK_1 = 2.46$, $pK_2 = 1.97$ and $pK_3 = 0.95$

$pK_T = pK_1 + pK_2 + pK_3 = 5.38$

For comparison, the values for cerium oxalate given by Crouthamel and Martin7,8 are:
The values for pK_1 of cerium, praseodymium and yttrium citrates as given by Tompkins and Mayer are respectively, 3.2, 3.4, and 3.6. Thus the mono-citrate complexes are stronger than the mono-butyrate ones. It is of great interest, then, to determine what factors are responsible for the greater separation values with butyrate even though the complex is weaker.
Table I
Influence of pH on K_{d_0} for ^{244}Cm

The solution volume was 10 ml. The initial concentration in counts/minute of tracer per 250\mu is C_o and the final concentration, C_s:

<table>
<thead>
<tr>
<th>pH</th>
<th>Resin weight (s)</th>
<th>C_o</th>
<th>C_s</th>
<th>K_{d_0}</th>
<th>$K_{d_0} \text{ Av}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.43</td>
<td>0.06475</td>
<td>9710</td>
<td>668</td>
<td>2107</td>
<td>2117</td>
</tr>
<tr>
<td></td>
<td>0.06908</td>
<td>"</td>
<td>620</td>
<td>2123</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>0.08640</td>
<td>"</td>
<td>503</td>
<td>2123</td>
<td>2084</td>
</tr>
<tr>
<td></td>
<td>0.06623</td>
<td>"</td>
<td>669</td>
<td>2044</td>
<td></td>
</tr>
<tr>
<td>3.78</td>
<td>0.09099</td>
<td>"</td>
<td>504</td>
<td>2012</td>
<td>2044</td>
</tr>
<tr>
<td></td>
<td>0.08725</td>
<td>"</td>
<td>509</td>
<td>2076</td>
<td></td>
</tr>
<tr>
<td>3.57</td>
<td>0.09379</td>
<td>"</td>
<td>504</td>
<td>1952</td>
<td>1941</td>
</tr>
<tr>
<td></td>
<td>0.09969</td>
<td>"</td>
<td>481</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>3.36</td>
<td>0.10024</td>
<td>"</td>
<td>407</td>
<td>1966</td>
<td>1962</td>
</tr>
<tr>
<td></td>
<td>0.11476</td>
<td>"</td>
<td>415</td>
<td>1957</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>0.11761</td>
<td>"</td>
<td>413</td>
<td>1914</td>
<td>1918</td>
</tr>
<tr>
<td></td>
<td>0.11569</td>
<td>"</td>
<td>419</td>
<td>1922</td>
<td></td>
</tr>
</tbody>
</table>
Measurements of K_d for Cm244 in the presence of alpha-hydroxyisobutyric acid (low concentration)

The solution volume was 10 ml. The pK_a for alpha hydroxyisobutyric acid used was 3.54. C_o represents counts per minute per 250 λ of solution initially present, and C_s, the final counts.

<table>
<thead>
<tr>
<th>α-hydroxyisobutyric acid conc. M</th>
<th>pH</th>
<th>α-hydroxyisobutyrate conc. M</th>
<th>Resin Weight (s)</th>
<th>C_o</th>
<th>C_s</th>
<th>K_d</th>
<th>$K_{d\text{ Av}}$ (x 10$^{-4}$)</th>
<th>l/K_d (from curve)</th>
<th>K_{d_0} (extrapolated value)</th>
<th>K_1 (extrapolated value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 x 10$^{-3}$</td>
<td>3.51</td>
<td>4.82 x 10$^{-4}$</td>
<td>0.09484</td>
<td>9727</td>
<td>557</td>
<td>1736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09249</td>
<td></td>
<td>0.13514</td>
<td>574</td>
<td>1720</td>
<td>1764</td>
<td>5.74</td>
<td>1993</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09249</td>
<td></td>
<td>0.13514</td>
<td>574</td>
<td>1720</td>
<td>1764</td>
<td>5.74</td>
<td>1993</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>2.47 x 10$^{-3}$</td>
<td>3.30</td>
<td>9.01 x 10$^{-4}$</td>
<td>0.11277</td>
<td>505</td>
<td>1619</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09777</td>
<td></td>
<td>0.07025</td>
<td>598</td>
<td>1561</td>
<td>1598</td>
<td>6.26</td>
<td>1950</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>4.94 x 10$^{-3}$</td>
<td>3.12</td>
<td>1.36 x 10$^{-3}$</td>
<td>0.12938</td>
<td>522</td>
<td>1363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.13949</td>
<td></td>
<td>0.12836</td>
<td>500</td>
<td>1323</td>
<td>1336</td>
<td>7.49</td>
<td>1884</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.13949</td>
<td></td>
<td>0.12836</td>
<td>500</td>
<td>1323</td>
<td>1336</td>
<td>7.49</td>
<td>1884</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>9.85 x 10$^{-3}$</td>
<td>2.97</td>
<td>2.08 x 10$^{-3}$</td>
<td>0.14183</td>
<td>558</td>
<td>1159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15079</td>
<td></td>
<td>0.14442</td>
<td>530</td>
<td>1151</td>
<td>1161</td>
<td>8.61</td>
<td>1818</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15079</td>
<td></td>
<td>0.14442</td>
<td>530</td>
<td>1151</td>
<td>1161</td>
<td>8.61</td>
<td>1818</td>
<td>274</td>
<td></td>
</tr>
</tbody>
</table>

Measurement of K_d for ^{244}Cm in the presence of alpha-hydroxyisobutyric acid (low concentration)

The solution volume was 10 ml. The p_K for alpha hydroxyisobutyric acid used was 3.54. C_o represents counts per minute per 250 λ of solution initially present, and C_s, the final count.

<table>
<thead>
<tr>
<th>α-hydroxyisobutyric acid conc. (M)</th>
<th>pH</th>
<th>α-hydroxyisobutyrate conc.</th>
<th>Resin Weight (s)</th>
<th>C_o Av.</th>
<th>C_s Av.</th>
<th>K_d</th>
<th>K_d Av.</th>
<th>$1/K_d$ Av. (x 10$^{-4}$)</th>
<th>K_d *</th>
<th>K_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>3.49</td>
<td>$4.70 \times 10^{-1}^4$</td>
<td>0.06560</td>
<td>9750</td>
<td>756</td>
<td>1814</td>
<td>1793</td>
<td>5.51</td>
<td>2066</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.06903</td>
<td>"</td>
<td>737</td>
<td>1772</td>
<td>1793</td>
<td>5.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0025</td>
<td>3.25</td>
<td>$3.54 \times 10^{-1}^4$</td>
<td>0.07472</td>
<td>"</td>
<td>680</td>
<td>1785</td>
<td>1714</td>
<td>5.60</td>
<td>2024</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07540</td>
<td>"</td>
<td>728</td>
<td>1643</td>
<td>1714</td>
<td>6.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>3.10</td>
<td>$13.3 \times 10^{-1}^4$</td>
<td>0.07926</td>
<td>"</td>
<td>743</td>
<td>1529</td>
<td>1471</td>
<td>6.54</td>
<td>1990</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07852</td>
<td>"</td>
<td>806</td>
<td>1413</td>
<td>1471</td>
<td>7.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $K_{d,0}$ was obtained by normalizing to the $K_{d,0}$ vs. pH curve as given in Fig. 1.
Table IV

Measurement of K_d for 244Cm in the presence of alpha-hydroxyisobutyric acid (higher concentration)

The solution volume was 10 ml. The K_a for alpha hydroxyisobutyric acid used was 3.54. C_o represents counts per minute per 250 λ of solution initially present, and C_s, the final count.

<table>
<thead>
<tr>
<th>α-hydroxyisobutyric acid conc.</th>
<th>pH</th>
<th>α-hydroxyisobutyrate conc.</th>
<th>Resin Weight (s)</th>
<th>C_o</th>
<th>C_s</th>
<th>K_d</th>
<th>$1/K_d$ ($x 10^{24}$)</th>
<th>K_d*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 M</td>
<td>3.78</td>
<td>6.34×10^{-3}</td>
<td>0.11973</td>
<td>9750</td>
<td>1285</td>
<td>550</td>
<td>18.2</td>
<td>2108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11804</td>
<td>9750</td>
<td>1475</td>
<td>475</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>0.02 M</td>
<td>3.70</td>
<td>1.18×10^{-2}</td>
<td>0.12342</td>
<td>9750</td>
<td>2203</td>
<td>278</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12563</td>
<td>9750</td>
<td>3083</td>
<td>172</td>
<td>58.1</td>
<td></td>
</tr>
<tr>
<td>0.05 M</td>
<td>3.77</td>
<td>3.14×10^{-2}</td>
<td>0.16469</td>
<td>9263</td>
<td>5183</td>
<td>47.8</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.16196</td>
<td>9263</td>
<td>4754</td>
<td>58.5</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>0.1 M</td>
<td>3.78</td>
<td>6.34×10^{-2}</td>
<td>0.13120</td>
<td>8775</td>
<td>7538</td>
<td>12.5</td>
<td>860</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13043</td>
<td>15608</td>
<td>13043</td>
<td>15</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>0.2 M</td>
<td>3.78</td>
<td>1.24×10^{-1}</td>
<td>0.17986</td>
<td>7800</td>
<td>7437</td>
<td>2.71</td>
<td>3690</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12797</td>
<td>7800</td>
<td>7507</td>
<td>3.05</td>
<td>3278</td>
<td></td>
</tr>
</tbody>
</table>

* K_d* was obtained by normalizing to the K_d vs. pH curve given in Fig. 1.
Table V

Measurement of K_d for Am241 in the presence of alpha-hydroxyisobutyric acid (low concentration)

The solution volume was 10 ml. The p_f for alpha hydroxyisobutyric acid used was 3.54. C_o represents counts per minute per 250 λ of solution initially present, and C_s, the final count.

<table>
<thead>
<tr>
<th>α-hydroxyisobutyric acid conc.</th>
<th>pH</th>
<th>α-hydroxyisobutyrate conc.</th>
<th>Resin Weight (s)</th>
<th>C_o</th>
<th>C_s</th>
<th>K_d</th>
<th>$1/K_d$</th>
<th>K_{d_0}</th>
<th>$K_{d_0}^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 M</td>
<td>3.52</td>
<td>4.88×10^{-4}</td>
<td>0.07872</td>
<td>3737</td>
<td>221</td>
<td>2021</td>
<td>4.95</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07449</td>
<td></td>
<td>20.4</td>
<td>2324</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0025 M</td>
<td>3.31</td>
<td>9.14×10^{-4}</td>
<td>0.08864</td>
<td></td>
<td>212</td>
<td>1876</td>
<td>5.33</td>
<td></td>
<td>5.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.08701</td>
<td></td>
<td>223</td>
<td>1811</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005 M</td>
<td>3.12</td>
<td>1.36×10^{-3}</td>
<td>0.11058</td>
<td></td>
<td>209</td>
<td>1527</td>
<td>6.55</td>
<td></td>
<td>5.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11560</td>
<td></td>
<td>182</td>
<td>1690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 M</td>
<td>2.93</td>
<td>1.98×10^{-3}</td>
<td>0.11727</td>
<td></td>
<td>203</td>
<td>1484</td>
<td>6.74</td>
<td></td>
<td>7.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11876</td>
<td></td>
<td>213</td>
<td>1393</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02 M</td>
<td>2.84</td>
<td>3.31×10^{-3}</td>
<td>0.16816</td>
<td></td>
<td>192</td>
<td>1098</td>
<td>9.11</td>
<td></td>
<td>9.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13250</td>
<td></td>
<td>243</td>
<td>1085</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* K_{d_0} obtained by normalizing to C_m
REFERENCES

Fig. 1. Moisture absorption curve at 23°C for Dowex-50 4% resin (0.1090g).
Fig. 2. Variation of K_a of alpha-hydroxyisobutyric acid with ionic strength in NH$_4$ClO$_4$. X represents a separate measurement made 2 months previous to the others.
Fig. 3. Variation of K_{d_0} with pH of the solution.