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ABSTRACT: Organic cation transporter 1 (OCT1) plays a critical role in the
hepatocellular uptake of structurally diverse endogenous compounds and
xenobiotics. Here we identified competitive and noncompetitive OCT1-
interacting ligands in a library of 1780 prescription drugs by combining in
silico and in vitro methods. Ligands were predicted by docking against a
comparative model based on a eukaryotic homologue. In parallel, high-
throughput screening (HTS) was conducted using the fluorescent probe
substrate ASP+ in cells overexpressing human OCT1. Thirty competitive OCT1
ligands, defined as ligands predicted in silico as well as found by HTS, were
identified. Of the 167 ligands identified by HTS, five were predicted to
potentially cause clinical drug interactions. Finally, virtual screening of 29 332
metabolites predicted 146 competitive OCT1 ligands, of which an endogenous neurotoxin, 1-benzyl-1,2,3,4-tetrahydroisoquino-
line, was experimentally validated. In conclusion, by combining docking and in vitro HTS, competitive and noncompetitive
ligands of OCT1 can be predicted.

■ INTRODUCTION

Organic cation transporter 1 (OCT1; SLC22A1), a polyspecific
membrane transporter, is among the most abundantly ex-
pressed transporters in human liver. Localized to the sinusoidal
membrane of hepatocytes, OCT1 mediates the hepatic uptake
of a diverse array of small positively charged hydrophilic
compounds, including many endogenous bioactive amines1

(e.g., dopamine, histamine, and serotonin). We recently
identified OCT1 as a high-capacity transporter of thiamine in
the liver and showed that the transporter plays a key role in
modulating hepatic energy status and lipid content.2

Although the transporter clearly has important endogenous
functions,2,3 OCT1 has been characterized primarily as a drug
transporter, capable of transporting a wide variety of
prescription drugs, including the antidiabetic drug metformin
and the opioid analgesic morphine. Genetic variants of OCT1
with reduced function have been associated with decreased
response to metformin4 as well as high systemic plasma levels
of morphine and the active metabolite of the opioidergic drug
tramadol.5 Furthermore, administration of the calcium channel
blocker verapamil (a potent inhibitor of OCT1) has been
shown to reduce response to metformin, presumably through
reducing hepatic drug levels.6 In recognition of its critical role
in drug disposition and response, OCT1 was included in a
group of transporters of clinical importance by the International

Transporter Consortium.7 In 2012, the European Medicines
Agency (EMA) recommended in vitro inhibition studies against
OCT1 for investigational drugs in its Guidance on the
Investigation of Drug Interactions.8

To date, more than 50 inhibitors of OCT1 transport have
been identified by in vitro inhibition studies using radioactive or
fluorescent probe substrates.9,10 However, these studies have
not identified the mechanisms by which inhibitors modulate
OCT1 transport. Growing evidence suggests that OCT1-
mediated transport can be inhibited in a “substrate-dependent”
manner due to the presence of multiple, possibly overlapping
binding sites on the protein.11 Identification and character-
ization of OCT1 ligands could be facilitated by the availability
of an atomic structure. However, the three-dimensional (3D)
structures of human OCT1 and its mammalian orthologues
have not yet been determined. Although several residues
important for substrate binding have been reported and
rationalized with OCT1 comparative models built using atomic
structures of bacterial homologues,12−17 accurate prediction of
the binding site(s) remains challenging because of the low
sequence identity between bacterial proteins and human
OCT1. Recently, a structure of a high-affinity phosphate
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transporter from the fungus Piriformospora indica (PiPT) was
determined by X-ray crystallography.18 The transporter shares
approximately 20% sequence identity with human solute carrier
(SLC) transporters, especially within the SLC22 family, thus
providing a new opportunity for comparative modeling of
OCT1 and virtual screening.18

We used a combination of in silico and high-throughput
screening (HTS) methods to identify prescription drugs and
endogenous metabolites that are ligands of OCT1, with the
goals of predicting clinical drug interactions and understanding
their interactions with OCT1 protein. To this end, we screened
a prescription drug library in silico for compounds that interact
with a predicted binding site on OCT1 using comparative
structure modeling and virtual docking. In parallel, we
conducted HTS for inhibitors of OCT1-mediated transport
of the fluorescent ligand ASP+ against the same prescription
drug library. We identified 167 ligands in the screened library
and predicted 30 competitive ligands. Moreover, we showed
that combining structure-guided ligand discovery with
structure−activity relationship models from HTS data enables
the prediction of competitive ligands of OCT1 from
endogenous and exogenous metabolites.

■ RESULTS
Comparative Model of OCT1 and Its Validation by

Docking of Known Substrates. We modeled human OCT1
on the basis of the 2.9 Å structure of PiPT, a high-affinity
phosphate transporter from Piriformospora indica, crystallized in
an inward-facing occluded state with a bound substrate18

(Protein Data Bank ID 4J05). The best-scoring 3D model was
selected using the normalized discrete optimized protein energy
(zDOPE) potential.19 The zDOPE score of −0.22 suggests that
60% of its Cα atoms are within 3.5 Å of their correct
positions.20 The model includes all 12 transmembrane helices
(TMHs), organized into the N- and C-terminal domains, and
putative binding sites were identified in the translocation cavity
between the two domains.13 The following regions were not
modeled: a large extracellular loop between TMHs 1 and 2, an
intracellular loop between TMHs 6 and 7, and the intracellular
N- and C-termini. While these regions may play a role in OCT1
homo-oligomerization, studies in rat showed that homo-
oligomerization does not affect substrate affinity and transport

function.21 Because ASP+ was used as a probe substrate, we first
docked ASP+ into two predicted binding sites and selected the
site with the best score (−6.08) for all subsequent docking.
Next, we validated the accuracy of the comparative model of
the OCT1 transporter by confirming that (1) known OCT1
substrates docked favorably against the predicted binding site
and (2) residues implicated in OCT1 transport12,14,16,17 were
localized in the predicted binding site, as follows. First, we
docked 15 known OCT1 endogenous and drug substrates
against the predicted binding site (Figure 1A). Twelve out of 15
substrates (80%) had favorable (negative) docking scores,
ranging from −24.44 for acyclovir to −2.88 for oxaliplatin
(Figure 1B and Table S1). The positive scores for three
compounds (e.g., prostaglandins and pentamidine) resulted
from steric clashes between ligand and transporter atoms,
indicating that either the predicted binding site is too small to
accommodate larger OCT1 ligands or that these compounds
bind at a different site in the translocation pore. We also
performed an enrichment analysis of docked substrates and
decoys and computed a logAUC metric of 22.94, which
suggests docking accuracy comparable to that in previously
reported virtual screening experiments for human SLC
transporters.22,23 Second, we analyzed favorable docking
poses to determine the frequency of predicted hydrogen
bonds between binding site residues and substrate molecules.
Thirteen residues in TMHs 4, 10, and 11 formed hydrogen
bonds with substrate molecules (Figure 1A). Previous muta-
genesis studies and homology modeling efforts suggested that
these residues are important for substrate binding and OCT1-
mediated transport in other species.12−17 In particular,
negatively charged D474 is important for interactions with
positively charged OCT1 substrates. Additionally, in rat,
mutations of Y221 and D474 resulted in reduced uptake of
tetraethylammonium (TEA).16 Finally, docked substrates
formed non-covalent interactions with W217, T225, I449,
and Q447 in TMHs 4, 10, and 11. The equivalent residues in
rat have also been implicated in ligand−transporter inter-
actions.17

Prediction of New Ligands by Virtual Screening and
Validation by HTS. We predicted new ligands of OCT1 by
docking each one of the 1780 compounds in the Pharmakon
drug library (MicroSource Discovery Systems; http://www.

Figure 1. Predicted binding site of OCT1 and representative substrates. (A) Thirteen residues (S29, F32, C36, N156, Y221, F273, W354, Y361,
I446, S358, C450, C473, and D474) formed hydrogen bonds with docked substrate molecules. Six residues in the predicted binding site (W217,
F244, I449, D357, Q447, and G476) participated in non-covalent and/or polar substrate−transporter interactions. OCT1 residues are shown as
cornflower blue sticks. Structures of 12 favorably docked known OCT1 substrates are shown as orange sticks. Oxygen, nitrogen, sulfur, and hydrogen
atoms are depicted in red, dark blue, yellow, and white, respectively. (B) 2D structures of representative OCT1 substrates drawn using MarvinView
14.7.7.0 (ChemAxon).

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.6b01317
J. Med. Chem. 2017, 60, 2685−2696

2686

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_001.pdf
http://www.msdiscovery.com/
http://dx.doi.org/10.1021/acs.jmedchem.6b01317


msdiscovery.com/) against the predicted binding site on the
OCT1 model. From the 1780 compounds, 471 putative OCT1
ligands were predicted (normalized docking scores less than
−1). These predictions were then tested by HTS of the entire
Pharmakon library. The HTS assay relied on the uptake of the
fluorescent substrate ASP+ by OCT1-overexpressing HEK cells
to assess the activity of the transporter.10,24 The uptake of ASP+

was linear for the first 5 min, and the Km was determined to be
21.2 μM (Figure 2A,B). Thus, a substrate concentration of 2

μM was used to minimize the effect of substrate concentration
on the IC50 values, and an incubation time of 2 min was used to
measure the initial rate of uptake. The average Z-prime score of
the HTS was 0.80, indicating a reproducible assay.25 Of the
1780 Pharmakon compounds, 167 compounds (9%) were
determined to be OCT1 inhibitors (Figure 2C), defined as
compounds that inhibited 50% or more of ASP+ uptake at 20
μM. Drugs known to inhibit OCT1 activity at 20 μM were
generally confirmed by the screen. Of the 167 compounds, 30
were also predicted as ligands by virtual screening. The overall
accuracy of virtual screening was 70%. The sensitivity and
specificity of predictions were 77% and 12%, respectively. The
low specificity is not surprising because the docking pipeline
was executed in a fully automated fashion; in contrast, typical

structure-based virtual screening involves manual postdocking
selection of ligand poses.22,23,26

We examined compounds predicted to be OCT1 ligands by
the comparative model but not identified as inhibitors by HTS.
In view of the published literature, we identified 13 previously
reported substrates and five inhibitors of OCT1. Among these
predicted ligands, cimetidine (rank #21), metformin (rank
#84), and thiamine (rank #200) inhibited OCT1-mediated
uptake of ASP+ by 4.13%, 11.1%, and −1.5%, respectively. The
docking poses of all three compounds predicted favorable
interactions with the comparative model; in particular,
metformin and cimetidine formed hydrogen bonds with
Asp474 (Figure 3A,B). The inability of HTS to identify some

of the previously reported ligands can be explained by their
OCT1 affinity, which is much weaker than that of ASP+. For
example, the reported IC50 values of cimetidine and metformin
for inhibition of OCT1-mediated transport of YM155 and
MPP+ were 149 and 1230 μM, respectively,27,28 and the IC50 of
thiamine was determined to be 4.1 mM (Figure S1). Because
our HTS assay measured inhibition of OCT1 activity by test
compounds at 20 μM, it was unable to identify ligands such as
cimetidine, metformin, and thiamine.
HTS identified tricyclic antidepressants, antihistamines, and

α-adrenergic receptor agonists, agreeing with previously
published results.10 HTS also identified a high proportion of
ligands from other drug classes, including calcium channel
blockers, β-adrenergic receptor agonists/antagonists, and
muscarinic acetylcholine receptor agonists/antagonists (Figure
2D). Selected hits from different classes of drugs were validated
in vitro (Table 1 and Figure S2). Finally, HTS identified drugs
that were less known to interact with OCT1, including
carvedilol29 (an antihypertensive medication) and ethopropa-
zine (an anti-Parkinsonian agent). Selected hits not known
previously to interact with OCT1 were validated by
determining their IC50 values in vitro (Figure 4). Analysis of
the physicochemical properties showed that OCT1 ligands tend
to have fewer hydrogen-bond donors and acceptors and are less

Figure 2. Uptake of ASP+ and HTS screening data. (A) Time-
dependent ASP+ uptake in HEK cells overexpressing OCT1 (●) or
empty vector (■). (B) Overexpression of OCT1 increases ASP+

uptake in HEK cells. ASP+ uptake studies were conducted in HEK
cells overexpressing OCT1 or empty vector. Cells were incubated with
increasing concentrations of ASP+ for 2 min. The uptake kinetic
parameters were calculated using the difference in ASP+ accumulation
between cells overexpressing OCT1 and empty vector cells. Each data
point represents mean ± SD, n = 6. (C) Distribution of inhibition
values from HTS of 1780 compounds. A total of 167 inhibitors were
identified among the 1780 Pharmakon compounds. (D) Distribution
of the 167 inhibitors in various pharmacological classes. Brown color
represents mixed class.

Figure 3. Docking results and physiochemical properties of OCT1
ligands in the Pharmakon library. Compounds are shown in orange
sticks and hydrogen bonds as black dotted lines. (A) Predicted pose of
metformin and its hydrogen bond with aspartic acid residue 474. (B)
Predicted pose of cimetidine and its hydrogen bonds with D474 and
S29. (C) Differences in distribution of physicochemical properties for
predicted competitive (n = 30) and noncompetitive (n = 137)
inhibitors of OCT1. Only significantly different distributions are
shown (Student’s t test, p < 0.05).
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polar but more lipophilic than nonligands (Figure 5). As
expected, ligands were more likely to be positively charged
(Figure 5).
Prediction of Competitive Ligands. Thirty of the 1780

compounds in the library were identified as ligands by both
virtual screening and HTS. Because docking was performed
against the predicted binding site, we hypothesize that it can
only identify competitive inhibitors or substrates. In contrast,
HTS can identify both competitive and noncompetitive
inhibitors or substrates. Thus, the 30 compounds that were
identified with both methods are likely to be competitive
inhibitors or even substrates. The remaining 137 compounds
are hypothesized to be noncompetitive and/or mixed inhibitors
of OCT1. It is also expected that this group may contain
misclassified compounds. For example, inhibitors could be
missed in HTS and thus be left out of our downstream analysis,
resulting in false negatives. Alternatively, since docking was
performed against a single conformation of a comparative
transporter model, competitive inhibitors could have been
misclassified by our protocol. We evaluated some of the
compounds from this set of 137 inhibitors. Lineweaver−Burk
plots were constructed for selected compounds in each class
(Figure 6). Tacrine and ethopropazine, neither previously
known to inhibit OCT1, were confirmed to be competitive
inhibitors of ASP+ and metformin uptake by OCT1 (Figures
6A,B and S3). Furthermore, we assessed the relative
competitiveness of these inhibitors by calculating Kis (the
dissociation constant for the transporter−inhibitor complex)
and Kii (the dissociation constant for the transporter−
substrate−inhibitor complex) using previously published
methods.30 The ratios of Kii and Kis for 14 compounds are
summarized in Table S2. A larger Kii/Kis value indicates a mode

of inhibition that is relatively more competitive, whereas a
lower Kii/Kis value reflects less competitiveness. Our Kii/Kis
values ranged from 1.26 to 95.62 (Table S2). Thiamine had the
highest value of Kii/Kis, which indicated that it competitively
inhibits ASP+ uptake. In addition, thiamine has been validated
as an OCT1 substrate in our previous publication.2 Among the
14 compounds, compounds that were predicted to be
competitive inhibitors resulted in relatively higher Kii/Kis,
whereas those that were predicted to be noncompetitive
inhibitors had lower Kii/Kis values.

Physicochemical Properties of Putative Competitive
and Noncompetitive Inhibitors. We analyzed the phys-
icochemical properties of 30 putative competitive and 137
noncompetitive ligands. Our analysis revealed that non-
competitive ligands were significantly larger and more hydro-
phobic than competitive ligands (Figure 3C), leading to the
prediction that the two types of ligands might bind to different
sites on the transporter.
In liver, several SLC transporters participate in uptake of

drugs across the sinusoidal membrane into hepatocytes. A
comparison of our HTS results with those for two other liver
uptake transporters,31,32 OATP1B1 (SLCO1B1) and
OATP1B3 (SLCO1B3), allowed us to identify OCT1-selective
versus pan inhibitors (i.e., compounds that inhibited transport
of all three liver transporters). Fifty compounds inhibited the
three liver transporters, whereas 112 inhibited OCT1 only. As

Table 1. Summary of IC50 Values for Selected Inhibition
Studies

name IC50 (μM) IC50 95% confidence interval

ketoconazole 2.60 2.49 to 2.78
closantel 3.00 2.83 to 3.18
dobutamine 4.17 3.73 to 4.67
alfuzosin 14.87 11.92 to 18.54
erlotinib 16.24 11.34 to 23.26
carbetapentane 1.55 1.19 to 2.02
clotrimazole 11.97 9.97 to 14.38
bithionol 2.23 1.98 to 2.52
carvediolol 3.43 3.02 to 3.90
clonidine 18.98 15.82 to 22.77
trimethoprim 50.68 41.47 to 61.93
guanabenz 4.85 4.17 to 5.64
pyrimethamine 13.57 10.74 to 17.14
dichlorophene 8.41 6.61 to 10.69
imipramine 7.95 5.91 to 10.68
cloperastine 14.89 14.00 to 15.83
dextromethorphan 10.45 8.66 to 12.61
propafenone 15.54 14.04 to 17.20
tacrine 21.72 18.77 to 25.14
ethopropazine 20.46 18.31 to 22.86
nitroprusside 43.84 38.08 to 50.46
sunitinib 6.10 5.47 to 6.79
desipramine 9.18 8.08 to 10.41
doxepin 11.19 9.89 to 12.66
camylofine 9.12 8.03 to 10.36
thiamine 4354 3704 to 5119

Figure 4. Selected inhibition studies of previously unknown OCT1
ligands and their estimated half-maximal inhibitory concentrations
(IC50), with 95% confidence limits in parentheses. (A) Alfuzosin, an
α1-adrenergic receptor antagonist. IC50 = 14.9 (11.9; 18.5) μM. (B)
Bithionol, an anthelmintic. IC50 = 2.2 (2.0; 2.5) μM. (C) Camylofine,
an antimuscarinic. IC50 = 9.1 (8.0; 10.4) μM. (D) Carbetapentane, an
antitussive. IC50 = 1.6 (1.2; 2.0) μM. (E) Carvedilol, a nonselective β/
α1-adrenergic receptor antagonist. IC50 = 3.4 (3.0; 3.9) μM. (F)
Dobutamine, a sympathomimetic. IC50 = 4.17 (3.73; 4.67) μM. Each
data point represents mean ± SD, n = 6.
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expected, differences in charge were significant (Student’s t test,
p < 0.05; Figure S4). Additionally, we found that OCT1
inhibitors were significantly smaller and less hydrophobic
(Student’s t test, p < 0.05). This result showed that multiway
comparison of HTS data for several transporters can help in
identifying compounds that are selective for a specific
transporter and underscores the need for HTS of additional
SLC transporters.
We next determined the fractions of inhibitors with different

predicted inhibitory mechanisms among the OCT1-selective
inhibitors and pan inhibitors (see the Supporting Information).
Eight compounds inhibited OCT1 and OATP1B1 but not
OATP1B3 (see the Supporting Information). Of these eight
compounds, only ethacridine lactate was predicted to
competitively inhibit OCT1. Likewise, only two out of 10
OCT1/OATP1B3 inhibitors were predicted to inhibit OCT1
competitively, and only two predicted competitive inhibitors

were identified among 30 pan inhibitors. Interestingly, 22 out of
30 predicted competitive ligands of OCT1 (73%) were found
among the OCT1-selective inhibitors. That is, these 22 were
not inhibitors of OATP1B1 or OATP1B3. In contrast, only five
out 30 predicted competitive ligands (16%) were also inhibitors
of OATP1B1 and OATP1B3 (the remaining three compounds
were not screened in OATP1B1/B3 HTS). This finding not
only supports the accuracy of our comparative model but also
highlights the importance of combining structure-guided ligand
discovery with HTS. By combining experimental HTS with
docking against a comparative model of OCT1, we can
efficiently predict competitive OCT1-selective inhibitors with
73% accuracy. Therefore, a structure-guided approach greatly
accelerates the identification of selective inhibitors and provides
valuable information for drug−drug interaction studies
compared with the conventional trial-and-error approach.
Pan, OCT1/OATP1B1, and OCT1/OATP1B3 inhibitors

Figure 5. Differences in physicochemical properties of 167 inhibitors and 1613 noninhibitors. Shown are box plots of molecular weight (MW),
number of heavy atoms (HA), molecular volume (MV), number of hydrogen-bond donors (HBD), number of hydrogen-bond acceptors (HBA),
number of rotatable bonds (RB), SLogP, total polar surface area (TPSA), and charge at pH 7.4. Statistically significant differences were estimated
using Student’s t test. Distributions of inhibitors and noninhibitors were significantly different (p < 0.05) for HBD, HBA, SLogP, TPSA, and charge.
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were enriched for noncompetitive inhibitors compared with
OCT1-selective inhibitors.
Structure−Activity Modeling and Validation. Data

from our OCT1 HTS experiment were used as a training set
to construct a binary structure−activity relationship (SAR)
model correlating molecular features of 1780 compounds from
the Pharmacon library with their inhibitory activities,
discretized into two classes: inhibitors and noninhibitors. The
Random Forest (RF) algorithm33 was employed to build an
ensemble classifier (SAR-I). We evaluated the accuracy of the
SAR-I model (i.e., the area under the receiver operating
characteristic curve (auROC)) by 100 repeated cross-validation
runs (Figure 7A). The average auROC of RF classifiers in this
retrospective validation was 0.89 ± 0.3. This accuracy is
comparable to the accuracies of retrospective validation of SAR
models for other transporters.24,34 In addition, we estimated the
accuracy of RF-based SAR models in prospective validation as
follows. First, we used molecular features and inhibitory
outcomes of 183 compounds from a small previously published
OCT1 inhibition screen10 to develop a new SAR model (SAR-
II). Next, SAR-II was utilized to predict the classes of the 1780
Pharmakon compounds. The auROC for this prospective
validation was 0.84 (Figure 7B). Thus, the decrease in accuracy
measures between retrospective and prospective validation was
only 5%, strongly suggesting that our OCT1 SAR-I model is
highly accurate (approximately 84%). We also used the SAR-II
model to predict the sensitivity and specificity of the classifier at
different cutoff values (Figure 7C). The sensitivity and
specificity of the SAR-II model at a cutoff value of 0.6 were

92% and 43%, respectively; at a cutoff value of 0.4, they were
82% and 65%, respectively. Finally, the observed and SAR-II-
predicted classification scores of the 1780 Pharmakon
compounds were moderately correlated (Pearson correlation
coefficient of 0.50; Figure 7D). These results suggest that SAR
models can accurately predict OCT1 ligands by virtual
screening.

Virtual Screening of Endogenous and Drug Metabo-
lites. In addition to searching for OCT1 ligands among the
1780 prescription drugs, we applied our structure-based and
SAR model methods to predict OCT1 ligands among a larger
set of 29 332 endogenous and drug metabolites in the Human
Metabolome Database (HMDB).35 We found that 864 out of
the 29 332 compounds (3%) docked favorably. We then
computed ligand−OCT1 interaction values for the 864
compounds using the SAR-I model, allowing us to predict
146 competitive ligands. Among these 146 compounds, 1-
benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), an endoge-
nous amine present at high levels in the cerebrospinal fluid of
Parkinson’s disease patients,36,37 docked favorably against
OCT1 (rank #14) and had SAR-I inhibition score of 0.48.
1BnTIQ inhibited OCT1 at 82.1 μM, and the Lineweaver−
Burk plot confirmed that 1BnTIQ inhibited OCT1 compet-
itively (Figure 8). This validation suggests that combined
docking and SAR-I virtual screening can predict OCT1
metabolite ligands in addition to prescription drug ligands.

Figure 6. Lineweaver−Burk plots for discriminating between competitive and noncompetitive inhibitors of OCT1. The inhibitory effects on ASP+

uptake by OCT1 with increasing concentrations of ASP+ were measured at various concentrations (● < ■ < ▲ < ▼) of the following inhibitors: (A)
tacrine; (B) ethopropazine; (C) clonidine; (D) pyrimethamine; (E) trimethoprim; (F) dichlorophene; (G) alfuzosin; (H) clotrimazole; (I)
imipramine; (J) dextromethorphan; (K) propafenone; (L) carvedilol. Each data point represents mean ± SD, n = 3.
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■ DISCUSSION AND CONCLUSIONS
OCT1, a protein of great pharmacological interest, transports a
wide array of drugs into and out of the liver and thus serves as a
major determinant of drug metabolism and action. Because of
its clinical importance, OCT1 has become a focus of many
pharmacogenomics and drug interaction studies, which have
prompted the EMA to recommend that all new drugs undergo
in vitro testing to assess their liability to interact with OCT1.8

The goals of the current study were (i) to develop robust

computational models to predict the interaction of new
molecular entities with OCT1 and (ii) to use a combination
of experimental and computational approaches to identify
prescription drug and metabolite ligands of OCT1. By
combining in silico and in vitro approaches, we sought to
gain information about whether a ligand binds competitively or
noncompetitively on OCT1.
Three major findings emerged from the current studies. First,

a comparative structural model of OCT1 successfully
discriminated ligands from nonligands of the transporter.
Second, by combining molecular docking and HTS approaches,
we were indeed successful in determining whether a ligand
interacts competitively or noncompetitively with the trans-
porter. Third, we identified 30 and 137 prescription drugs as
competitive and noncompetitive ligands of OCT1, respectively,
including drugs not known to interact with the transporter. We
now discuss each one of these findings in turn.

OCT1 Ligands Can Be Identified Accurately by Virtual
Screening against an OCT1 Comparative Model.
Accurate prediction of inhibitors and substrates of OCT1 is
challenging. First, although several atomic structures have been
resolved for bacterial members of the major facilitator
superfamily of transporters, low sequence identity between
bacterial homologues and human OCT1 casts doubt on the
accuracy of comparative models built using these structures as
templates.16 Second, OCT1 is considered a polyspecific
transporter that transports compounds of different sizes and

Figure 7. Results of structure−activity relationship modeling. (A) ROC curves for 100 retrospective cross-validation runs. The average ROC curve is
shown in black. The ROC curve of a random classifier is shown as a red dotted line. (B) ROC curve for the SAR model tested in prospective
validation of 1780 predicted inhibition values. The performances at different cutoff values (shown on the right y-axis) are indicated by rainbow
colors. (C) Accuracy of classification of 1780 compounds using the SAR-II model as a function of cutoff. A cutoff of 0.38 is indicated by the red
dotted line. (D) Observed vs predicted inhibition values for 1780 compounds. Two classification cutoffs are drawn vertically, and the HTS
classification cutoff is drawn horizontally.

Figure 8. Inhibitory effects of 1BnTIQ on OCT1 transport. (A)
1BnTIQ inhibited ASP+ uptake by OCT1, and the IC50 was
determined to be 82.1 μM. (B) The inhibitory effect of 1BnTIQ on
ASP+ uptake by OCT1 indicated competitive inhibition. Each data
point represents mean ± SD, n = 3.
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molecular features. For example, OCT1 mediates the uptake of
compounds ranging from small cations such as tetraethylam-
monium to monoamines (metformin), chemotherapy drugs
(oxaliplatin), and hormone-like lipid compounds (prostaglan-
din E1).4,38−40 This broad specificity may result in inaccurate
docking and SAR models. For example, ligand-based models
may underpredict ligands, especially in chemical spaces
unsampled by the training set. Similarly, docking generally
does not consider multiple binding sites, which are character-
istic of polyspecific transporters. Finally, docking also depends
on the accuracy of the target structure, and therefore, a
combination of several computational and experimental
validation experiments should be performed to ascertain the
applicability of a homology model for docking.
Here we built a comparative model of human OCT1 in an

inward-facing occluded conformation using a recently deter-
mined structure of its eukaryotic homologue, a phosphate
transporter from Piriformospora indica (PiPT).18 We confirmed
that 80% of the known structurally diverse substrates can be
docked favorably against the predicted binding site (Table S1).
Three compounds that had unfavorable docking scores against
this binding site had steric clashes with side chains of the
binding cavity, underscoring the need to model transporters in
alternative conformations. Unfortunately, there are no template
structures for alternative conformations of OCT1, and
molecular dynamics simulations still lack computing power to
model conformational changes of transporters. The average
pairwise Tanimoto coefficient of substrates used to validate the
predicted binding site was 0.33, indicating that the compounds
were structurally unrelated (Figure S5). In an unbiased
validation of the OCT1 comparative model, we docked 1780
compounds from the Pharmakon library and validated 70% of
the predicted binders and nonbinders in vitro. Previous SAR
and pharmacophore models of OCT1−ligand interactions
identified hydrophobicity and charge as the main physicochem-
ical properties required for inhibition.10,41,42 Our screening
results confirmed that charge and hydrophobicity are positively
correlated with the inhibitory activity of compounds (Figure 5).
In addition, ligands had fewer hydrogen-bond donors and
acceptors and were less polar than nonligands.
A Combination of Virtual Screening and HTS Can

Determine Whether a Ligand Binds Competitively or
Noncompetitively. It has been frequently assumed that
inhibition of SLC-mediated transport is primarily competitive,
although some recent studies have challenged this assumption
by showing that competitive, noncompetitive, and mixed-type
inhibition can also occur.11,43−45 The International Transporter
Consortium recently pointed out that the lack of understanding
of inhibition mechanisms remains a limiting factor in
transporter studies in drug development.46 We showed that
inhibitors of OCT1-mediated ASP+ transport can be divided
into two groups on the basis of their docking scores against the
OCT1 model. Predicted competitive inhibitors of ASP+

transport are compounds that are identified by experimental
screening as well as predicted by virtual screening against the
predicted substrate binding site; our assay and calculation do
not distinguish between competitive inhibitors and substrates.
In contrast, predicted noncompetitive inhibitors are com-
pounds that are identified by experimental screening as well as
predicted not to bind by virtual screening. Competitive ligands
were significantly smaller and less hydrophobic than the
noncompetitive ligands (Figure 3C). Because we modeled
OCT1 in an inward-facing occluded conformation, we predict

competitive ligands from only those compounds that fit into
the compact translocation cavity. In addition, a broad range of
Kii/Kis values (Table S2) suggested various degrees of
competitiveness among these inhibitors. Some of the inhibitors
may bind to another binding cavity or to alternative OCT1
conformations, and these will not be predicted as competitive
ligands by our docking approach. Furthermore, interactions
with OCT1 have been shown to be ligand-dependent.11 We
used ASP+ as our primary probe substrate in this study, but the
mechanism of ligand-dependent interaction will need to be
further investigated.
Additionally, we showed that 87% of predicted competitive

ligands were selective for OCT1. In contrast, only 13% of
predicted competitive ligands were identified among inhibitors
of the three hepatic uptake transporters OCT1, OATP1B1, and
OATP1B3. This result provides further confidence in the
accuracy of the comparative model and its ability to predict
competitive ligands.
To predict competitive ligands in a large virtual library of

potential ligands, we combined the SAR model (built using our
HTS data) and docking against a comparative OCT1 model.
Indeed, 146 putative competitive ligands among endogenous
and exogenous metabolites in the HMDB library were
predicted; one of them, 1BnTIQ, was experimentally tested
and validated (Figure 8). 1BnTIQ is an endogenous amine
detected in human cerebrospinal fluid that accumulates in
patients with Parkinson’s disease36 and is able to induce
parkinsonism in both mice and monkeys.47,48 1BnTIQ inhibits
complex I in the mitochondria and induces dopaminergic death
in the same manner as MPP+, a neurotoxin also known to
induce parkinsonism. Structurally similar to MPP+, 1BnTIQ is
hydrophilic and requires an uptake mechanism to enter cells. A
likely uptake mechanism is suggested by our identification of
1BnTIQ as an OCT1 ligand. While promising, our modeling
method has low specificity, resulting in a large number of false
positives. The modeling could be improved by docking against
alternative conformations of the transporter once additional
template structures become available.

Novel OCT1 Inhibitors Can Be Identified by HTS.
Because of the critical role OCT1 plays in drug disposition and
response, efforts have been made to identify and characterize
OCT1 inhibitors. For example, 20 pharmacologically diverse
antidepressants and 14 antipsychotics were screened using an
OCT1-mediated radiolabeled MPP+ uptake assay, identifying
drugs that could potentially inhibit 50% or more OCT1 activity
in the brain.9 In another study, 191 drugs from various sources
were compiled, followed by a medium-throughput identifica-
tion of 62 inhibitors.10

In this study, we conducted an extensive HTS of 1780 drugs
that have reached at least clinical trials in the United States or
are marketed in Europe and/or Asia. We were able to confirm
most of the previously known inhibitors. We also estimate that
we identified at least 100 compounds previously unknown to
interact with the transporter. Moreover, we grouped the
identified OCT1 ligands into therapeutic classes, including
tricyclic antidepressants, antihistamines, steroids, and α-
adrenergic receptor agonists, all of which were previously
reported to be more likely to interact with OCT1.10 Our HTS
also identified additional drug classes that were enriched in
OCT1 ligands, including β-adrenergic receptor agonists/
antagonists, calcium channel blockers, and muscarinic acetyl-
choline receptor agonists/antagonists. Among the inhibitors
identified by HTS, selected compounds were validated by
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determining their IC50 values (Figure 4 and Table 1). Five of
them (carbetapentane, carvedilol, erlotinib, griseofulvin, and
ketoconazole) had IC50 values that were at least 10% of their
maximum plasma concentrations achieved after therapeutic
doses of the drug (Table 2). These estimates suggest the

possibility of clinical drug−drug interactions with OCT1
substrates. Furthermore, OCT1 inhibitors may potentially
have beneficial effects on hepatic steatosis.2 With the exception
of erlotinib and ketoconazole, the drugs noted here were newly
identified OCT1 ligands. We also estimated their IC50 values
for mouse OCT1 and two other human SLC uptake
transporters (OCT2 and MATE1) (Table S3).
In conclusion, we have developed a comparative structural

model of OCT1 that discriminates ligands from nonligands and
used it together with an in vitro HTS assay. By combining the
two approaches, we were able to predict whether a ligand binds
competitively or noncompetitively. The structure-guided
approach also accurately predicted inhibitors specific to
OCT1 rather than two other hepatic drug transporters,
OATP1B1 and OATP1B3. Finally, we conducted a virtual
screen against a metabolite library using both comparative and
SAR models built from HTS data and accurately identified and
validated the parkinsonism-producing neurotoxin 1BnTIQ as a
competitive inhibitor of OCT1.

■ EXPERIMENTAL SECTION
Chemicals. The MicroSource Pharmakon compound library

(Gaylordsville, CT) was obtained through the Small Molecule
Discovery Center at the University of California, San Francisco (San
Francisco, CA). 4-(4-(Dimethylamino)styryl)-N-methylpyridinium
iodide was purchased from Molecular Probes (Grand Island, NY).
All other chemicals were purchased from Sigma-Aldrich (St. Louis,
MO). All chemicals used in the studies were purchased from
commercial vendors and had purities of 98% or higher. All cell
culture media and supplements were purchased from Life
Technologies (Carlsbad, CA), except for fetal bovine serum, which
was purchased from GE Healthcare Life Sciences (South Logan, UT).
Cell Culture. Human embryonic kidney (HEK-293) cell line stably

overexpressing OCT1 was established previously in our laboratory.2

The cells were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM H-21) supplemented with hygromycin B (75 μg/mL),
penicillin (100 units/mL), streptomycin (100 mg/mL), and 10% fetal
bovine serum in a humidified atmosphere with 5% CO2 at 37 °C.
In Vitro Uptake Studies. HEK-293 cells overexpressing OCT1

were seeded in black, clear-bottom, poly(D-lysine)-coated 96-well
plates (Greiner Bio-One, Monroe, NC) and allowed to grow for 48 h
until approximately 90% confluency. For uptake kinetics studies, cells
were incubated with Hank’s balanced salt solution (HBSS) containing
serial dilution of ASP+ for 2 min at 37 °C. At the end of the
experiments, the media were aspirated, and the cells were washed

twice with ice-cold HBSS containing 50 μM spironolactone. The Km
and Vmax were calculated by fitting the data to the Michaelis−Menten
equation. For time course studies, cells were incubated with HBSS
containing 2 μM ASP+ at 37 °C. At various time points, the
experiment was stopped as previously described. For IC50 determi-
nation, cells were incubated with HBSS containing 2 μM ASP+ and
serial dilution of inhibitors for 2 min at 37 °C. IC50 was determined
using appropriate curve fitting. For Lineweaver−Burk plots, cells were
incubated with HBSS containing serial dilution of ASP+ and the
inhibitor of interest at four different fixed concentrations for 2 min at
37 °C. The reciprocal value of ASP+ uptake at each inhibitor
concentration was fitted with linear regression. The signal of ASP+ was
measured using an Analyst AD plate reader (Molecular Devices,
Sunnyvale, CA) with excitation and emission filters tuned at
wavelengths of 485 and 585 nm, respectively. All statistical analysis
and curve fitting were done using GraphPad Prism software (La Jolla,
CA).

High-Throughput Screening. The high-throughput screen was
performed at the Small Molecule Discovery Center at the University of
California, San Francisco. HEK-293 cells overexpressing OCT1 were
seeded in black, clear bottom, poly(D-lysine)-coated 96-well plates
(Greiner Bio-One) and allowed to grow for 48 h until approximately
90% confluency using methods established previously.24 Cells were
incubated with HBSS containing 2 μM ASP+ and 20 μM test
compound at ambient temperature for approximately 2 min. At the
end of the experiment, media were aspirated, and cells were washed
twice with HBSS containing 50 μM spironolactone. Nonspecific
transport was determined in wells on each assay plate using 100 μM
spironolactone as the OCT1 inhibitor. The screen was carried out with
a Biomek FXp liquid handler (Beckman Coulter, Brea, CA).
Fluorescence was measured as previously described.

OCT1 Structure Modeling and Docking. Human OCT1 was
modeled using the 2.9 Å structure of a high-affinity phosphate
transporter from Piriformospora indica (PiPT) crystallized in an
inward-facing occluded state with bound phosphate.13 The template
was selected on the basis of the shared MFS fold assignment,47

structure quality, sequence similarity to OCT1, and ligand-bound
conformation. The sequence alignment was obtained by a manual
refinement of gaps in the output from the PROMALS3D49 and
MUSCLE50 servers (Figure S6). One hundred models were generated
using the “automodel” class of MODELLER 9.14 (https://salilab.org/
modeller/contact.html) and the normalized discrete optimized protein
energy (zDOPE) potential.14 The top-scoring model was used to
predict putative binding sites with the FTMap web server.51 Two of
the predicted binding sites were identified in the translocation cavity
between the two domains.13 ASP+ probe substrate was docked against
the two binding sites with UCSF DOCK 3.6.52,53 The size of the
docking box was 38 Å × 40 Å × 38 Å. The pose with the best docking
score was used as the template for another round of comparative
modeling by MODELER 9.14, generating 100 new models of OCT1.
Each of the models was then evaluated for ligand enrichment from a
set of challenging decoys based on enrichment curves and
corresponding logAUC values.54 Sixty decoys were generated using
the Database of Useful Decoys (DUD)55 for each of the selected
experimentally validated substrates of OCT1. The best-scoring model
was used for subsequent virtual screening. Compounds in the
Pharmakon library were downloaded from the ZINC database56 and
docked against the predicted binding site on the comparative model
using UCSF DOCK 3.6. A negative DOCK score predicts a favorable
interaction with the transporter, while a positive score predicts an
unfavorable (or unlikely) intermolecular interaction. Normalized
docking scores were computed by subtracting the average docking
score of all compounds (including the nonbinders) from the docking
score of an individual compound and dividing by the standard
deviation of all docking scores. The PAINS-Remover online web
server was used to check Pharmkon compounds for the likelihood of
interference in screening.57 None of the 1780 compounds was
reported as a pan-assay interference compound.

Structure−Activity Relationship Modeling of OCT1 Inhib-
ition. Two-dimensional (2D) structure files of the 1780 compounds

Table 2. Identified OCT1 Inhibitors That Could Cause
Drug−Drug Interactions

name
IC50

(μM)a
CMAX
(μM)b

CPortal Vein
(μM)c

CMAX/
IC50

carbetapentane 1.6 0.2 N.A. 0.12
carvedilol 3.4 0.4 0.7 0.12
erlotinib 16.2 4.8 7.0 0.30
griseofulvin 7.3 4.5 4.6 0.62
ketoconazole 2.6 6.6 10.0 2.54

aIC50 is the estimated half-maximal inhibitory concentration (see the
Experimental Section). bCMAX values were obtained from http://www.
micromedexsolutions.com/. cCPortal Vein values were calculated using
the equation described previously.60
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from the Pharmakon library were also downloaded from the ZINC
database,56 and 2900 molecular descriptors and the charge at pH 7.4
for each compound were computed using PaDEL software53 and
cxcalc (ChemAxon; http://www.chemaxon.com), respectively. Non-
informative descriptors (i.e., molecular descriptors with near-zero
variance and redundant descriptors defined by a correlation higher
than 0.95 to an accepted descriptor) were removed. Next, the
information content and correlation between descriptor values and
percent inhibition of 1780 compounds were computed with the cfs
filtering algorithm in the FSelector package58 in R, and the 21 most
informative descriptors were retained for further modeling. These
descriptors are Moreau−Broto autocorrelation descriptors based on
atomic polarizability (ATSp4), number of doubly bound carbons
bound to two other carbons (C2SP2), count of atom-type E-State
>CH− (nsssCH), sum of E-States for weak hydrogen-bond acceptors
(SwHBa), sum of E-State descriptors of strength for potential
hydrogen bonds of path length 7 (SHBint7), sum of atom-type E-
State C< (SdssC), minimum E-State descriptors of strength for
potential hydrogen bonds of path length 8 (minHBint8), minimum
atom-type H E-State −OH (minHsOH), minimum atom-type E-State
−CH3 (minsCH3), minimum atom-type E-State −CH2−
(minssCH2), minimum atom-type E-State >C< (minssssC), minimum
atom-type E-State >NH+− (minsssN), maximum E-States for (strong)
hydrogen-bond acceptors (maxHBa), maximum E-State descriptors of
strength for potential hydrogen bonds of path length 2 (maxHBint2),
maximum atom-type E-State C< (maxdssC), a measure of
electronegative atom count (ETA_Epsilon_1), a measure of hydro-
gen-bonding propensity of the molecules and/or polar surface area
(ETA_Psi_1), a measure of electronegative atom count of the
molecule relative to molecular size (ETA_BetaP_s), Mannhold LogP
(MLogP), logarithm of the calculated octanol/water partition
coefficient (XLog), and charge (Charge). Percent inhibition values
determined by HTS were discretized into two outcomes: values of at
least 50% were mapped to “1” (i.e., ligand), and values of less than
50%, including negative values, were mapped to “0” (i.e., nonligand).
Binary SAR models were built with the RF algorithm.33 Their accuracy
was estimated using a double-loop fivefold cross-validation24 protocol
in the caret package in R. To evaluate the accuracy of the models, the
average area under the receiver operating characteristic curve
(auROC) was computed from 100 repeated double-loop cross-
validation runs. For prospective validation, 21 molecular descriptors
for 183 compounds10 were computed (Supporting Information), and
SAR models were optimized by repeated fivefold cross-validation. The
model was employed to predict inhibition values for the 1780
compounds in the Pharmakon library.
Virtual Screening against HMDB Library. For virtual screening,

molecular structure files of the HMDB compounds were downloaded
from the ZINC database,56 and 21 molecular features (Supporting
Information) were computed for each compound. The ligand score
ranging between 0 and 1 was computed for each compound by SAR-I.
Compounds with ligand scores higher than 0.4 were labeled as ligands.
In parallel, each compound was docked against predicted binding sites
on the OCT1 transporter using UCSF DOCK 3.6. Normalized
docking scores were computed by subtracting the average docking
score of all docked compounds from the docking score of a compound
and dividing by the standard deviation of all docking scores.
Compounds with normalized docking scores less than −1 and ligand
scores greater than 0.4 were labeled as competitive inhibitors.
Pairwise Compound Similarity Computation and Clustering.

The MayaChemTools (http://www.mayachemtools.org) package was
used to compute 2D extended connectivity fingerprints (ECFPs) and
pairwise Tanimoto coefficients. The hclust function from the stats
library59 was used to perform hierarchical compound clustering.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jmed-
chem.6b01317.

Summary of 15 substrates used to validate OCT1
docking site, the ratios of Kii and Kis for selective
inhibitors, comparison of IC50 values for OCT1
inhibitors in four different cell lines, effect of thiamine
on the uptake of ASP+ by OCT1, selected inhibition
studies of OCT1 ligands and their estimated IC50 values,
Lineweaver−Burk plots for discriminating between
competitive and noncompetitive inhibitors of OCT1-
mediated metformin uptake, differences in physicochem-
ical properties of OCT1-selective and pan inhibitors, 2D
dissimilarity clustering of 15 known substrates of OCT1,
and pairwise sequence alignment of PiPT and OCT1
(PDF)
Full list of Pharmakon library compounds with SMILES
strings, ASP+ inhibition data, and docking scores; list of
HMDB compounds with docking ranks; OCT1,
OATP1B1, and OATP1B3 inhibition results; names
and descriptions of the 21 descriptors used in SAR
modeling; and slope and intercept data (XLSX)
OCT1 comparative model (PDB)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: Kathy.giacomini@ucsf.edu.
ORCID
Natalia Khuri: 0000-0001-9031-8124
Andrej Sali: 0000-0003-0435-6197
Kathleen M. Giacomini: 0000-0001-8041-5430
Present Addresses
#E.C.C.: Department of Metabolism and Pharmacokinetics,
Genentech, South San Francisco, CA 94080.
∇N.K.: Department of Bioengineering, Stanford University,
Stanford, CA 94305.
Author Contributions
○E.C.C., N.K., and X.L. contributed equally to this work.
E.C.C., N.K., X.L., Y.H., A. Sali, and K.M.G. designed the
research; E.C.C., N.K., X.L., A. Stecula, H.-C.C., and S.W.Y.
conducted the experiments; E.C.C., N.K., X.L., A. Stecula, H.-
C.C., A. Sali, and K.M.G. analyzed the data; E.C.C., N.K., X.L.,
A. Sali, and K.M.G. wrote the paper.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Dr. Robert M. Stroud, Dr. Ethan Geier, and Dr.
Avner Schlessinger for helpful discussions and Steven Chen
from the UCSF Small Molecule Discovery Center for help with
the assay automation. The project was supported by grants
from the National Institutes of Health (R01 GM54762, U54
GM62529, P01 GM71790, and P01 A135707 to A. Sali; U19
GM61390 and R01 GM117163 to K.M.G.; T32 GM007175 to
E.C.C., X.L., and A. Stecula; T32 GM008284 to N.K.;
2R44GM086970-03A1 to Y.H.). We also acknowledge
hardware gifts from Intel and IBM.

■ ABBREVIATIONS USED
HTS, high-throughput screening; SAR, structure−activity
relationship; ASP+, 4-Di-1-ASP; OCT1, organic cation trans-
porter 1; SLC, solute carrier; TMH, transmembrane helix;
HMDB, Human Metabolome Database; 1BnTIQ, 1-benzyl-

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.6b01317
J. Med. Chem. 2017, 60, 2685−2696

2694

http://www.chemaxon.com
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_002.xlsx
http://www.mayachemtools.org
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b01317
http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b01317
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.6b01317/suppl_file/jm6b01317_si_003.pdb
mailto:Kathy.giacomini@ucsf.edu
http://orcid.org/0000-0001-9031-8124
http://orcid.org/0000-0003-0435-6197
http://orcid.org/0000-0001-8041-5430
http://dx.doi.org/10.1021/acs.jmedchem.6b01317


1,2,3,4-tetrahydroisoquinoline; HEK-293, human embryonic
kidney cell line
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