Title
RADIATIVE DECAY OF BIVRATIONALLY EXTIED CH2

Permalink
https://escholarship.org/uc/item/6p62w74j

Author
Okumura, M.

Publication Date
1984-05-01
Submitted to Tetrahedron

RADIATIVE DECAY OF VIBRATIONALLY EXCITED CH$_2^-$

M. Okumura, L.I-C. Yeh, D. Normand, J.J.H. van den Biesen, S.W. Bustamente, and Y.T. Lee

May 1984
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RADIATIVE DECAY OF VIBRATIONALLY EXCITED CH$_2^-$

M. Okumuraa, L. I-C. Yehb, D. Normandc, J. J. H. van den Biesend, S. W. Bustamantee, and Y. T. Lee*

Materials and Molecular Research Division
Lawrence Berkeley Laboratory and
Department of Chemistry, University of California
Berkeley, California 94720 USA

ABSTRACT

We have observed the presence of vibrationally excited CH$_2^-$ created in a discharge, by measuring the photodetachment from CH$_2^-$ as it radiatively relaxes in a high vacuum ion trap. We used a tunable infrared laser to produce photons with energies above and below the expected threshold for removing an electron from the ground state. The time dependence of the photodetachment is consistent with the electron affinity of 5250 cm$^{-1}$ (0.65 eV) obtained by Sears and Bunker for the ground state \tilde{X}^3B_1 methylene. We have tentatively assigned radiative lifetimes for the excited bending vibrations of CH$_2^-$: 600 ±300 msec for $v_2=1$, 80 ±40 msec for $v_2=2$, and 10 ±5 msec for $v_2=3$.

$^a)$ Regents Fellow, 1982-1983.
$^b)$ NSF Pre-Doctoral Fellow.
$^c)$ Permanent address: C.E.N./Saclay, DPh.G/S.P.A.S., 91191 Gif-sur-Yvette, France.
$^e)$ Present address: Hughes Aircraft Corp., P.O. Box 2999, Torrance, California 90509.
INTRODUCTION

Hot bands are a potential problem in threshold measurements made by photoelectron and photodetachment spectroscopy of negative ions(1,2). The difficulty in creating a sufficient current of negative ions often forces experimentalists to use discharge, sputter and other high temperature ion sources. A large fraction of the ions produced in these sources may be in vibrationally excited states, and the task is to identify the signal arising from these states. Normally, the intensity of these hot bands can be altered by changes in sources, precursor gases, and extraction voltage, which affect the vibrational temperature. Frequency shifts from isotopic substitution can also help to assign hot bands. While these methods are usually sufficient, in the case of the photoelectron spectrum of methylene such an analysis failed to correctly establish the presence of hot bands.

The ground $\tilde{X}^{2}B_{1}$ state of the anion CH$_2^-$ is similar in geometry to the $\tilde{a}^{1}A_1$ of the neutral, because the extra electron is in a non-bonding $1b_1$ orbital perpendicular to the plane of the molecule. As a result, detachment occurs primarily by bending transitions with $\Delta v_2=0$. This has been observed in the photoelectron spectrum(3,4) as a single large peak, and in the photodetachment spectrum(5) as a sharp threshold. In photodetachment to the ground $\tilde{X}^{2}B_1$ state of CH$_2$, an electron in a slightly bonding $3a_1$ orbital is removed. There is a significant change in bond angle from 102.7° to 133.8°, and in the energy of the linear configuration, from 11500 cm$^{-1}$ to 1938 cm$^{-1}$. The poor Franck Condon factors for the $\Delta v_2=0$ bending transitions result in an extended vibrational progression above threshold, making it difficult to
distinguish the true origin from the hot bands, which are weak steps below threshold.

Engelking et al (4) concluded that no hot bands were present in the photoelectron spectrum of CH_2^-. They placed the threshold for detachment to the ground $\tilde{X}^3\text{B}_1$ state at the origin of the observed vibrational progression. The resulting electron affinity of 1630 cm$^{-1}$ for the ground state $\tilde{X}^3\text{B}_1$ (0.210 eV) led to a controversial value of $T_0 = 5600$ cm$^{-1}$ (0.68 eV or 19.5 kcal/mol) for the $\tilde{a}^1\text{A}_1$ state of CH_2^-. The weight of experimental and theoretical work on methylene contradicts this result, and the most recent results(6) give a value of 3165 ±20 cm$^{-1}$ (0.392 eV ±0.003 eV or 9.1 kcal/mol) for the splitting between the singlet and triplet states (elsewhere in this issue, Shavitt(7) has given an excellent review of the controversy over the singlet-triplet gap). A correct simulation(8) based on accurate spectroscopic constants fits the photoelectron spectrum with an electron affinity of 5250 ±160 cm$^{-1}$ (0.65 ±.02 eV) and a vibrational temperature of 2500K. The evidence now indicates that three (or possibly four) hot bands were present in the photoelectron spectrum, as was first suggested by Harding and Goddard(9) based on their ab initio GVB calculations. Very recently, using an improved photoelectron spectrometer, Lineberger and co-workers(10) were able to obtain spectrum of vibrationally cool CH_2^- formed in a flowing afterglow source. These new results confirm the expected value for the electron affinity.

In this note, we shall describe an experiment in which we measured the time dependence of photodetachment from CH_2^- at frequencies near...
threshold. By allowing the ions to cool radiatively in a trap for times up to 0.5 sec before photodetachment, we have directly observed the existence of vibrationally excited states of CH₂⁻ formed in a discharge. From the decays, we have tentatively assigned lifetimes for these states.
EXPERIMENTAL

Our approach is to store the CH$_2^-$ in a high vacuum ion trap, and probe the radiative decay of vibrationally excited ions at various storage times by measuring the photodetachment signal, using photons of energy above and below the electron affinity. To obtain the decay rates, we increment the trap residence time and measure the photodetachment at each step. In our experiment, we observe the depletion of the parent anion population caused by photodetachment with infrared light. The signal is thus the sum over all energetically allowed transitions. At photon energies immediately above the electron affinity, all vibrational states can be photodetached, although the ground vibrational state can only detach by a $\Delta v_2=0$ transition. Due to the poor Franck-Condon factors, one expects a weak contribution from $v_2''=0$ despite its large population. Because the higher bending states have a larger cross section, one expects a decay of the photodetachment signal to a constant level as the vibrationally excited CH$_2^-$ relax. Below threshold, only the vibrationally excited states are photodetached. As we trap the ions for longer times, signal from the excited states will disappear, and the photodetachment should decrease to the ground state intensity for each frequency.

A 1-2 msec pulse of CH$_2^-$ from a mass spectrometer is injected into a half meter long ion trap (see Figure 1 for a block diagram of the source). The ions are stored for some variable duration, after which a tunable infrared laser is fired into the trap. The ions are released, mass analyzed, and counted. The same cycle is repeated without the laser, to measure the background count rate. After summing over many cycles, the difference gives the average depletion caused by
photodetachment. The experiment is performed by measuring the depletion while varying the trapping time at a fixed laser frequency. After normalizing to the background, the signal is independent of the time dependent trapping efficiency, low frequency plasma fluctuations, and other noise not correlated with the laser.

The \(\text{CH}_2^- \) are created by a hot cathode duoplasmatron, in a discharge of 60-300 millitorr of methane, with an emission current of about 1 milliamp. The ions are accelerated to 360 eV, and mass analyzed by a 60° sector magnet. The ion beam enters the ultra-high vacuum region where it is bent 90° by an electrostatic quadrupole deflection field\(^{(11)}\) into an axis collinear with the laser beam, and decelerated to 1 eV.

The ions are trapped inside a radio frequency octopole ion guide based on the design of Teloy and Gerlich\(^{(12,13)}\). It consists of eight molybdenum rods, 50 cm long and 3 mm in diameter, positioned symmetrically on a 12.5 mm diameter circle. Approximately 150V of radio frequency are applied to the octopole rods, creating an effective potential that traps the ions transverse to the axis of the guide. By raising the potential of the lens elements at the entrance and exit of the ion guide, these elements act as electrostatic mirrors, and the ions are confined within the trap. The ions are pulsed into the trap by lowering the voltage of the entrance lens element for 1-2 msec. After a computer-generated delay, the ions are released through the exit lens. The pressure in the trap region is typically below 5x10\(^{-9}\) torr. Collisions within the trap become important for times greater than one second.
The laser beam is collinear with the axis of the trap, and passes completely through the machine, entering and exiting through two sapphire windows. This arrangement minimizes light scattering and reduces problems due to desorption or photoionization as the light strikes surfaces in the machine. No depletion was observed using ions with higher thresholds; hence, no laser correlated noise was evident.

Tunable infrared radiation is generated by an optical parametric oscillator (OPO) similar to that developed by Byer (14). A LiNbO$_3$ crystal in a resonant cavity is pumped in the far field of a Quanta Ray Nd:YAG laser at 1.06 microns. For frequencies from 5000 cm$^{-1}$ to 7000 cm$^{-1}$, it produces 10 nsec pulses of 8-12 mJ at a 10 Hz repetition rate. There is no grating in the cavity, so the linewidths are typically 4-10 cm$^{-1}$, sufficient for the current experiment. The linewidth and divergence are anomalously large near 4700 cm$^{-1}$, where the two frequencies created by the OPO become degenerate. At degeneracy, the linewidth is about 200 cm$^{-1}$ FWHM, the energy 13-16 mJ per pulse.
RESULTS AND DISCUSSION

The time dependence of the photodetachment was taken at three frequencies: 4700 cm\(^{-1}\), 5690 cm\(^{-1}\) and 6320 cm\(^{-1}\). Photodetachment at 4700 cm\(^{-1}\) is below the expected threshold of 5250 cm\(^{-1}\) (0.65 eV). Three time ranges were scanned: 1 msec to 37 msec, 1 msec to 153 msec (at 4700 cm\(^{-1}\) only), and 1 msec to 501 msec.

The decay curves taken with photon energies above threshold are shown in figure 2. These curves are normalized to unity at t=1 msec. At both 5690 cm\(^{-1}\) and 6320 cm\(^{-1}\), the signal decreases by about a factor of two within the first 200 msec, but then remains almost constant for times up to 500 msec. If we assume that the ions have almost cooled by 500 msec, then the photodetachment at that time will arise primarily from the ground vibrational state. The decay curve at 4700 cm\(^{-1}\), shown in figure 3, is qualitatively different; the photodetachment signal has decreased by an order of magnitude at 500 msec. These observations clearly demonstrate the presence of hot bands, and suggest that the electron affinity of ground state \(\text{CH}_2\) is bounded by 4700 cm\(^{-1}\) and 5690 cm\(^{-1}\), in agreement with the previous results(7,9).

We have tentatively fit the decay at 4700 cm\(^{-1}\) to a sum of exponentials; three decay rates were needed in order to fit the data. The fit at shorter times can be seen in more detail in figure 4, and the lifetimes are given in Table I. Fitting to multiple exponentials can be difficult; very similar decay rates would appear as a single decay. In our case, however, the observed rates all differ by a factor of four or more. The poor signal to noise does degrade the accuracy of the lifetime
measurements, but the data still requires a minimum of three rates. The most serious problem is at long times, where the weak signal and the low duty cycle make it difficult to obtain good signal to noise. We cannot rule out, on the basis of the data alone, the possibility of a small signal that does not decay with time.

To check whether the observed photodetachment is due entirely to single photon excitation, we measured the power dependence at 4700 cm\(^{-1}\), shown in Figure 5. The power dependence at 1 msec delay gives evidence for at least three populations of absorbers, two of them saturated at full power. The power dependence after a 30 msec delay indicates that the strongest absorber, i.e. the one that saturates at the lowest power, has disappeared within 30 msec. We do not see evidence for two photon effects.

The analysis of the data at 4700 cm\(^{-1}\) gives us three decay rates from the time dependence, and three populations from the power dependence. If we assume that the electron affinity is 5250 cm\(^{-1}\), as predicted, then we would expect to see signal from three vibrational states. One further expects that \(v_2=3\) would be the strongest absorber, because it can be photodetached at 4700 cm\(^{-1}\) by \(\Delta v=0, -1,\) and -2 transitions to the neutral. The simplest model to explain the data would assign the longest lifetime to \(v_2=1\), the intermediate to \(v_2=2\), and the shortest to \(v_2=3\).

Bunker and Langhoff(15) have recently done \textit{ab initio} calculations for the dipole moments of neutral CH\(_2\). Using the semi-rigid bender wavefunctions and the bending potential derived from spectroscopic data, they then calculated vibrational transition matrix elements. For
illustrative purposes, we have listed in Table I the theoretical vibrational lifetimes \((K'=K''=0)\) for the \(\tilde{\alpha}^1A_1\) state of the neutral. Note the trend of decreasing lifetime with increasing vibrational quantum number. Our results show faster decays for the anion; furthermore, the lifetime of the excited anion decreases far more rapidly with \(v_2\).

A simple calculation shows that the motion of the anion's charge with respect to the center of mass (16) in \(\text{CH}_2^-\) will add to the dipole moment, and enhance the strength of the vibrational transitions. From this naive picture, one might expect the ion decays to be faster than the corresponding rates in the neutral singlet; of course, one must be very cautious in comparing the properties of the neutral to those of the anion. To better test our assignment, accurate calculations for the anion's dipole moment and vibrational lifetimes are currently being performed.
ACKNOWLEDGEMENT

We would like to thank Ralph Page for his assistance in setting up the OPO and maintaining the laser system. One of us (J.J.H.B.) acknowledges the support of the Niels Stensen Stichting. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
REFERENCES

Table I. Radiative lifetimes of bending states of X^2B_1 CH$_2^-$ and a^1A_1 CH$_2$.

<table>
<thead>
<tr>
<th>v_2</th>
<th>ANION X^2B_1 experimental</th>
<th>NEUTRALa a^1A_1 theoreticalb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600 ±300 msec</td>
<td>950 msec</td>
</tr>
<tr>
<td>2</td>
<td>80 ±40</td>
<td>290</td>
</tr>
<tr>
<td>3</td>
<td>10 ±5</td>
<td>140</td>
</tr>
</tbody>
</table>

a $K'=K''=0$ transitions

b Bunker and Langhoff, ref. 15. These are obtained from ab initio CI calculations of the dipole moment function, integrated over semi-rigid bender vibrational wavefunctions.
FIGURE CAPTIONS

Fig. 1. Schematic of molecular ion spectrometer. The ion source is a duoplasmatron. The first mass filter is a 60° sector magnet, and the second is a quadrupole mass spectrometer. The deflector is an electrostatic quadrupole. The ion trap is a half meter radio frequency octopole ion guide.

Fig. 2. Photodetachment signal from CH$_2^-$ as a function of trapping time, normalized to unity at t=1 msec. Laser frequencies are above the detachment threshold at 6320 cm$^{-1}$ and 5690 cm$^{-1}$.

Fig. 3. Photodetachment signal from CH$_2^-$ as a function of trapping time, normalized to unity at t=1 msec. Laser frequency is below detachment threshold, at 4700 cm$^{-1}$. (---) is a fit to sum of three exponentials, (----) a fit to the v=1 decay. Data from a more accurate measurement from a 1 to 153 msec scan are shown in closed circles.

Fig. 4. Percent photodetachment from CH$_2^-$ as a function of trapping time with laser frequency at 4700 cm$^{-1}$, showing short time detail of Figure 3. (----) is a fit to sum of three exponentials, (-----) a fit to the v=1 decay, (----) a fit to the sum of v=1 and v=2 decays). Data from a 1 to 29 msec scan are shown in open circles.

Fig. 5. Power dependence of CH$_2^-$ photodetachment at 4700 cm$^{-1}$, taken at two trap times (• 1 msec, ■ 30 msec). Intensity is in arbitrary units: full scale is approximately 5 MW/cm2 peak power over a 5 mm diameter spot for a 10 nsec pulse.
Figure 1
Fig. 2

-6320 cm$^{-1}$
-5690 cm$^{-1}$

TRAP TIME (msec)

PHOTODETACHMENT
Fig. 4

% PHOTODETACHMENT vs. TRAP TIME (msec)

4700 cm⁻¹
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.