Title
BEVATRON OPERATION AND DEVELOPMENT. 45 Jan. through March 1965.

Permalink
https://escholarship.org/uc/item/6p32v77c

Author
Crebbin, Kenneth C.

Publication Date
1965-06-23
BEVATRON OPERATIONS AND DEVELOPMENT. 45

January through March 1965

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
BEVATRON OPERATION AND DEVELOPMENT. 45
January through March 1965

Kenneth C. Crebbin
June 23, 1965
BEVATRON OPERATION AND DEVELOPMENT. 45
January through March 1965

Contents

Abstract ... v
I. Operation .. 1
II. Shutdown ... 4
III. Bevatron Development and Studies 4
IV. Experimental Program 4
V. Magnet Power Supply 4
Staff .. 7
References .. 8

* Preceding quarterly reports: UCRL-16203, UCRL-11935.
ABSTRACT

The Bevatron provided beam for physics research for 81% of the scheduled operating time. We achieved a much more stable operation than formerly by using (1) a modified inflector-tuning procedure and (2) an inner radius cup with which beam injected into the Bevatron was measured. A major shutdown this quarter allowed inspection of bearings and journals on the main motor generator sets. Four primary experiments ended this quarter and one new primary experiment started.
I. OPERATION

The Bevatron operation record is shown in Fig. 1. The beam was on for 81% of the scheduled operating time. The beam was off for 9.5% of the time because of equipment failure and 9.5% of the time for experimental set-up, tuning, and routine checks.

As reported in the preceding quarterly report, the erratic operation of the injected beam caused by the shorted turn in inflector magnet IM3 was cured when IM3 was replaced. However, a certain amount of variation in beam intensity continued to plague us. The accelerated beam intensity, 2.5×10^{12} ppp (protons per pulse), would drop and could be brought back only by increasing the injected beam from the normal level of from 4 to 5 ma to the higher level of 7 to 8 ma. When these drops occurred, a great deal of retuning of both the Bevatron and the injector system (ion source through the inflector system) resulted. When this retuning was done it usually resulted in loss of beam for the experimenters during retuning. The retuning also produced disagreement among the operating group as to whether the problem was in the Bevatron tracking system or the injector system. The most pressing problem seemed to be a method of isolating the efficiency of the two systems (injection and Bevatron). This would settle the disagreement, and then if we could further find the actual cause we could improve the overall efficiency of the beam to the experimenter. An inner radius cup was used to measure the coasting beam at injection. This cup signal seemed to provide a suitable means of separating injector tuning from Bevatron tuning. General machine operation has been much more stable since we started using the inner radius cup and modified our tuneup procedure. A description of the system follows.

The south cup, which was installed on the inner radius of the Bevatron last September, seemed to provide a possible means of isolating the injector tuning from the Bevatron tuning. By making this cup the innermost radial obstruction, all the beam that clears the inflector on successive turns around the Bevatron and spirals in should be collected on the cup. This then should give us a reliable measure of the tuning of the inflector system (IM1, IM2, IM3, and electrostatic inflector). Other than magnetic-field changes and injection timing, the cup reading should be independent of the Bevatron tuning. A peak reading on the inner radius cup should indicate both optimum tuning of the inflector system and best emittance of the beam. For a specific reading on the inner radius cup, we should be able to accelerate a specific amount of beam if the Bevatron is tuned correctly. The only thing that will change the amount of pickup and acceleration of beam in the Bevatron for a specific value on the inner radius cup is a change in the energy spread of the linac beam. This energy spread should be measured at the base of the energy-spread curve rather than at the width at half maximum. If the energy spread of the injector should increase, some of the circulating particles will have larger amplitudes of phase oscillation. As we are limited by radial aperture at injection, with up to full-aperture betatron oscillations, any increase in amplitude of phase oscillations will wipe out more of the beam. If the energy spread is made narrower, more beam is picked up and accelerated. To establish the inner radius cup as a reliable tool, these above effects were checked by varying the injection-system parameters and observing the results. In addition, measurements were made over a period of many weeks any time the injection efficiency changed to establish statistics on the results.
Fig. 1. Summary of Bevatron operation for January through March, 1965.
I now briefly describe our inflector system and the cups in the Bevatron used for these tests and measurements. The achromatic inflector system consists of three electromagnets (IM1, IM2, IM3) and a final electrostatic inflector. The beam out of the electrostatic inflector can be read on a Faraday cup EOS (east outside south). An injected beam of 1 ma as read on this cup is used as a standard for tuning. The cup "reads" all of the injector pulses (3 to 5) except the one injected into the Bevatron during injection. For checking injected beam, the cup is held in front of the inflector during the normally injected pulse. This particular pulse is the one that is set at 1 ma for tuneup and is measured on an oscilloscope.

The south cup is a block of aluminum 8 in. high, and 1 in. thick in the beam direction and 2 in. thick radially. The radial position is remotely adjustable over a range of 10 in. This is sufficient travel to allow it to move from out of the aperture to a position where it is the inner radial obstruction. The cup is connected to a capacitor and the voltage is read with an integrating digital voltmeter. No calibration is used (only the arbitrary voltmeter reading).

The following tests were performed. The injected beam at the inflector cup (EOS) was set at 1-ma peak (600-μsec width). The inflector magnets were adjusted to give a peak reading (0.700 V) on the inner-radius cup (with rf off). The inner-radius cup was retracted from the aperture and the rf turned on. Bevatron tuning was peaked to give us about 5×10^{11} ppp accelerated; this is our normal beam accelerated for 1 ma injected. A number of tests were made with varying injection-system parameters. In all cases for which we had about 0.700 V on the inner radius cup we would accelerate 5×10^{11} ppp independently of what current was read on the EOS cup. Slight variations in beam energy from the linac had no effect on the beam pickup. Total energy spread of the injected beam had no effect on the inner radius cup reading but did affect the beam picked up and accelerated, as we expected.

Our inflector tune-up procedure was modified as a result of these tests. It is now done as follows. The beam is centered at the entrance to each of the inflector magnets, IM1, IM2, and IM3. With the beam level into the EOS cup set at 1 ma, the reading on the inner radius cup is peaked up to about 0.700 V by adjusting IM2, the electrostatic inflector, and injection time only. During machine operation the currents in IM1 and IM3 are held at posted values which have remained essentially constant over many months of machine operation. Only the electrostatic inflector voltage and IM2 current are varied. After the beam is peaked on the inner radius cup, the cup is retracted and the beam is accelerated in the Bevatron. Beam intensity at peak field should be about 5×10^{11} ppp. After this level is reached, the injected beam current is increased to our desired operating level (normally 2.5×10^{12} ppp). This requires about 4 to 5 ma injected beam.

About five months of operation with the inner radius cup used for tune-up and checking, we have almost eliminated our pickup efficiency problem. We believe that our major problem in varying pickup efficiency came from slow tuning changes in IM1, IM2, and IM3 that resulted in more critical orbits. These orbits could be just as efficient when correctly set but were more subject to beam loss by aperture clipping, if the currents varied slightly, than orbits properly centered in IM1 and IM3.
II. SHUTDOWN

A 67.5-hour scheduled shutdown the first week in February allowed inspection of the bearings and journals on the main motor-generator sets. This inspection is routinely done after 1.3×10^6 magnet pulses, or about every 3 months. The bearings were checked for tarnishing and scraping, and the shaft journals given ultrasonic and "magnaflux" inspection.

On February 2 we shut down the vacuum system for 8 hours and 27 minutes to replace the shaft seals on the external proton beam plunging magnets. Some additional work was done on the travel target system during this vacuum shutdown. The rest of the shutdown work was routine maintenance of the electrical and mechanical equipment.

The 72-in. hydrogen bubble-chamber experimental setup of the Alvarez group, and the Michigan-Stanford experimental setup were removed during this shutdown. Setup was started on a new Trilling-Goldhaber experiment at the third focus of the EPB.

On March 29 we briefly shut down the vacuum system again, during our normal weekly maintenance period, to install a vacuum gate valve at the Quadrant III 75° beam port. This will allow a vacuum-coupled beam-transport system to be used by the Alvarez group to test a septum separator.

III. BEVATRON DEVELOPMENT AND STUDIES

Most of the study periods this quarter were devoted to the injector parameters and pickup efficiency as discussed in Sec. I. Some time was also devoted to studying beam spills and structure, particularly in the EPB. These beam-structure studies were also involved in the testing of magnet ripple-reduction equipment that is still in the development stage.

IV. EXPERIMENTAL PROGRAM

The Lofgren group's p-p scattering experiment and the Crowe group's K^+ decay-spectra experiment continued through this quarter. The Michigan-Stanford group's n-p scattering experiment, the Alvarez group's two experiments on K^- and π^- interactions in hydrogen, and the Segre-Chamberlain group's experiment on $K^-\Sigma$ relative parity ended this quarter.

A new primary experiment by the Trilling-Goldhaber group was set up at the third focus in the external proton beam; this group is studying the decays and strong interactions with K^0 mesons in the 25-in. hydrogen bubble chamber. There was a 32-hour emulsion exposure to K^- mesons at 2.1 BeV/c for the University of Washington. They used the Alvarez group's K^- beam from the internal Quadrant III, 22° target, with beam exit at the 29° area port.

A summary of the experimental program for this quarter is shown in Table I.

V. MAGNET POWER SUPPLY

The magnet pulsing record is shown in Table II.
Table 1. Summary of Bevatron experimental research program, January through March, 1965.

<table>
<thead>
<tr>
<th>Group</th>
<th>Start of experiment</th>
<th>End of experiment</th>
<th>Experiment</th>
<th>Beam time</th>
<th>Start of run through</th>
<th>Primary or Secondary Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvarez (No. 16)</td>
<td>3-23-63</td>
<td>2-1-65</td>
<td>Study of π⁻ interactions in hydrogen and deuterium using the 72 inch bubble chamber.</td>
<td></td>
<td>13</td>
<td>141</td>
</tr>
<tr>
<td>Alvarez (No. 17)</td>
<td>4-26-63</td>
<td>1-25-65</td>
<td>Study of K⁻ interactions in hydrogen and deuterium using the 72 inch bubble chamber.</td>
<td></td>
<td>28</td>
<td>284</td>
</tr>
<tr>
<td>Segré-Chamberlain</td>
<td>10-5-64</td>
<td>3-3-65</td>
<td>K⁻ relative parity same</td>
<td></td>
<td>12</td>
<td>143</td>
</tr>
<tr>
<td>Crowe (No. 22)</td>
<td>10-27-64</td>
<td>12-11-64</td>
<td>K⁻ decay spectra same</td>
<td></td>
<td>25</td>
<td>298</td>
</tr>
<tr>
<td>Lofgren (No. 20A)</td>
<td>12-13-64</td>
<td>1-14-65</td>
<td>p-p scattering same</td>
<td></td>
<td>16</td>
<td>184</td>
</tr>
<tr>
<td>Mack</td>
<td>1-19-65</td>
<td>2-5-65</td>
<td>Evaluation of counting equip.</td>
<td></td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Alvarez</td>
<td>2-11-65</td>
<td>In progress</td>
<td>Test of a septum separator in a negative-particle beam</td>
<td></td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>Teilling-Goldhaber (No. 27)</td>
<td>3-3-65</td>
<td>In progress</td>
<td>Study of decays and strong interactions with K⁻ mesons using the 25 inch hydrogen bubble chamber.</td>
<td></td>
<td>21</td>
<td>209</td>
</tr>
<tr>
<td>External groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanford-Michigan (Perl-Longo)</td>
<td>10-18-64</td>
<td>1-5-65</td>
<td>n-p scattering same</td>
<td></td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Univ. Washington (Lord)</td>
<td>1-26-65</td>
<td>1-27-65</td>
<td>Emulsion exposure to 2.1 BeV/c K⁻ mesons</td>
<td></td>
<td>3</td>
<td>32</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are experiment numbers.
Table II. Bevatron motor-generator set monthly fault report.

<table>
<thead>
<tr>
<th>Month (1963)</th>
<th>4 to 6 Pulses/Min</th>
<th>7 to 9 Pulses/Min</th>
<th>10 to 17 Pulses/Min</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500 to 6900 A</td>
<td>7000 to 9000 A</td>
<td>1500 to 6900 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulses/Faults</td>
<td>Pulses/Faults</td>
<td>Pulses/Faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/26</td>
<td>14/26</td>
<td>14/26</td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>1,566</td>
<td>1,732</td>
<td>2,397</td>
<td>279,175</td>
</tr>
<tr>
<td>Feb.</td>
<td>4,501</td>
<td>1,358</td>
<td>10,422</td>
<td>279,175</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td>454</td>
<td>246,308</td>
<td>279,175</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td>445</td>
<td>49,942</td>
<td>222,385</td>
</tr>
<tr>
<td>May</td>
<td>2,539</td>
<td>4,039</td>
<td>2,071</td>
<td>222,385</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>310,039</td>
<td>34,413</td>
<td>353,155</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14 indicates an arc-back, 26 indicates an arc-through.
STAFF

Edward J. Lofgren Bevatron Group Leader
Walter D. Hartsough In charge of Bevatron operations
Kenneth C. Crebbin Operation supervision
Fred H. G. Lothrop
Wendell Olson
William Everette
Duward S. Cagle
Frank W. Correll
Robert G. Gisser
William H. Kendall
G. Stanley Boyle
Robert W. Brokloff
Ashton H. Brown
Gary M. Byer
Donald N. Cowles
Ferdinand Dagenais
James R. Guggemos
Charles H. Hitchen
Arthur K. Ikuma
William J. Meserve
Robert M. Miller
Joseph F. Smith
Selwyn M. Spray
Harvey K. Syversrud
Marsh M. Tekawa
Robert W. Allison, Jr.
Trancuilo Canton
Warren W. Chupp
Bruce Cork
Kenneth C. Crebbin
Tom Elioff
Robert Force
Leroy T. Kerth
Fred H. G. Lothrop
Donald Milberger
Robert Richter
Glenn White
William Wenzel
Emery Zajec
Edward Hartwig
Robert Force
Marion Jones
Harold Vogel
Donald Milberger
Kenow Lou
Cedric Larson
Abraham Glicksman
Robert Force
Marion Jones
Harold Vogel
Donald Milberger
Kenow Lou
Cedric Larson
Abraham Glicksman

Development and support

In charge of Electrical Engineering Group
In charge of Electrical Coordination Group
In charge of Motor Generator Group
In charge of Electrical Maintenance Group
In charge of Mechanical Engineering Group
REFERENCE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.