Title
Some New Radioactive Isotopes

Permalink
https://escholarship.org/uc/item/6pd6f3mx

Authors
Wilkinson, Geoffrey
Hicks, Harry G.

Publication Date
1948-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Cover Sheet
Do not remove

INDEX NO. UCRL-162
This document contains 5 pages
and 1 plates of figures.
This is copy 9 of 93 Series A

Issued to: UNIV. OF CAL.

RESTRICTED

CLASSIFICATION BY AUTHORITY
OF DISTRIBUTION
BY THE DECLASSIFICATION COMMITTEE

Each person who received this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Johns</td>
<td>7-2-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-41
SOME NEW RADIOACTIVE ISOTOPES

Geoffrey Wilkinson and Harry G. Hicks

August 6, 1948

Berkeley, California
Standard Distribution

Argonne National Laboratory
Armed Forces Special Weapons Project
Atomic Energy Commission, Washington
Battelle Memorial Institute
Brookhaven National Laboratories
Carbide & Carbon Chemicals Corp. (K-25 Area)
Carbide & Carbon Chemicals Corp. (Y-12 Area)
Columbia University (Dunning)
General Electric Company
Hanford Directed Operations
Iowa State College
Los Alamos
Monsanto Chemical Company, Dayton
National Bureau of Standards
Naval Radiological Defense Laboratory
NEPA
New York Directed Operations
Oak Ridge National Laboratory
Patent Advisor, Washington
Technical Information Division, ORDO
UCLA Medical Research Laboratory (Warren)
University of California Radiation Laboratory
University of Rochester
Chicago Directed Operations
Declassification Procedure
Declassification Officer
Publications Officer
Patent Department
R. O. Lawrence
Area Manager
Information Division

Total 93

Information Division
Radiation Laboratory
University of California
Berkeley, California
In order to allow quantitative interpretation of the reactions of high energy particles from the 184-inch cyclotron with tantalum and heavier elements, a systematic survey is being made of radioactive isotopes of the rare earth elements; hafnium, tantalum, tungsten and rhenium. Bombardments of various elements are being made using 38 Mev and 20 Mev helium ions, 19 Mev deuterons and 10 Mev protons from the 60-inch Crocker Laboratory cyclotron. Chemical separation of the rare earth elements is made by ion-exchange resin columns. The accompanying table summarizes present data; energies of radiations are determined from absorption measurements; positrons are observed using a "magnetic counter"; mass allocations are made on the basis of measured cross-sections.

Detailed accounts of experimental techniques and of the isotopes will be published.

The allocation of the previously reported 6 active isotopes of lutecium with half-lives of 3.75 h and 6.8 d, to masses 176 and 177 respectively, has been confirmed by measurement of the d,p cross sections for 19 Mev deuterons on lutecium.

This paper is based on work carried out at the University of California under the auspices of the Atomic Energy Commission.
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Class</th>
<th>Type of Radiation</th>
<th>Half-Life</th>
<th>Energy of Radiation in Mev</th>
<th>Produced by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb152</td>
<td>D</td>
<td>K</td>
<td>4.5 h</td>
<td>K, x-rays</td>
<td>Eu-c-3n</td>
</tr>
<tr>
<td>Tb153</td>
<td>D</td>
<td>K, e$^-$</td>
<td>5.1 d</td>
<td>0.15, 0.4</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Tb154</td>
<td>D</td>
<td>β^+, K, e^-, γ</td>
<td>17.2 h</td>
<td>$\beta^+ 2.6$ e$^- 0.22, \sim 1$</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Tb155</td>
<td>D</td>
<td>K, e$^-$</td>
<td>~ 1 y</td>
<td>0.1</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Ho160</td>
<td>D</td>
<td>K$^+$</td>
<td>~ 20 m</td>
<td>x-rays</td>
<td>Tb-c-3n</td>
</tr>
<tr>
<td>Ho161</td>
<td>B</td>
<td>K, e$^-, \gamma$</td>
<td>4.5 h</td>
<td>0.3</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Ho162</td>
<td>B</td>
<td>K, e$^-, \gamma$</td>
<td>65 d</td>
<td>0.16, 0.6</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Ho164</td>
<td>D</td>
<td>β^-</td>
<td>35 m</td>
<td>0.7</td>
<td>Dy-p-n</td>
</tr>
<tr>
<td>Tm166</td>
<td>B</td>
<td>β^+, K, e^-, γ</td>
<td>7.7 h</td>
<td>$\beta^+, 2.1$ e$^- 0.24, \sim 1$</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Tm167</td>
<td>B</td>
<td>K, e$^-, \gamma$</td>
<td>9 d</td>
<td>0.21</td>
<td>L, K, x-rays</td>
</tr>
<tr>
<td>Tm168</td>
<td>B</td>
<td>K$^+ e^-$</td>
<td>~ 150 d</td>
<td>0.22, 0.95</td>
<td>Ho-c-3n</td>
</tr>
<tr>
<td>Isotope</td>
<td>Class</td>
<td>Type of Radiation</td>
<td>Half-Life</td>
<td>Energy of Radiation in Mev Particles</td>
<td>Produced by</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lu170</td>
<td>B</td>
<td>β^+, K, e^-, γ</td>
<td>2.15 d</td>
<td>$\beta^+ 1.7$, e$^-$ 0.1</td>
<td>L,K,x-rays 1.5</td>
</tr>
<tr>
<td>Lu171</td>
<td>B</td>
<td>K,e^-, γ</td>
<td>9 d</td>
<td>0.17, 0.7</td>
<td>L,K,x-rays</td>
</tr>
<tr>
<td>Lu172</td>
<td>B</td>
<td>K,e^-, γ</td>
<td>>100 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta176</td>
<td>B</td>
<td>K,e^-, γ</td>
<td>8.0 h</td>
<td>0.12, 0.13, 1.2</td>
<td>L,K,x-rays 1.7</td>
</tr>
<tr>
<td>Ta177</td>
<td>B</td>
<td>K,e^-</td>
<td>2.66 d</td>
<td>0.1</td>
<td>L,K,x-rays</td>
</tr>
<tr>
<td>Ta179</td>
<td>B</td>
<td>K,e^- or γ</td>
<td>16 d</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Re182</td>
<td>B</td>
<td>K,e^-, γ</td>
<td>64 h</td>
<td>0.11, 0.27, 0.6</td>
<td>L,K,x-rays 0.22, 1.5</td>
</tr>
<tr>
<td>Re183 or 4</td>
<td>C</td>
<td>K,e^-, γ</td>
<td>~80 d</td>
<td>0.1</td>
<td>L,K,x-rays 1.0</td>
</tr>
<tr>
<td>Re184 or 3</td>
<td>C</td>
<td>K,γ</td>
<td>13 h</td>
<td>K,x-rays 1.6</td>
<td></td>
</tr>
</tbody>
</table>

UCRL-162 Page 5