Lawrence Berkeley National Laboratory

Recent Work

Title
THERMAL CONDUCTIVITY INTEGRAL FOR ALUMINA

Permalink
https://escholarship.org/uc/item/6p48415v

Author
Katsube, N.

Publication Date
1978-07-01
The heat leak in a cryogenic support whose ends are at temperatures T_1 and T_2 is given by:

$$Q = A \int_{T_1}^{T_2} k dT$$

Alumina is a common material used at LBL for thermal and electrical insulation when organic materials are not allowed due to high vacuum reasons.

The thermal conductivity of Alumina was measured by Berman\(^1\). His curves are replotted in linear coordinates and the thermal conductivity integral is computed and plotted against temperature.

For the sake of comparison, the thermal conductivity integrals of various materials for temperature range from $40K$ to $800K$ are listed below:

$$\int_{40K}^{800K} kdT$$

- Stainless Steel = 3.49 watts/cm
- Alumina = 64.00 watts/cm
- 6063 Aluminum = 167.00 watts/cm
- 1100 Aluminum = 233.00 watts/cm
- OFHC Copper = 600.00 watts/cm
- ETP Copper = 700.00 watts/cm

The alumina is a poor thermal insulator compared to stainless steel. Thus, it is only used as a standoff when electrical insulation is required. For instance, the Doublet III cryopanel requires electrical insulation due to eddy current problems.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.