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Abstract
Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is
measured via time-resolved tomographic reconstruction of Ar+ optical emission in the
predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is
found to be classical during the stable period of the discharge. Test ion radial confinement is
enhanced by a radial electric field, reducing the observed outward radial transport rate below
predictions based solely on classical cross-field diffusion rates. Test ion diffusion is
∼500 m2 s−1 during the stable period of the discharge. The electric field inferred from plasma
potential measurements and from equilibrium calculations is consistent with the observed
reduction in argon transport.

Keywords: transport, FRC, field-reversed configuration, test particle, cross-field, tomography,
image reconstruction

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of particle transport is integral to the ultimate success
of fusion reactor experiments. Mitigation of energy and
particle loss can only be accomplished once their mechanisms
are well understood. Field-reversed configuration (FRC)
[1] capabilities will benefit from further detailed transport
studies. Various methods for experimentally determining
transport rates in FRCs have been employed [2], but these
results rely on inferences made from other measurements, i.e.
changes in magnetic field strength and line-integrated density.
Here, test particles [3] are introduced into the FRC and their
evolution is observed so as to determine the plasma’s diffusion
coefficient across magnetic field lines in the azimuthal and
radial directions. This direct, independent measurement
allows the oft-used, rigid rotor model [4] to be compared for
one experimental regime in terms of its transport predictions
and its internal electric field predictions as well.

Test particles are commonly used to make localized
measurements in plasmas. They can be impurities with low
densities compared with the bulk plasma [5, 6] or a small
fraction of the bulk plasma that has been modified such that

their evolution can be tracked, as is the case in laser-induced
fluorescence (LIF) [7]. Generally, the test particles interact
with each other far less often than they do with the bulk
plasma. Therefore, if we can observe their behavior, then we
can infer properties of the plasma they are interacting with.
The rotation of impurity and bulk plasma species can be in
opposite directions. In this case, the rate of ion–ion collisions
is fast enough and the rotational energy of the plasma is small
enough compared with its thermal energy that we can assume
the species rotate together [8].

This study is performed on the flux-coil generated FRC
[9–12] (FCG-FRC). The temporal cross-field evolution of a
test particle (argon) density distribution in a nitrogen plasma
is observed. Through these observations we determine the
argon’s cross-field rate of diffusion and use that information to
estimate the radial electric field, which is inherent in an FRC
according to the rigid rotor model. The results are corroborated
by independent measurements.

These measurements are obtained through the following
sequence of events. An FRC is established using a backfill
of nitrogen. A trace amount of argon is injected with a
puff valve, at the midplane of the FRC, during formation,
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at the inner boundary. The evolution of the argon density
profiles are determined via an optical tomography diagnostic
[13]. The tomographic data result in 2D images that are
further analyzed to determine both the azimuthal and radial
components of argon’s diffusivity. The FCG-FRC and
important background theory as well as important information
about classical diffusion and how an observed diffusion rate
allows the ambipolar electric field to be determined in a
classically behaving plasma are described in section 2. The
implementation of the tomography diagnostic, in this system,
is described in section 3. The results of the tomographic data
are interpreted and compared with theoretical predictions in
section 4. These results allow the FRC’s radial electric field
to be determined in a new way. This method, which relies on
the ambipolar diffusion discussion, is described and verified
through floating potential and magnetic field measurements in
section 5. Conclusions are presented in section 6.

2. FRC description

2.1. Machine

The FCG-FRC is a cylindrical device where an FRC is formed
between two concentric sets of coils. Gota et al [11], Gupta
et al [10], and Slepchenkov et al [12] describe this device
in more detail. The inner solenoid (flux-coil) is encased in
a quartz tube with outer-diameter 17.1 cm which defines the
inner boundary of the vacuum vessel. The outer boundary
of the vacuum chamber consists of two coaxial pyrex tubes
of diameter 61.4 cm which sandwich axially a polyethylene
block capable of supporting many diagnostics. Total length
of the system is 2.1 m. Sixteen outer coils are dispersed
axially along the machine at r = 42 cm. They provide
the confining magnetic field. Currents in the coils can be
controlled independently [12]. A large (60 kA) current in the
flux-coil induces a comparable plasma current, which reverses
the magnetic field, establishing the FRC [14, 15]. The resulting
magnetic fields are around −200 � B � 200 G.

In this method of FRC formation magnetic flux is added
to the plasma on a slow time scale. The inner coil allows
for a slow, inductive ramp-up of current in the plasma. The
current in the outer coil is also increased to maintain pressure
balance. The FRCs generated in this experiment undergo four
stages of development: preionization, formation, equilibrium
and collapse. These stages are best defined by the evolution
of the magnetic field profile as a function of time. Figure 1
displays the time periods for the different stages typical of the
shots examined here. In the preionization stage the nitrogen
backfill of gas (∼2 mTorr) is excited and ionized by ringing
the central solenoid. Then a large capacitor bank is fired
which drives current in the plasma causing field lines to
reverse as can be seen in the formation stage. This reversal is
maintained by a constant dI/dt as the flux-coil current ramps
up during the equilibrium stage. When the stored energy in
the capacitor bank is depleted the field-reversal is lost and the
plasma collapses under the pressure of the confining field in
the collapse phase. The magnetic field is measured with a
radial array of B-dot probes, at the midplane. The resulting

Figure 1. Four stages of FRC development: (a) preionization, (b)
formation, (c) equilibrium and (d) collapse. The two traces
represent the Bz component of the magnetic field, at the midplane
near the inner (black) and outer (red) boundaries.

Table 1. Free parameters in rigid rotor model.

Parameter Description

T T = Ti + Te (Energy Units)
Ni Number of ions per unit length
Iθ Current per unit length
r0 Radius of highest density
ωi Angular rotational frequency of ions
k Unit-less shape factor

FRCs attain ion temperatures near 10 eV, electron densities
in the range 0.5 × 1012–1.0 × 1014 cm−3 and reversed fields
in the range 100–300 G. These FRCs are relatively cold when
compared with traditional theta pinch FRCs [1]. This results in
a highly collisional environment. Thus, we expect the plasma
to have classical transport properties.

2.2. Analytical framework

Under the assumption of a shifted-Maxwellian distribution
function, a 1D, analytic solution to the Maxwell–Vlasov
equations can be used to describe the structure of the FRC
plasma near the midplane [4, 16]. The solution couples
the density and electric/magnetic field profiles such that
measurement of one determines the others. They take the form

Bz(r) = −2kcT Ni

πr2
0 Iθ

(1)

×
{
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[
k

(
r2

r2
0
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)]
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e
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cosh2
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r2
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)] , (4)

with free parameters as described in table 1.

2.3. Classical transport

Before computing actual diffusion rates based on data we
describe the classically predicted values for diffusion, with and
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Table 2. Plasma physics parameters. navg = 1.3e19 m−3 and
B = 200 G are used as the average plasma density and magnetic
field strength in these calculations, respectively. Values under
Larmor orbit period (τL) concern collisions between argon and the
bulk plasma species. Test particle-test particle collisions are not
considered. vth is the thermal velocity. ωc is the cyclotron
frequency. ρL is the Larmor radius. λmfp is the mean free path
between collisions. τcol is the ion–ion collisional period.

Quantity Units Equation Nitrogen Argon

Mass kg 14 mp 40 mp

T eV 10 10

vth m s−1

√
2kBT

m
1.17 × 104 6.92 × 103

ωc Rad s−1 eB

m
1.37 × 105 4.8 × 104

ρL m
vth

ωc
8.54 × 10−2 1.44 × 10−1

τL s
2π

ωc
4.58 × 10−5 1.31 × 10−4

νAr,j Hz See NRL [17] 5.38 × 104

λmfp m
vth,Ar

νAr,j
0.129

τcol s
1

νAr,j
1.86 × 10−5

µ m2 V−1 s−1 e

mνAr,j
34.5

D m2 s−1
v2

th,Ar

2νAr,j
445

ω2
c,Arτ

2
col — — 0.794

µ⊥ m2 V−1 s−1 µ

1 + ω2
c,Arτ

2
col

23.3

D⊥ m2 s−1 D

1 + ω2
c,Arτ

2
col

248

without a magnetic field, given the plasma parameters on this
FRC. Table 2 is a description of the relevant plasma parameters
necessary to compute the classical transport coefficients. The
items which have no value (in table 2), under the argon column,
relate to the collision processes where argon is considered
the ‘test particle’, and the element in the column header is
the ‘field particle’. For instance, the value of νAr,j under the
nitrogen column is the rate at which an argon test particle
collides with a background of nitrogen plasma, i.e. an ion–ion
collision.

The Coulomb ion–ion collision rate, νii, is directly
proportional to the plasma density [17]. The values in
table 2 are computed using the average ion density (ni)
during the equilibrium phase. Therefore, νAr,j is actually
radially dependent according to equation (4). The strength
of the perpendicular magnetic field affects the value of D⊥.
We calculate D⊥ using plasma parameters, which has no θ

dependence (due to θ symmetry of FRC). D⊥ is the same in
both radial and azimuthal directions because it only represents
the collisionally driven diffusion, and does not consider the
electric field described in equation (3). However, D⊥ does
depend on the radial position since the axial magnetic field
is near zero at r0 and its magnitude increases when moving
radially away from r0.

2.4. Effect of electric field on diffusion

The radial electric field predicted by the rigid rotor model in
equation (3) will modify the observable rate of diffusion in
the radial direction. Depending on whether the electric field
points toward or away from the null radius the observable
diffusion coefficient for ions will either increase or decrease,
respectively. Manipulation of the fluid equations of motion,
for a plasma with magnetic and electric fields present, leads to
an argon test particle flux of [18]:

Γ⊥ = ni µ⊥E − D⊥∇n. (5)

We also know from Fick’s laws that [19]

Γobs = −Dobs ∇n. (6)

Dobs on the right-hand side of the equation (6) is the total,
or observable, diffusion. In an FRC Dobs will be different
in radial and azimuthal directions due to the radial electric
field. D⊥ in equation (5) is related to the diffusion process
that comes purely from the collisions between particles. In
equation (6), the effects of the electric field are macroscopically
integrated and thus, indistinguishable from the collisions, but
they are both responsible for particle flux. Therefore, equating
equations (5) and (6), and assuming that the plasma behaves
classically, i.e. D⊥ has the value for diffusion calculated
in section 2.3, another (recall equation (3)) independent
expression for the electric field is realized. It is

E = D⊥ − Dobs

µ⊥

∇n

n
. (7)

This assumes that D⊥ is isotropic, but considering the highly
collisional nature of the plasma in this experiment, this is likely
the case.

3. Optical tomography

Optical tomography is an image reconstruction method. It
uses multiple 1D line of sight measurements to reconstruct
a 2D image. There are a variety of methods which lead
to the 2D image. Some are analytical and others rely on
numerical, matrix-inversion techniques [20]. The analytical
methods involve Fourier analysis of the mode structure of
the image. When lines of sight are limited (to say <100),
numerical methods provide useful information.

3.1. Analytics

The inversion technique employed in this work is called
minimum Fisher regularization (MFR). It was developed by
Anton et al [20] as a hybrid of linear regularization (LR) and
minimum Fisher information (MFI). The basic idea is to solve
the following set of equations:

fl =
∫

Sl

dsg(r) l = 1 . . . nl, (8)

where the fl are the (relatively) calibrated photomultiplier
tube (PMT) signals and g(r) is the emissivity of the plasma.
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We discretize g by breaking the space into square pixels. There
are nx pixels in the horizontal direction and ny pixels in the
vertical direction for a total of npixels = nx × ny . g and f
become column vectors with npixels and nl rows, respectively.
Then, equation 8 becomes

f = T ∗ g, (9)

where T is a matrix which contains the geometric information
of the lines of sight, such that

Tli =
∫

Sli

ds. (10)

In other words, Tli represents the length of chord l inside pixel
i. Generally speaking, direct inversion of T is not possible.
Either there are very few equations, i.e. T is not invertible
or, even if we had npixels = nl , T is poorly conditioned
(very sparse). Resolution of this issue is two-pronged. First,
we employ LR to couple adjacent pixels together. Second,
minimum Fisher information is applied, iteratively, to further
refine the coupling between pixels. This produces the best
reconstructions possible with the limited number of chords
available. With these tools in place we seek to minimize

φ = 1
2 (T̃ ∗ g − f̃)T ∗ (T̃ ∗ g − f̃) + αgT ∗ H ∗ g, (11)

where φ is χ2 for the system with the smoothing matrix,
H , incorporated. The tildes represent division by the
standard deviation of fl , i.e. f̃l = fl/σl . The weights are
determined by equation (12) through successive iterations of
the reconstruction process.

W
(n)
ij =




1

2 g
(n)
i g

(n−1)
i

· δij g
(n)
i > 0 n > 0

Wmax · δij g
(n)
i � 0 n > 0.

(12)

Wmax is a maximum weighting value used for those pixels
which have erroneously been determined to be negative. Wmax

is simply 1/gmin for gi > 0. The smoothing matrix becomes

H → H (n) = T ∗ W (n) ∗ , (13)

This leads to the system of equations to be solved:

(T̃ T ∗ T̃ + αH (n)) ∗ g(n+1) = T̃ T ∗ f̃ , (14)

where we have set all of ∂φ/∂gi = 0. We solve equation (14)
for g using the commonly applied method of lower/upper
triangular (LU) decomposition [21]. A more complete
derivation of these equations is available in [20].

3.2. Experimental arrangement

The basic design principle for the tomography diagnostic
consists of two fan arrays with eight collimated lines of sight
each. The light incident on each collimator lens is focused onto
a fiber, with numerical aperture of 0.22, which transmits light
through a series of filters, and is finally measured by 1 of 16
PMTs. The acceptance angle of each line of sight is ∼1◦.The
general setup of light collection apparatus is shown in figure 2.

Figure 2. A schematic of the tomographic diagnostic. Each fan
consists of eight lines of sight of which there are two. Each
collimator/lens/fiber arrangement is set flush with the outer
boundary. Every line of sight has ∼1◦ acceptance angle. All of the
signals are routed through a series of filters and onto a PMT. The
PMTs’ outputs are recorded by digital oscilloscopes.

Specific information about the diagnostic’s implementation is
found in [13]. The argon gas is introduced into the system in a
highly localized manner by means of a fast puff valve (which
is separate from the nitrogen backfill system) and a long tube
that runs along the interior boundary to the midplane of the
machine. The end of the tube is positioned such that the argon
flows directly into the center of the tomography diagnostic’s
view. The puff valve is activated so that the gas arrives just
after the FRC forms. In this case, the filters are designed
to only transmit light from the Ar+ spectral line at 434.8 nm
to the PMTs. Argon works in this system but, in principle,
another impurity could be chosen depending on target’s plasma
parameters. Like the bulk plasma species (nitrogen) the argon
is singly ionized due to the relatively low electron temperature.
This is verified by observing spectral lines from the two species
for singly and doubly ionized states. Strong lines for singly
ionized states are bright enough to saturate PMT detectors
on a spectrometer while the doubly ionized lines are virtually
undetectable.

Using the geometry of the lines of sight in figure 2
simulated data are produced to gauge the effectiveness of
the tomographic reconstruction algorithm. The number
of successive iterations that must be performed on the
experimental data is determined by looking at successive
reconstructions of simulated input data as shown in figure 3.
The reconstruction converges after four iterations. Two fans
of eight chords each are arranged such that the lines of sight
form a mesh as depicted in the lower left corner of figure 3
which matches the physical experiment’s geometry.

4. Diffusion analysis

In this section the data gathered with the diagnostic described in
section 3 are analyzed to determine the FRC’s rate of diffusion.
The test ion density profile is reconstructed, at 1 µs intervals,
over the lifetime of the FRC. The generated images are both
the output of the tomography algorithm, and the starting point
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Figure 3. Simulation with Gaussian input. (a) Input image. (b), (c), (e), (f ) Successive iterations of the algorithm using simulated data for
the input image as would be collected using the experimental detection chord geometry. Notice how the iterative weighting recovers not
only the shape, but the peak height of the input. (d) Representation of line-of-sight coverage, 16 chords in total. These are the chords used to
reconstruct the images in (b), (c), (e) and (f ). They are also used to calculate line-integrated values from (a) which are used as the inputs to
the reconstruction algorithm.

of the physics discussion to follow. The spatial resolution of
the diagnostic is 1 cm × 2 cm, which is optimal in terms of
FRC feature sizes and computational requirements.

4.1. Observed diffusion

Dobs is the diffusion coefficient as calculated strictly from
the observation of tomographic data alone. This observed
diffusion coefficient comes directly from experimental
measurement, and not from any inferences dependent on the
plasma physics. The value determined is representative of the
total particle flux (of the test ion population), and includes any
transport-altering effects due to electric fields. For example,
an electric field pushing particles toward the center of the FRC
would reduce the outward observed diffusive flux as inward
convection offsets outward diffusion. We calculate Dobs in
both cross-field, orthogonal directions (θ̂ and r̂). These two
coefficients are determined independently, since the radial
electric field causes the observed values to differ.

If a Gaussian distribution diffuses in a one-dimensional
process in time, according to Fick’s first law [19]:

Γ = −D ∇n, (15)

then the diffusion coefficient goes like the change in the
full width of the Gaussian at half of its maximum (FWHM)
squared, divided by the change in time or

D = 1

16 ln 2

∂
(
FWHM2

)
∂t

. (16)

So to calculate Dobs, the observed test particle density profile
is fit to a Gaussian, at each time step, and the derivative is
calculated with respect to time. The Gaussian takes the form:

f (x) = A0 Exp

(
− (x − x0)

2

2σ 2

)
(17)

and
FWHM = 2

√
2 ln 2 σ, (18)

where x can represent the radial (r) or azimuthal (rmax · θ )
coordinate and rmax is the radius of greatest density according
to the reconstructed profile.

4.2. Case selection

Half of the shots on which tomographic analysis is performed
exhibit purely diffusive behavior. Some shots exhibit behavior
that cannot be quantified by simple Gaussian diffusion. Their
characteristics included: filamentation, convection and axial
wobble. The particular case described in this section represents
the FRC with the most stable equilibrium phase and best
signal-to-noise ratio, with respect to the optical signals. Other
comparable shots have similar results. In addition to a
primarily nitrogen plasma, a primarily hydrogen plasma is also
studied. Although the hydrogen FRCs are typically shorter
lived, the diffusion analysis produces similar results.

Figure 4 shows both the raw and conditioned data from
a single PMT channel on shot 8039. The error in the PMT
measurements is taken to be the standard deviation of the signal
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Figure 4. Single channel raw and smoothed data to be used as input
for image reconstruction algorithm. The data are divided into the
same sections as in figure 1: (a) preionization, (b) formation,
(c) equilibrium, (d) collapse. (e) represents the time period of the
reconstructions in figure 5.

over the period of time (1 µs) between interpolated values.
These errors are the ones used in equation (11).

After the data have been conditioned, they are fed into
the reconstruction algorithm. Each time slice is treated
independently. Therefore, apart from the temporal smoothing
(on the preprocessed data) there is no smoothing of the output
images in the time dimension. A short time window has been
selected in figure 5. Here the evolution of the test ion density
profile can be observed over the course of a few microseconds.
The white lines represent the various lines of sight. The line of
sight highlighted in red is PMT #11. Its raw data are displayed
in figure 4.

4.3. Diffusion in the Azimuthal direction

To determine Dobs,θ we fit Gaussian profiles to the azimuthal
arc that intersects the point of highest density. This radius
is referred to as rmax. The density peak is determined by
examining the reconstructed image (at each time slice) of the
emissivity profile. An arc is drawn with radius rmax and is
bound by the outermost lines of sight (white lines in figure 6).
n(r) (or ε(r)) is determined along this arc (one point per
pixel), and those points are fit to a Gaussian. An example
of one of the azimuthal fits is displayed in figure 6. The error
estimates on the data in figure 6 come from the short-timescale
(2.5 µs) variation of the calculated pixel emissivity. Any long-
timescale trend is removed, then the standard deviation of these
data is taken to be the error for the associated datum. Only fits
with reduced χ2 < 2 are used in the calculation of Dobs.

Doing Gaussian fits to the time-dependent data provides
the full-width half-maximum (FWHM) versus time as shown
in figure 7. Finding the observed diffusion coefficient by
means of equation (16) leads to Dobs,θ versus t , as illustrated
in figure 8. The values for the error bars are calculated using
the statistically weighted error estimates from the previously
performed Gaussian fits. The errors are propagated forward in
the usual way.

Toward the end of the formation period and into the
start of the equilibrium phase (near 150–155 µs in the time
window shown in figure 8) the azimuthal cross-field diffusion

coefficient is in the range 200–500 m2 s−1, about classical
to three times classical diffusion predictions (see table 2).
For azimuthal diffusion near the null, magnetic effects on
D are reduced and the classical expected value of D would
be predicted to be somewhere between the B = 0 value of
D ∼ 500 m2 s−1 and the B = 200 G value of D ∼ 250 m2 s−1.

4.4. Diffusion in the radial direction

Calculating the radial cross-field component of the diffusion
coefficient is very similar to the azimuthal part. The difference
is the Gaussian fit is performed along a radial chord which
intersects the density peak. A line is drawn from r = 0 through
the pixel whose density (or emissivity) is maximum and a
Gaussian is fit to the values of the pixels which intersect it. As
before, the detrended, short-timescale, statistics determine the
error bars (figure 9). The rest of the procedure is identical. A
plot of the radial FWHM versus time is illustrated in figure 10.
Figure 11 shows the equilibrium time Dobs,r is near zero or
even negative.

During formation radial diffusion is less than classical
values and during equilibrium (160–180 µs) the observed
radial diffusion drops further, even becoming negative. This
means that the ions are being propelled radially toward the FRC
null radius, and the test particle density profile is peaking up.
This behavior is due to the radial electric field (section 2.2). An
example of the electric field profile is displayed in figure 12.
Note that this field is confining for ions.

5. Radial electric field determination

The radial electric field, predicted by the rigid rotor model
[4], proves to be integral in the understanding of the radially
directed diffusion. The discrepancy, between Dobs and D⊥,
is eliminated when the convective effects of the electric
field are considered. In this section we present data of
measurements of the electric field (via direct measurements of
the floating potential); and compare the theoretically predicted,
experimentally measured and tomographically implied fields.

The density profile must be known to calculate E from
equation (7). Either the Gaussian fit made to the tomographic
data or the density profile determined by the magnetic field
could be used to make this calculation. Both are reasonable
choices; the former would be more appropriate if it is desired
to keep estimates completely independent. On the other hand,
the Gaussian fit is really only reliable within 1/e of the density
peak. It approaches zero rather quickly and thus ∇n/n does
not reflect properly the physical situation far away from the
density peak. This is not the case for the rigid rotor model
density profile [4], which goes like 1/cosh2.

5.1. Electric potential/field measurements

In order to verify the proposed theoretical interpretation of
this diffusive process the electric field must be physically
measured. Direct measurement of the floating potential (Vf )
is performed using a floating tip probe (figure 13). The probe
itself consists of a 1

4 inch glass tube with 2–1.5 mm tips spaced
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Figure 5. Slow evolution of test ion density profile as a function of time: Shot 8039. White lines represent line of sight paths. Red line is
PMT #11.

Figure 6. Example of a Gaussian fit along an azimuthal arc (right)
which intercepts the point of highest density and the associated 2D
density profile (left). The blue triangles represent the data points
and their associated errors. The solid red line is the Gaussian fit
(right). The dashed red line is the cutoff value. Any data with values
below this line are not included in the Gaussian fit.

6 mm apart protruding out of the tube near the end of the probe.
Initially, the probe was constructed to measure the local electric
field between the two tips. However, at the time of experiment,
the electronics for measuring the differential signal did not
function correctly and the potential at each tip was measured
independently. Since Te is mostly flat inside the FRC, the radial
electric field can be inferred from the Vf measurements.

Figure 7. Time evolution of the azimuthal width of the test ion
density profile for shot 8039. The black triangles represent the
FWHM from the Gaussian fits at each time slice. The red line is a
polynomial fit to the experimentally measured values. Gaps in the
data are due to times when the reduced χ2 of the Gaussian fits are
greater than 2.

The measurements are made over a series of shots at
multiple radial locations. Six shots are taken at each position,
with Vf measured on one tip for three of those shots and
the other tip for the other three. Forty-five shots are taken
for a total of 15 distinct radial positions. The circuit used
for measurement is a very simple voltage divider and line
driver. This circuit reduces the signal to levels required by,
and preserves the integrity of the signal as it travels to, the
data acquisition system. Figure 14 is the raw Vf signal for
one of the shots. Please note that these are not the shots that
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Figure 8. Azimuthal diffusion coefficient as a function of time,
based on analysis of tomographic data. The blue and red lines are
the values for classical diffusion as calculated in section 2.3 where
B = 200 G and 0 G respectively.

Figure 9. Example of a Gaussian fit along a radial chord (right) and
the associated 2D test ion density profile (left). The blue triangles
represent the data points and their associated errors. The solid red
line is the Gaussian fit (right). The dashed red line is the cutoff value
(right). Any data with values below this line are not included in the
Gaussian fit.

Figure 10. Time evolution of the radial FWHM of the test ion
population. Again, the black triangles represent the FWHM from
the Gaussian fits at each time slice. The red line is a polynomial fit
to the experimentally measured values. Gaps in the data are due to
times when the reduced χ 2 of the Gaussian fits are greater than 2.

Figure 11. Representation of the observed radial diffusion
coefficient as a function of time in the middle of the FRC
equilibrium phase, based on analysis of tomographic data.

Figure 12. Electric field as predicted by the rigid rotor model based
on magnetic field measurements at 175 µs in shot 8039.

Figure 13. Two-tipped probe used for measuring Vf . In this
application Vf is only measured on one tip at a time.

are analyzed using tomography. These data were collected
after the tomography experiment had been completed. The
shot conditions are as identical to the tomography shots as
possible.

The topology of the electric field is theorized to be heavily
dependent on the magnetic field topology [4] (section 2.2),
especially the position of the magnetic null. The sign of
Er flips at this point (figure 12), or the potential reaches
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Figure 14. Example of Vf raw signal from a typical shot.

an extremum. Therefore, in performing the analysis of the
potential measurements, the position of the probe is taken to
be relative to the magnetic null position rather than simply
its spatial location alone. This kind of ordering generates
very repeatable results (figure 15). This is necessary because
the magnetic null position can move several centimeters
throughout the shot, even during the equilibrium. From this
perspective, Vf can be measured at several positions during a
single shot without having to move the probe. This is why
there are so many data points in figure 15, each shot supplies
about 30 data points.

The magnitude of the potential is well defined for radii
that are > − 5 cm with respect to the null radius. When
the probe tip is more than 10 cm inside of the null, we see
a much larger variation in signal (figure 15). There are two
perfectly reasonable explanations for this phenomenon. First,
the average null radius for these shots is ∼20 cm; the radius of
the inner boundary is 8.5 cm. It is likely that plasma this close
to the wall must be affected. The density is, presumably, much
lower near the boundary as well, so fluctuations in the floating
potential can easily be more dramatic. Second, the presence of
the probe itself may be affecting the measurement. The deeper
the tip is inserted into the plasma the larger the surface area
exposed to the plasma becomes, and the greater the potential
for shorting of field lines, in the vicinity of the probe. Another
complication, due to the probe, is that the further it is inserted,
the less-precisely the position of the tip is known. This is due
to the vacuum interface. The interface is a Wilson seal [22],
which means that the probe is only supported by a rubber o-
ring. It is possible for the probe to dip a few degrees before
it comes into contact with the metal surface that compresses
the o-ring. As the lever arm becomes longer (probe is inserted
deeper), this small deviation would cause a larger change in the
radial position. With all this in mind, it seems to be appropriate
to consider the electric field calculated, from these potential
measurements, to be valid from ∼5 cm inside r0 to the outer
boundary.

With Vf measured we simply take a derivative of the
polynomial fit to the data to obtain Er(r). The confining effect
we see in figure 11 implies that Er should point toward the

Figure 15. Potential measurements over a series of shots during the
equilibrium of the FRC (160–190 µs). The magnetic null position is
determined by the midplane B-dot probe. Since the FRC can move
during the shot the position of the probe relative to the field null is
calculated at every time step. Each × represents a physically
measured data point. The data are grouped into 1 cm bins and the
error bars represent the standard deviation within the associated bin.
The data span each time step for each of the 45 shots. The data are
fit to a ninth order polynomial (blue line) that can be differentiated
to obtain Er(r).

magnetic null (also the point of highest density) and that is
precisely what we see in figure 16.

5.2. Comparison of multiple calculation methods for Er

In this section, a comparison of the radial electric field, inferred
from floating potential measurements, with the electric fields
calculated from Dobs,r and magnetic field measurements is
presented. The fields are compared as averages over the
formation and equilibrium stages of the FRC. The fields
predicted by the rigid rotor model and tomographic imaging
analysis come from data from the specified shot, and the fields
derived from the floating potential measurements are from a
different data set.

Figure 17 displays electric field calculations, for shot
8038, averaged over the FRC formation (figure 17(a)) and
FRC equilibrium (figure 17(b)). The black traces represent
the rigid rotor model prediction for Er , these traces are
derived, primarily, from magnetic field measurements. The
red traces represent the radial electric field which satisfies
the flux balancing requirement from section 2.4. These use
the tomographic data as well as the magnetic field data. The
blue traces represent Er as calculated from floating potential
measurements, as described in section 5.1. Finally, the vertical,
purple lines represent the position of the magnetic null. In all

9



Plasma Sources Sci. Technol. 23 (2014) 044001 T Roche et al

Figure 16. Radial electric field calculated by ninth order polynomial
fit to the floating potential data points in figure 15. As expected, the
field points toward the magnetic null and is therefore confining for
ions. This explains the sub-classical diffusion coefficient measured
in section 4.4.

cases, the values displayed are the average, over the relevant
data points, for the specified time window.

The agreement between the three traces is striking. During
the formation stage, close to the magnetic null, the slope and
magnitude of the traces are nearly identical. All of the signals
pass through zero at the same radial location. This means that
they all predict the same electric field propelling ions toward
the FRC null. This is also the case for the equilibrium phase.

Once we move far enough away (∼5 cm) from the null
the Vfloat measurements begin to deviate from the still agreeing
rigid rotor and tomography predictions. Away from the
null, the plasma density falls off rapidly. Fluctuations in
density, from shot-to-shot, make the floating potential much
more prone to variation at the plasma edge region. This is
exemplified in figure 15, where we see that far inside the null
the value of Vfloat is only known with a wide margin of error.
Therefore, once we are outside of the dense plasma it makes
sense that we will not be able to determine the electric field with
high precision, since the measurements are taken over many
shots, which are not repeatable in the plasma edge region.

6. Conclusion

The rigid rotor model for field-reversed configurations predicts
a radial electric field. This electric field has been inferred using
three methods; equilibrium calculation based on magnetic field
measurements, impurity transport measurements and floating
potential measurements. All three methods give consistent
results for both shape and magnitude of the electric field.

Direct observation of test ion particle transport in a
collisional FRC showed classical ion diffusion, ∼250 m2 s−1.

Figure 17. Shot 8038. Comparison of three methods for
determining Er . (a) represents Er during FRC formation and (b)
represents Er during FRC equilibrium. Black traces are determined
by plasma parameters, magnetic field measurements and the rigid
rotor model. Blue traces are determined from direct, floating
potential measurements. Red traces are from analysis of the
tomographic data. The vertical, purple lines indicate the average
position of the magnetic null during the indicated time period.

It has also been observed that a radial electric field reduced
radial ion flux below classical cross-field diffusive levels
during equilibrium. We presume this electric field to be due
to the weak and strong levels of magnetization of the ions
and electrons, near the magnetic null, respectively. In this
collisional regime, the confining electric field is a consequence
of ambipolar transport. This particular FRC has very low
temperatures, where classical Coulomb collisions dominate
diffusive processes during the equilibrium phase. Non-
classical diffusion occurs in the formation and collapse phases,
and turbulence may contribute substantially to transport in
hotter FRCs. In future experiments, it is desirable to perform
similar test ion transport studies in hotter, less collisional
FRCs in order to determine the level of turbulent transport
present. The specifics of diagnostic impurity and method
of local introduction would need to be determined based on
the plasma parameters of the experiment in question, but the
analysis methodology can be applied to any multi-chord light
detecting apparatus.
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