
UCLA
UCLA Previously Published Works

Title
Pleiotropy among Common Genetic Loci Identified for Cardiometabolic Disorders and C-
Reactive Protein

Permalink
https://escholarship.org/uc/item/6p78j7fd

Journal
PLOS ONE, 10(3)

ISSN
1932-6203

Authors
Ligthart, Symen
de Vries, Paul S
Uitterlinden, André G
et al.

Publication Date
2015

DOI
10.1371/journal.pone.0118859
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6p78j7fd
https://escholarship.org/uc/item/6p78j7fd#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
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Abstract
Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive

protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic back-

grounds may partially underlie these associations. We conducted a genome-wide analysis

to identify the shared genetic background of inflammation and cardiometabolic phenotypes

using published genome-wide association studies (GWAS). We also evaluated whether the

pleiotropic effects of such loci were biological or mediated in nature. First, we examined

whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are

associated with CRP level. Second, we tested whether 18 variants identified for serum CRP

are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected

p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the indepen-

dent pleiotropic effect on both phenotypes using individual level data from the Women Ge-

nome Health Study. Evaluating the genetic overlap between inflammation and

cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed

that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a

pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes.

These included loci where individuals carrying the risk allele for CRP encounter higher lipid

levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and

TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes.

In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic

phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic vari-

ants partially underlie the association between CRP and cardiometabolic phenotypes.
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Introduction
The risk of cardiometabolic diseases, the world’s leading cause of mortality, is higher in people
with elevated levels of systemic inflammation, independent of traditional cardiometabolic risk
factors [1]. Elevated levels of C-reactive protein (CRP), as a measurement of systemic inflam-
mation, are associated with hypertension [2], type 2 diabetes (T2D) [3,4], coronary artery dis-
ease (CAD) [1,5,6], stroke [7,8], peripheral artery disease [9], and mortality [10]. Although
observational data suggest a link between CRP and cardiometabolic phenotypes, Mendelian
randomization approaches have provided evidence against a causal link between CRP and
these cardiometabolic phenotypes [11–14].

Genome-wide association studies (GWAS) have discovered multiple single-nucleotide poly-
morphisms (SNPs) associated with inflammatory markers including CRP and different cardio-
metabolic phenotypes including T2D, coronary artery disease (CAD), lipids and hypertension
[15–21]. From these GWAS we already learned that several genes, such as IL6R, APOC1,
GCKR and HNF1A, are associated both with systemic inflammation and cardiometabolic phe-
notypes such as CAD, lipids and diabetes [15,17,21,22]. This phenomenon of one genetic locus
affecting more than one phenotype is called genetic “pleiotropy”. In general, two types of plei-
otropy can be defined. As previously defined by Solovieff et al., “biological pleiotropy” refers to
a gene that has independent biological effects on more than one phenotype, and “mediated
pleiotropy” refers to the situation where the genetic effect on phenotype B is mediated by phe-
notype A that is causally related to phenotype B [23]. Although both types of pleiotropy are in-
teresting, only biological pleiotropy refers to the genuine pleiotropy where the effect of the
genetic variant on two or more phenotypes is independent.

We hypothesize that in addition to reverse causation, genetic loci with pleiotropic effects
may underlie the association between CRP and cardiometabolic phenotypes. To this end, we
applied a simple and robust approach to point out these pleiotropic genetic variants [24]. First,
we examined whether common variants identified for cardiometabolic phenotypes are associ-
ated with serum CRP levels as a measure of systemic inflammation. Second, we conversely ex-
amined whether variants so far identified for serum CRP associate with cardiometabolic
phenotypes. In addition, we adjusted the association between the SNP and CRP for the cardio-
metabolic phenotypes and vice versa to distinguish a genuine biological pleiotropic effect from
mediated pleiotropy.

Materials and Methods

Study design
To examine the overlap between genes for inflammation and cardio-metabolic disorders we
collected GWAS meta-analyses data from published GWAS on cardiometabolic phenotypes
and CRP [15–17,19,22]. These GWAS are mainly conducted in individuals from European an-
cestry (Table 1). We tested the genetic association of cardiometabolic SNPs with systemic in-
flammation using the largest published GWAS meta-analysis on CRP levels from the
CHARGE (the Cohorts for Heart and Aging Research in Genomic Epidemiology) inflamma-
tion working group [22]. Testing the genetic association of the CRP SNPs with 10 cardiometa-
bolic phenotypes we used the recent GWAS data from the following consortia: Coronary
Artery Disease Genome-wide Replication and Meta-analysis plus the Coronary Artery Disease,
CARDIoGRAMplusC4D [15], International Consortium for Blood Pressure, ICBP [16], the
Meta-Analyses of Glucose and Insulin-related traits Consortium, MAGIC [17,18], DIAbetes
Genetics Replication And Meta-analysis, DIAGRAM [19], The Genetic Investigation of An-
thropometric Traits, GIANT [20] and Global Lipids Genetic Consortium, GLGC [21].
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Additionally, we carried out analyses in a population based cohort study to explore the type of
pleiotropy of the overlapping SNPs.

Cardiometabolic SNPs and association with CRP
We first compiled a list of genome-wide significant SNPs (p-value< 5×10-8) previously identi-
fied in large GWAS on cardiometabolic traits to test the genetic association in the CRP GWAS.
The following cardiometabolic traits were included to generate the SNP list: coronary artery
disease (51 SNPs in CARDIOGRAMplusC4D, n = 130,681 with 63,746 cases) [15]; blood pres-
sure (29 SNPs in ICBP, n = 69,395) [16]; fasting glucose, fasting insulin (53 SNPs in MAGIC,
n = 133,010) [17,18]; type 2 diabetes (55 SNPs in DIAGRAM, n = 149,821 with 34,840 cases)
[19]; body-mass index (38 SNPs in GIANT, n = 123,865) [20]; LDL cholesterol, HDL cholester-
ol, triglycerides and total cholesterol (102 loci in GLGC, n = 100,184) [21]. When the SNP was
not available in the CRP GWAS, we searched for a proxy with an r2 > 0.8. For 6 SNPs, this was
not possible. LD-based pruning was performed (r2 threshold of 0.3) using HapMap LD infor-
mation to make sure that independent SNPs were included in the analysis [25]. The SNP with
the lowest p-value in one of the cardiometabolic GWAS was chosen. The final list included 283
independent SNPs that are genome-wide significantly associated with one or more
cardiometabolic phenotypes.

CRP SNPs and association with cardiometabolic phenotypes
We used the publically available GWAS meta-analyses data to test whether any of the 18 inde-
pendent genome-wide significant SNPs identified in the CRP GWAS were associated with the
following cardiometabolic phenotypes: LDL cholesterol, HDL cholesterol, triglycerides and
total cholesterol (GLGC); body mass index (GIANT); systolic blood pressure (ICBP); coronary
artery disease (CARDIoGRAMplusC4D consortium); fasting glucose and fasting insulin
(MAGIC); type 2 diabetes (DIAGRAM). All available GWASs provided p-values for all
18 CRP SNPs, except the GWAS on CAD and the glycemic phenotypes which were based on a
custom chip array (Metabochip array [26]) containing 79,000 SNPs and this array did not in-
clude 8 of the CRP SNPs. For the SNPs that were not on the Metabochip, we used for fasting
glucose and fasting insulin the previous GWAS published by Dupuis et al. [17], for type 2

Table 1. Genome-wide association studies of cardiometabolic phenotypes and inflammation.

Consortium Phenotype Sample size No. of Studies

GIANT [20] BMI 249,796 62

GLGC [21] HDLC, LDLC, TG, TC 99,900 46

ICBP [16] SBP, DBP 69,395 29

MAGIC [19] FG, FI 133,010 32

DIAGRAM [18] T2D 149,821 38

CARDIoGRAMplusC4D [15] CAD 194,427 49

CHARGE inflammation [22] CRP 82,725 25

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CARDIoGRAMplusC4D, Coronary Artery Disease Genome-wide Replication and

Meta-Analysis plus Coronary Artery Disease Genetics Consortium; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; CRP, c-

reactive protein; DBP, diastolic blood pressure; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; FG, fasting glucose; FI, fasting insulin;

GIANT, Genetic Investigation of ANthropometric Traits; GLGC, Global Lipids Genetic Consortium; HDLC, HDL-cholesterol; ICBP, International Consortium

for Blood Pressure; LDLC, LDL-cholesterol; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; SBP, systolic blood pressure; T2D,

type 2 diabetes; TC, total cholesterol; TG, triglycerides.

doi:10.1371/journal.pone.0118859.t001
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diabetes only the stage 1 GWAS including all HapMap SNPs [19] and for CAD we used the
summary data from the CARDIoGRAMmeta-analysis only [27].

CRP and cardiometabolic measures
Coronary artery diseases was defined in the CARDIoGRAMplusC4D consortium using stan-
dard criteria for myocardial infarction or coronary artery disease namely symptoms of angina
pectoris, previous myocardial infarction or cardiac intervention [15]. Hypertension was de-
fined in the ICBP consortium as systolic blood pressure� 140 mmHg or diastolic blood pres-
sure� 90 mmHg [16]. Fasting glucose and fasting insulin were measured in MAGIC using
standard laboratory techniques [17]. Type 2 diabetes was in the DIAGRAM consortium de-
fined as fasting plasma glucose level� 7.0 mmol/l or non-fasting glucose plasma level� 11.0
mmol/l and/or treatment with oral antidiabetic medication or insulin [19]. LDL cholesterol,
HDL cholesterol, triglycerides and total cholesterol were measured in the GLGC using standard
laboratory techniques [21].

We used the discovery panel of the recently published GWAS meta-analysis on serum CRP
(CHARGE Inflammation) [22]. The meta-analysis included 15 studies in the discovery panel
(n = 65,000). CRP was natural log-transformed (lnCRP) and effects represented a 1-unit
change in lnCRP per copy increase in risk allele.

Statistical methods
In this study we evaluated 463 possible SNP-phenotype associations including 283 indepen-
dent cardiometabolic SNPs in the CRP GWAS and 18 independent CRP SNPs in 10 different
cardiometabolic GWAS. To address the issue of multiple testing we used a Bonferroni cor-
rected alpha of 1.1×10-4 (0.05/463 tests) as a robust threshold for a significant association be-
tween the SNP and the phenotype in our study [28].

In a quantile-quantile (Q-Q) plot, a nominal probability distribution is compared against an
empirical distribution. In the scenario that the nominal p-values form a straight line on a Q-Q
plot when they are plotted against the empirical distribution, all relations are null. When the
observed distribution is deflected to the left from the uniform null distribution, lower p-values
are observed compared to that expected by chance (enrichment). We used QQ-plots to evalu-
ate whether SNPs that are genome-wide significant associated with the cardiometabolic pheno-
type, were in the CRP GWAS distributed differently from what is expected under the null-
hypothesis. Vice versa, we evaluated whether genes identified for CRP were in the
cardiometabolic GWAS distributed differently from what is expected under the null-
hypothesis. We used Fisher’s combined probability test to test for significant enrichment in the
QQ-plots [29].

Evaluation of the type of pleiotropy
To clarify the type of genetic pleiotropy (biological or mediated), we performed additional
analyses in the Women’s Genome Health Study (WGHS) including 23,294 women [30]. In the
first model, we analyzed the age-adjusted association between CRP (dependent variable) and
the lead SNP for CRP in the pleiotropic regions. To examine whether the association is inde-
pendent of cardiometabolic traits we further adjusted this association for BMI, lipid levels
(HDL-cholesterol, LDL-cholesterol, triglycerides and total cholesterol) and HbA1C. We used
HbA1C as a proxy for glycemic metabolism given the fact that glycated hemoglobin is an ac-
ceptable marker of average blood glucose level in the last 2–3 months [31]. In addition, we ad-
justed the association for age and in a stepwise manner we added lipids, BMI and HbA1C to
the model to evaluate the different effects of the phenotypes on the association. Last, we
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analyzed the association between the pleiotropic SNP and the associated cardiometabolic phe-
notypes unadjusted and adjusted for CRP. As we tested 43 SNP-phenotype associations in the
WGHS, we used a Bonferroni corrected alpha of 1.2×10-03 as a threshold of study-wide signifi-
cance. All regression analyses were carried out in the statistical software R version 2.15.3 [32].

Women’s Genome Health Study (WGHS)
TheWGHS is a prospective cohort of female North American health care professionals repre-
senting participants in the Women’s Health Study who provided a blood sample at baseline
and consent for blood-based analyses. Participants were 45 or older at enrollment and free of
cardiovascular disease, cancer or other major chronic illness. The current data are derived
from 23,294 WGHS participants with whole genome genetic data and verified self-reported,
European ancestry. The study protocol was approved by the institutional review board of the
Brigham and Women’s Hospital (Boston, MA, USA). All participants provided written in-
formed consent to participate in the study.

Covariates WGHS
BMI (weight in kilograms divided by height in meters squared) was calculated from responses
to the baseline questionnaire. All baseline blood samples underwent measurement for high-
sensitivity C-reactive protein (hsCRP) via a validated immunoturbidometric method (Denka
Seiken, Tokyo, Japan). Concentrations of total cholesterol (TC) and HDL-C were measured en-
zymatically on a Hitachi 911 autoanalyzer (Roche Diagnostics) with day-to-day reproducibility
of 1.36% and 1.07% for TC concentrations of 129.8 and 277.2 mg/dL, respectively, (throughout
this report, concentrations and units given are those reported in the referenced sources) and of
1.98% and 2.68% for HDL-C concentrations of 35 and 55 mg/dL, respectively. LDL-C was de-
termined directly (Genzyme) with reproducibility of 2.16% and 1.98% for concentrations of
76.2 and 148.7 mg/dL, respectively. Triglycerides were measured enzymatically, with correction
for endogenous glycerol, using a Hitachi 917 analyzer and reagents and calibrators from Roche
Diagnostics; reproducibility was 1.52% and 1.49% for triglyceride concentrations of 82.5 and
178.8 mg/dL, respectively. Hemoglobin A1c was measured using turbidimetric immunoinhibi-
tion directly from packed red blood cells (Roche Diagnostics) with reproducibility of 3.63%
and 3.77% at levels of 5.2% and 8.8%, respectively. A total of 22,773 participants with geno-
typed and covariates available were included in this study.

Genotyping WGHS
DNA extracted from the baseline blood samples underwent SNP genotyping via the Illumina
Infinium II assay for querying of a genome-wide set of SNPs from the Illumina HumanHap300
Duo “+” platform. This panel including the standard content of approximately 318,237 SNPs
covering the entire genome from the HumanHap300 panel with an additional focused panel of
45,571 SNPs selected to enhance coverage of cardiovascular candidate genes and SNPs with
suspected functional consequences. For the current analysis, all samples had successful geno-
type information for>98% of the SNPs, while all SNPs had successful genotype information
for>90% of the samples. SNPs with significance p<10-6 for deviations from Hardy-Weinberg
equilibrium were excluded from analysis. Self-reported European ancestry was confirmed in
the 23,294 samples on the basis of a principal component analysis using PLINK among 1,443
ancestry informative SNPs selected for Fst>0.4 in the HapMap2. In total, 339,875 genotyped
SNPs passing the criteria for inclusion also had minor allele frequency at least 1 percent. On
the basis of linkage disequilibrium relationships in the HapMap (release 22), genotypes for a
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total of 2,621,896 SNPs were imputed from the 23,294 samples passing the quality criteria
using Mach v. 1.0.16.

Pathway analysis
Pathway analysis was performed on the pleiotropic loci that we identified using Ingenuity
Pathway Analysis software tool (IPA Ingenuity Systems). The Ingenuity Knowledge Base (in-
cluding only genes) was used as a reference set and we considered molecules and/or direct and
indirect relationships. The confidence filter was set to experimentally observed or high (pre-
dicted). Pathways were generated with a maximum size of 35 genes and we allowed up to 25
pathways. The significance p-value associated with enrichment of pathways was calculated
using the right-tailed Fisher’s exact test, considering the number of query molecules that partic-
ipate in that pathway and the total number of molecules that are known to be associated with
that pathway in the reference set. A False Discovery Rate of five percent was used as a threshold
of significance using the Benjamini-Hochberg method.

Results

Cardiometabolic SNPs in CRP GWAS
First, we used QQ-plots to evaluate whether the p-values for the associations of the 283 cardio-
metabolic SNPs with serum CRP are distributed differently from what is expected under the
null hypothesis in each trait group. As depicted in Fig. 1, the leftward deviation of the dotted
lines in the QQ-plots shows that the 283 SNPs known for cardiometabolic phenotypes to have
p-values smaller than expected under the null hypothesis in the CRP GWAS (p-value:
7.2×10-306).

A total of 19 SNPs out of 283 independent cardiometabolic SNPs (6.7%) were associated
with CRP after correction for multiple testing (p-value threshold 1.1×10-04). These 19 SNPs
were located within or close to 12 different genes APOC1,HNF1A, GCKR, IL6R, PPP1R3B,
HNF4A, PABPC4, BCL7B, FTO, TMEM18, PLTP andMC4R. Table 2 shows the SNPs with the
lowest p-values in the 12 pleiotropic loci based on the CRP GWAS, i.e. the lowest p-value in
that genomic locus. The eight SNPs in Table 2 with the lowest p-value were already known to
be associated with CRP based on the recent CRP GWAS [22]. The next four SNPs were not
identified in the genome-wide association study of CRP. The first novel association was
rs1558902 with a p-value of 2.2×10-6. This SNP is located in the first intron of the FTO gene on
chromosome 16. The second novel signal was the SNP rs2867125 which is located on chromo-
some 2, near 46kb downstream of TMEM18. This SNP had a p-value of 5.0×10-6 in the CRP
meta-analysis. The third association was with rs6065906 which is located on chromosome 20,
near the PLTP and PCIF1 gene (p-value = 6.7×10-6). The last finding was rs571312 which is lo-
cated 2 Mb upstream of theMC4R gene on chromosome 18 (p-value = 3.8×10-5).

Among the associated SNPs, we observed many SNPs with different directions of effect on
the cardiometabolic phenotypes and CRP than one would expect based on the association of
CRP and these phenotypes in observational data. As an example, the A-allele of the SNP
rs4420638 in the APOC1 locus increases serum CRP levels. However, this allele is associated
with a decrease in the level of total cholesterol, LDL-cholesterol and triglycerides. We also ob-
served such effects for the G-allele of the SNP rs1183910 in the HNF1A locus. This allele in-
creases serum CRP levels and is associated with a decline in total cholesterol and LDL-
cholesterol.

Out of the 12 pleiotropic loci, 6 loci had the same lead SNP in both the CRP and one or
more of the cardiometabolic GWAS. In the other 6 loci the lead SNPs were different between
the CRP GWAS and the cardiometabolic GWAS. However, in the majority of these loci the
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Fig 1. Quantile-quantile plot of cardiometabolic SNPs in CRPGWAS.QQ-plot was used to evaluate
whether SNPs that are genome-wide significant associated with the cardiometabolic phenotypes, were in the
CRP GWAS distributed differently from what is expected under the null-hypothesis. The observed p-values
(dotted line) for the phenotypes deviated significantly leftwards indicating that these p-values are smaller than
expected under null hypothesis.

doi:10.1371/journal.pone.0118859.g001

Table 2. The association of known loci for cardiometabolic traits with serum CRP.

SNP Band A1/A2a Effectb (SE) P-value Gene Phenotypes (effect direction) Top-SNPc (r2; P-value)

rs4420638 19q13.32 A/G 0.240 (0.010) 2.1×10-129 APOC1 TG(-), TC(-), HDLC(+), LDLC(-) The same

rs1169288 12q24.31 A/C 0.152 (0.007) 3.3×10-113 HNF1A TC(-), LDLC(-), T2D(+) rs1183910(0.96; 3.3×10-113)

rs1260326 2p23.3 T/C 0.089 (0.007) 5.5×10-43 GCKR TC(+), TG(+), FG(-), FI(-) The same

rs4845625 1q21.3 T/C 0.062 (0.006) 4.8×10-23 IL6R CAD(+) rs4129267(0.519; 1.1×10-47)

rs9987289 8p23.1 G/A 0.079 (0.011) 2.3×10-12 PPP1R3B TC(+), HDLC(+), LDLC(+), FI(-), FG(-) The same

rs1800961 20q13.12 C/T 0.120 (0.018) 2.3×10-11 HNF4A TC(+), HDLC(+), T2D(+) The same

rs4660293 1p32.4 G/A 0.044 (0.007) 9.9×10-10 PABPC4 HDLC(-) rs12037222(0.955; 4.5×10-10)

rs17145738 7q11.23 C/T 0.054 (0.010) 4.7×10-8 BCL7B HDLC(-), TG(+) rs13233571(1.00; 2.8×10-8)

rs1558902 16q12.2 A/T 0.032 (0.007) 2.2×10-6 FTO BMI(+), T2D(+) The same

rs2867125 2p25.3 C/T 0.038 (0.008) 5.0×10-6 TMEM18 BMI(+) rs10189761(0.929; 1.2×10-6)

rs6065906 20q13.12 T/C 0.036 (0.008) 6.7×10-6 PLTP HDLC(+), TG(-) rs6073972(1.00; 2.9×10-6)

rs571312 18q22 A/C 0.033 (0.008) 3.8×10-5 MC4R BMI(+) The same

a Effect represents 1-unit change in the natural log-transformed CRP (mg/L) per copy increase in the risk allele. SE, standard error.
b A1 and A2 represent respectively the risk allele and non-risk allele.
c Top-SNP represents the SNP with the lowest p-value in the genomic region in the CRP meta-analysis. If the top-SNP is “The same”, the top SNP for the

cardiometabolic traits is the same as the SNP with the lowest p-value in the CRP meta-analysis.

Note: p-value � 1.1×10-4 is considered as study-wide significant (0.05/463)

Abbreviations: BMI, body mass index; CAD, coronary artery disease; FG, fasting glucose; FI, fasting insulin; HDLC, high-density lipoprotein cholesterol;

LDL, low-density lipoprotein cholesterol; T2D, type 2 diabetes; TC, total cholesterol; TG, triglycerides.

doi:10.1371/journal.pone.0118859.t002
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lead SNPs of the cardiometabolic GWAS were in high LD (r2 > 0.8) with the lead SNP in the
CRP GWAS. In the IL6R locus we observed the lowest LD between the top hit in the CRP
GWAS and the CAD GWAS (r2 = 0.52).

CRP SNPs in cardiometabolic GWAS
We used the same QQ-plots as described previously to evaluate whether the association
p-values for the 18 CRP SNPs are distributed differently from what is expected under the null
hypothesis in the different cardiometabolic GWAS. As depicted by the leftward deviation of
the dotted lines in the QQ-plots for CAD (p = 1.4×10-09), the cholesterol phenotypes (HDL-
cholesterol, p = 6.4×10-69; LDL-cholesterol, p = 2.9×10-166; total cholesterol, p = 3.6×10-169 and
triglycerides, p = 2.5×10-196) and the glycemic phenotypes (fasting glucose, p = 2.4×10-12 and
fasting insulin 5.5×10-04), the p-values for the association between the 18 CRP SNPs and these
phenotypes are significantly smaller than expected under the null hypothesis (Fig. 2). We did
not observe such a significant deviation in the QQ-plots of BMI (p = 0.18) and SBP (p = 0.06).

Results of the association of the 18 genome-wide significant associations with CRP-level are
depicted in Fig. 3 (S1 and S2 tables). We observed 9 associations with one or more of the 10
cardiometabolic phenotypes close to or within the genes APOC1,HNF1A, IL6R, GCKR,
IL1F10, PPP1R3B,HNF4A, PABPC and BCL7B (p-value< 1.1×10-4). Only 1 gene (IL1F10)
was not identified in the previous analysis where we tested the association between the cardio-
metabolic SNPs and CRP. Among all 9 associations, we found three associations that are not
reported in the GWAS for that specific phenotype. The first was rs1183910 with CAD (p-value
5.6×10-6). This SNP is located in the first intron of the HNF1A gene on chromosome 12. The
second was rs6734238 with total cholesterol (p-value 1.16×10-5). This SNP is located on chro-
mosome 2, nearby the IL1F10 gene and other interleukin 1 family genes. The third was
rs4420638 with T2D (p-value 4.0x10-6) nearby the APOC1 gene on chromosome 19.

Comparable with the previous associations results, we observed many different direction of
effects. For instance, the A-allele of the SNP rs4420638 in the APOC1 locus increases serum
CRP levels and is associated with a lower risk of type 2 diabetes. Furthermore, the G-allele of
the SNP rs1183910 in theHNF1A locus increases serum CRP levels and is associated with a
lower risk of coronary artery disease.

Exploring the type of pleiotropy
We observed a total number of 13 genetic regions with pleiotropic effects on CRP and cardio-
metabolic phenotypes: 12 regions identified in the first step testing the cardiometabolic SNPs
with CRP and 1 additional region identified in the second step testing the associations of the
CRP SNPs with the cardiometabolic phenotypes. Table 3 shows the unadjusted and adjusted
associations between the 13 overlapping SNPs and CRP-level using individual level data from
the WGHS. There was no significant association in the WGHS between the SNPs located near
PLTP andMC4R and CRP after correction for multiple testing. The effect sizes of the genetic
loci in or near the genes APOC1,HNF1A, IL6R, PPP1R3B,HNF4A and IL1F10 did not dimin-
ish substantially after adjustment for BMI, cholesterol levels and HbA1C suggesting biological
pleiotropy. For BCL7B, FTO and TMEM18 the effect sizes decreased considerably implying
mediated pleiotropy. The estimate of the association between rs1260326 (GCKR) and CRP de-
creased substantially after adjustment but was still strongly associated. We observed the same
scenario for the association between rs4660293 (PABPC4) and CRP. When we added the phe-
notypes in a stepwise manner to the model, we observed for the mediated pleiotropic loci FTO
and TMEM18 that the effect was mainly mediated through BMI (S3 Table). For BCL7B and
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Fig 2. Quantile-quantile plots of CRP SNPs in cardiometabolic GWAS.QQ-plots were used to evaluate whether SNPs that are genome-wide significant
associated with CRP, were in the cardiometabolic GWAS distributed differently from what is expected under the null-hypothesis. The observed p-values
(dotted line) for the phenotypes HDL-cholesterol, fasting glucose, type 2 diabetes and coronary artery disease deviated significantly leftwards indicating that
these p-values are smaller than expected under null hypothesis.

doi:10.1371/journal.pone.0118859.g002
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Fig 3. P-values for the associations of the 18 CRP SNPs with different cardiometabolic phenotypes. P-values for the associations between the 18
CRP SNPs and BMI, lipids, glycemic phenotypes, SBP and coronary artery disease. The genes on the x-axis represent the genes in which the CRP SNPs
are located or closest by. The numbers on the y-axis indicate the p-values of the association between the SNPs and the cardiometabolic phenotypes.
Significant associations are colored as depicted in the figure legend. For BMI and SBP, no significant associations were observed. CAD, coronary artery
disease; FG, fasting glucose; FI, fasting insulin; HDLC, HDL-cholesterol; LDLC, LDL-cholesterol; T2D, type 2 diabetes; TC, total cholesterol; TG,
Triglycerides.

doi:10.1371/journal.pone.0118859.g003
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PABPC4, lipids appeared to be the most important mediators. Fig. 4 shows graphically the bio-
logical and mediated pleiotropic effects.

The results for the associations between the pleiotropic SNPs and the associated cardiome-
tabolic phenotypes are presented in S4 Table. Eight SNPs were not significantly associated with
the cardiometabolic phenotype in the WGHS after adjustment for multiple testing. The majori-
ty of the estimates in- or decreased slightly after adjustment for CRP. However, the estimates
between APOC1 and HbA1C, PABPC4 and triglycerides and BCL7B and HDL-cholesterol de-
creased considerably after the adjustment for CRP.

Pathway analysis
The results from the pathway analysis including all 13 pleiotropic genes are listed in the
S5 Table. A total number of 13 canonical pathways were significantly enriched using an FDR
of five percent. The top pathways included the FXR/RXR activation (p = 7.4×10-09), LXR/RXR
activation (p = 4.6×10-05), Maturity Onset Diabetes of the Young (MODY) signaling (p =
7.6×10-05), hepatic cholestasis (p = 1.1×10-04) and acute phase response signaling (p =
1.3×10-04).

Discussion
We observed several overlapping common genetic risk factors for cardiometabolic phenotypes
and systemic inflammation. The additional analyses provided evidence for six biological pleio-
tropic loci with independent effects on both CRP and the cardiometabolic phenotype. These
pleiotropic loci suggest a shared genetic background for CRP and cardiometabolic phenotypes.
In addition, 5 pleiotropic loci appeared to have an effect on CRP mediated through the cardio-
metabolic phenotypes. Taken together, our results highlight the complex shared genetic archi-
tecture of cardiometabolic phenotypes and chronic inflammation.

Table 3. Pleiotropic SNPs and their association with CRP.

MODEL 1a MODEL 2b

SNP CHR beta se pval beta se pval gene pleiotropyc

rs4420638 19 0.269 0.019 4.4×10-47 0.272 0.016 1.7×10-65 APOC1 B

rs1169288 12 0.165 0.012 2.3×10-43 0.160 0.010 4.0×10-56 HNF1A B

rs1260326 2 0.110 0.011 1.6×10-22 0.073 0.010 3.4×10-14 GCKR M

rs4845625 1 0.067 0.011 2.0×10-9 0.065 0.009 8.8×10-12 IL6R B

rs9987289 8 0.076 0.019 4.5×10-5 0.086 0.016 1.5×10-7 PPP1R3B B

rs1800961 20 0.146 0.033 8.4×10-6 0.141 0.028 4.7×10-7 HNF4A B

rs4660293 1 0.048 0.013 1.9×10-4 0.036 0.011 1.2×10-3 PABPC4 M

rs17145738 7 0.075 0.017 1.3×10-5 0.019 0.015 1.8×10-1 BCL7B M

rs1558902 16 0.041 0.012 6.0×10-4 0.012 0.010 2.3×10-1 FTO M

rs7561317 2 0.055 0.015 1.5×10-4 0.013 0.012 2.9×10-1 TMEM18 M

rs6065906 20 0.026 0.014 6.6×10-2 0.039 0.012 1.2×10-3 PLTP B

rs571312 18 0.038 0.013 3.5×10-3 0.006 0.011 6.0×10-1 MC4R M

rs6734238 2 0.040 0.011 3.9×10-4 0.051 0.010 1.3×10-7 IL1F10 B

a Model 1: adjusted for age
b Model 2: additionally adjusted for BMI, HDL-cholesterol, LDL-cholesterol, triglycerides, total cholesterol and HbA1C
c B: biological pleiotropy; M: mediated pleiotropy.

doi:10.1371/journal.pone.0118859.t003
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Several of the identified biological pleiotropic loci suggest that the association between CRP
and cardiometabolic phenotypes is not only reverse causation, but also shared independent ge-
netic effects. Both theHNF1A and HNF4A loci were associated with CRP after adjustment for
the cardiometabolic phenotypes. The effect directions were the same for type 2 diabetes and
CRP, implying people carrying the risk allele for type 2 diabetes also have higher CRP values.
We observed this also for the PPP1R3B locus where people carrying the risk allele for higher
cholesterol also experience higher CRP levels. In both cases the effect on CRP is independent of
the effect on the corresponding cardiometabolic trait.

Three of the associations that were not reported in the GWAS on CRP-level (FTO,
TMEM18 andMC4R) are associations with SNPs discovered in the GWAS on BMI by Speliotes

Fig 4. Biological andmediated pleiotropy of overlapping loci among inflammation and cardiometabolic phenotypes.Overlapping loci among
inflammation and cardiometabolic phenotypes and type of pleiotropy according to the additional analyses. We identified six overlapping loci with mediated
pleiotropic effects on CRP (left) and seven with a biological pleiotropic effect (right).

doi:10.1371/journal.pone.0118859.g004

Pleiotropy Inflammation and Cardiometabolic Phenotypes

PLOS ONE | DOI:10.1371/journal.pone.0118859 March 13, 2015 12 / 17



et al. [20]. Moreover, these SNPs were also the leading findings in this large BMI GWAS meta-
analysis. Our additional analyses clearly showed that after adjustment for BMI, the effects of
FTO and TMEM18 decreased substantially, resulting in a non-significant association, which
suggests that their effect on inflammation is indeed mediated by BMI. This is in line with previ-
ous research that already provided evidence for a causal role of BMI in inflammation [14].
Conversely, none of the SNPs identified in the CRP GWAS were associated with BMI when we
tested these SNPs in the BMI GWAS.

Our results also suggest a role for lipids in systemic inflammation. When we adjusted the as-
sociation between BCL7B loci and CRP for the cardiometabolic phenotypes including lipids,
the association was not present anymore. This locus appears to increase systemic inflammation
through their effect on lipids. Also the association between PABPC4 and CRP decreased after
adjustment for CRP, but there was a significant residuals effect suggesting partly mediated ef-
fects through lipids. The observation that lipids may cause inflammation is in line with previ-
ous studies that have shown an important role for oxidized LDL-cholesterol molecules and free
fatty acids in the development of systemic inflammation [33]. However, in addition to the me-
diated pleiotropic loci among lipids and CRP, we also observed loci with independent effects
(biological pleiotropy) on lipids and CRP including APOC1,HNF1A and HNF4A, highlighting
the complex interrelationship of lipids and inflammation. Moreover, the pathway analysis con-
firmed the role of the pleiotropic genes in both inflammation and lipid metabolism.

We observed little overlap between risk loci for CAD and CRP. Apart from the IL6R gene,
our results suggest an association with CAD at theHNF1A locus. The HNF1A gene is an im-
portant hepatic nuclear transcription factor that has been associated in GWAS with lipids and
diabetes [19,21]. This gene is known to regulate many target genes involved in lipid metabolism
and transport [34]. A previous study has associated this locus with different cardiovascular
phenotypes including coronary artery calcification and incident CHD [35]. Unfortunately we
were not able to look-up 9 CRP SNPs in the larger CADMetabochip GWAS because these var-
iants were not on the Metabochip and no appropriate proxies were available. This might partly
explain the little overlap between CRP and CAD genetic risk variants.

In the additional analyses we used glycated hemoglobin (HbA1C) to adjust for fasting glu-
cose, fasting insulin, T2D and other components of the glucose homeostasis. HbA1C repre-
sents the average glucose level in the last 3 months, implying that this is only a proxy for the
complex glucose homeostasis rather than a covariate that reflects its entire biological metabo-
lism. Therefore, there may still be residual confounding from other biological pathways that
have an effect on glucose and insulin levels. This could explain the observed residual effect of
GCKR on CRP after adjustment for the cardiometabolic phenotypes.

In the evaluation of the type of pleiotropy, we adjusted the association between the pleiotro-
pic SNP and CRP for the cardiometabolic phenotypes. For some variants we observed a con-
vincing attenuation in the effect estimates (BCL7B, FTO and TMEM18). For other variants, the
attenuation was less pronounced (GCKR and PABPC4). From these results we cannot conclude
whether the residual effect is residual confounding or a true residual effect. Additionally, for
several variants the effect estimates were the same or even increased after adjustment suggest-
ing biological pleiotropy. The latter increase in estimate might be due to negative confounding
where the SNP has an opposite direction of effect on the cross-associated phenotype compared
to CRP and the effect of this phenotype on CRP is in the same direction (negative confound-
ing). We also analyzed the association between the pleiotropic SNP and the cardiometabolic
phenotypes unadjusted and adjusted for CRP. Although there is ample of evidence against a
causal role for CRP in the development of cardiometabolic phenotypes, for some associations
the effect estimates attenuated considerably [11–14]. This might be explained by the fact that
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CRP is correlated with many intermediate phenotypes that mediate the association between
the SNP and the cardiometabolic phenotype.

Among some pleiotropic SNPs we observed opposite direction of effects on the phenotypes
than one would expect based on their effects on the health of the possessor and the association
of CRP and these cardiometabolic phenotypes in observational data. This phenomenon is
known as “antagonistic pleiotropy” [36]. For instance, the SNP in theHNF1A locus increases
serum CRP level according to the G allele and decreases LDL-cholesterol level. For biological
pleiotropic loci we can substantiate this antagonistic effect. A genetic locus may have a deleteri-
ous effect on one phenotype, but an independent beneficial effect on a second phenotype. An
explanation for these findings might be the fact that the effect sizes and variances explained by
the genetic variants are small and therefore they only play a minor role in the phenotypical cor-
relations. Moreover, the high frequency of seemingly detrimental alleles in human populations
may partly be the effect of antagonistic pleiotropy [37]. As expected, among the loci where no
independent effect was observed (mediated pleiotropy), we did not observe
antagonistic pleiotropy.

Our study has certain strengths. We used the largest available GWAS data on lipids, blood
pressure, BMI, CAD, glycemic traits, T2D and CRP from the GLGC, ICBP, GIANT, CARDIo-
GRAMplusC4D, MAGIC, DIAGRAM and CHARGE Inflammation consortia to attain as
much power as possible. By including only genome-wide significant findings, we restricted the
analysis to the most robust genetic associations. Moreover, we used a conservative method to
correct for multiple testing, lowering the probability of false positive findings. Nonetheless,
some limitations should be acknowledged. Although we used the largest available GWAS sam-
ple sizes, the identified common genetic variants for above mentioned phenotypes only explain
a modest fraction of the genetic variance of these phenotypes (ranging from 5 to 12 percent).
Therefore, the effects of the cardiometabolic SNPs on CRP and vice-versa may still be too small
to detect cross-phenotype associations, resulting in an underestimation of the amount of genet-
ic overlap. Moreover, we only focused on common SNPs and it might be that also rare variants
underlie the shared genetic associations. The method we applied to distinguish “biological”
from “mediated” pleiotropy is a classical and widely used approach in the field of epidemiology.
However, we cannot completely rule out reverse causation or unknown confounders as poten-
tial drivers of the association between the genetic variant and CRP. Furthermore, we only stud-
ied GWAS including participants of European ancestry. We are aware of differences in
haplotype structures between different ethnicities; however, the results are likely to be general-
izable given the biological pathways.

In conclusion, we observed several genetic loci with independent effects on both CRP and
one or more cardiometabolic phenotypes. These results suggest that the association between
CRP and cardiometabolic phenotypes is partly explained by a shared genetic background.
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