Lawrence Berkeley National Laboratory
Recent Work

Title
THE USE OF INDIUM IN HIGH-VACUUM EQUIPMENT

Permalink
https://escholarship.org/uc/item/6mz5h90s

Author
Reynolds, P.L.

Publication Date
1955-05-23
THE USE OF INDIUM IN HIGH-VACUUM EQUIPMENT

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE USE OF INDIUM IN HIGH-VACUUM EQUIPMENT

F. L. Reynolds

May 23, 1955

Printed for the U. S. Atomic Energy Commission
THE USE OF INDIUM IN HIGH-VACUUM EQUIPMENT

F. L. Reynolds

Radiation Laboratory
University of California
Berkeley, California

May 23, 1955

The use of organic materials in metal high-vacuum systems is often objectionable, particularly with instruments such as mass spectrometers where the presence of rubber, vacuum grease, and even teflon make themselves known by the many background hydrocarbon peaks that appear throughout the spectrum.

We have employed successfully for some time several ideas concerning the use of indium and indium-coated copper as suitable gasket material. In addition, we have developed a simple yet novel valve employing indium that does not use organic material as vacuum seal.

The sketches in Fig. 1 illustrate three methods in which indium may be used for gaskets. Method No. 1 involves a metal-to-metal seal using 0.050-inch-diameter wire. Provided the surfaces are machined to a fairly smooth finish we can make excellent vacuum seals by this method. Method No. 2 uses the same design of flange, but here the indium is soldered directly to the two surfaces and pressure-sealed. The third method involves the coating of indium onto a copper ring gasket, and employs a knife-edge structure for the metal-to-metal contact. All three methods allow for many resealing operations before the gasket has to be discarded.

The vacuum valve consists of a copper block, in which a groove is milled as shown in Fig. 2, and into which fits a cap, also of copper. Indium fills the groove and coats the sides of the cap, forming a seal. A small nichrome heater, adjusted to operate on 110 v ac, is incorporated into the lower milled section. Whenever the valve is to be opened or closed, the heater is turned on until the indium melts (it takes about two minutes to heat the indium to its melting point, 155° C) and the cap can be raised or lowered by action of the metal sylphon bellows. This work was performed under the auspices of the U. S. Atomic Energy Commission.

Permission for publication of this information in whole or in part is granted by the author and the University of California Radiation Laboratory operated for the United States Atomic Energy Commission.
1. METAL TO METAL COMPRESSION SEAL USING .050 INDIUM WIRE

2. METAL TO METAL SEAL WITH INDIUM SOLDERED TO SEALING SURFACES

3. METAL TO METAL COPPER GASKET, SEALING SURFACE INDIUM COATED

INDIUM GASKET TECHNIQUES

MU-9413

Fig. 1. 1, 2, 3.
Fig. 2. Vacuum valve in which indium metal is used as gasket material.