Lawrence Berkeley National Laboratory
Recent Work

Title
Simulation Studies of Space-Charge-Dominated Beam Transport in Large Aperture Ratio Magnet Quadrupoles

Permalink
https://escholarship.org/uc/item/6qf7m1kh

Authors
Fawley, W.
Laslett, L.J.
Celata, C.M.
et al.

Publication Date
1993-05-01
Simulation Studies of Space-Charge-Dominated Beam Transport in Large Aperture Ratio Quadrupoles

W.M. Fawley, L.J. Laslett, C.M. Celata, A. Faltens, and I. Haber

May 1993
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Simulation Studies of Space-Charge-Dominated Beam Transport in Large Aperture Ratio Quadropoles

W. M. Fawley, L. J. Laslett, C. M. Celata, and A. Faltens
Accelerator & Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

I. Haber
Naval Research Laboratory
4555 Overlook Avenue Southwest
Washington, D.C.

Submitted to the International Symposium on Heavy Ion Fusion, Frascati, Italy, May 25-28, 1993

*This work was supported by the Office of Energy Research, Office of Fusion Energy, U. S. Department of Energy under Contract No. DE-AC03-76SF00098.
Simulation Studies of Space-Charge-Dominated Beam Transport in Large Aperture Ratio Quadrupoles*

W.M. Fawley, L.J. Laslett, C.M. Celata, A. Faltens
Lawrence Berkeley Laboratory, University of California
Berkeley, CA 94720 USA
I. Haber
Naval Research Laboratory
Washington, D.C. USA

Abstract

For many cases of interest in the design of heavy-ion fusion accelerators, the maximum transportable current in a magnetic quadrupole lattice scales as \((a/L)^2\) where \(a\) is the useful dynamic aperture and \(L\) is the half-lattice period. There are many cost benefits to maximizing the usable aperture which must be balanced against unwanted effects such as possible emittance growth and particle loss from anharmonic fringe fields. We have used two independent simulation codes to model space-charge dominated beam transport both in a azimuthally-pure quadrupole FODO lattice design and in a more conventional design. Our results indicate that careful matching will be necessary to minimize emittance growth and that \((a/L)\) ratios of 0.2 or larger are possible for particular parameters.

I. Introduction

An important issue in the design of heavy ion fusion (HIF) drivers is the dynamic aperture of short quadrupoles which immediately follow the transition from electrostatic to magnetostatic focusing. This importance stems from the maximum transportable current for a highly space-charge depressed beam scaling as the usable beam aperture, \(a_s\), squared:

\[I_{\text{max}} \approx \left(\frac{a_s}{2L} \right)^2 I_0 \frac{A^3 \beta^3}{2Q} \sigma_o^2 \]

(1)

Here \(I_0\) is the proton “Alfven current”, 31.07 MA, \(\sigma_o\) is the phase advance per lattice period \(2L\), \(A\) and \(Q\) are the atomic mass and charge state respectively of the ion species, and \(\gamma\) and \(\beta\) have the normal Lorentz definitions. Since a large \(I_{\text{max}}\) permits decreasing the required number of beamlets and thus more efficient use of the accelerating core cross-section, there is a great premium in making the aperture ratio \((a_s/L)\) as large as possible.

The usable beam aperture \(a_s\) may be defined as that above which the beam suffers unacceptable emittance growth and/or particle loss over transport distances of interest. Both these phenomena generally occur due to nonlinearities in the net focusing forces (i.e. external minus space charge). Such nonlinearities are inevitably present whenever the external focusing contains higher order multipole (e.g. dodecapole) moments or fringe fields (e.g. pseudo-octupoles [1] which arise from the second longitudinal derivative of the quadrupole moment). Although these effects are present to some degree in all strong focusing systems, FODO lattices in HIF induction accelerators are somewhat unusual in two respects: 1) Beam space-charge forces lead to very high tune depressions \((\sigma_o/\sigma \geq 10\) or more where \(\sigma\) is the space-charge depressed phase advance); this makes it unclear whether the usable beam aperture can be estimated from “single particle” results. 2) The high \(\sigma_o\)'s \((\sim 72^\circ)\) true for many HIF driver designs imply relatively large AG flutter motion which may lead to poor net cancellation of fringe field and multipole forces compared to the more usual low \(\sigma_o\) case.

II. Magnet Designs

A. "Conventional" Multipole Suppression

As \(a/L\) becomes large and the relative contribution of fringe fields increases, serious attention must be paid to the coil end topology. Our present work builds upon earlier designs [2] in which higher order multipoles disappear in the \(z\)-integrated sense, i.e.

\[\int_{-\infty}^{+\infty} dz \int_{-\infty}^{+\infty} d\theta A_z(r, \theta, z) \cos (4l + 2)\theta = 0 \]

(2)

for \(l \neq 0\). Presuming time-independent coil currents, the \(z\)th component of the vector potential may be replaced by that of the current density \(J\). In the absence of transverse motion, particles traveling through isolated magnets with this topology will suffer no net kick due to the higher order multipoles. In the real world, however, transverse motion associated with emittance and AG flutter prevents the cancellation from being absolute.

The simplest (and probably most compact) coil end topology is that of right angles with the coil turns of each individual half-period quadrant being rectangles in the developed view (ignoring the necessary turn-to-turn connections). The angular position of each wire is then determined by replacing Eq. (2) by

\[\sum_{k=1}^{n_{\text{wire}}} \sum_{l=1}^{w} L_k \cos (4l + 2)\theta_k = 0 \quad \text{for } l = 1, 2, \ldots \]

(3)

*Work supported by the Director, Office of Energy Research, Office of Fusion Energy, U.S. Dept. of Energy under Contracts No. DE-AC03-76SF00098 at LBL and DE-AL05-92ER54177 at NRL.
above formulas are exact only for infinite lattices, they are quite good approximations to long, periodic lattices whose wire topologies and currents change only slowly with z.

For a given choice of the longitudinal Fourier components α_n, the behavior of $K_2(\zeta)$ for $\zeta \geq 2$ implies that the contribution of components with $n \geq 3$ near the axis become exponentially small for $a/L \geq 0.3$. In other words, as the aperture ratio a/L of a periodic lattice becomes large, the z-dependence of the quadrupole field components asymptotically approaches a simple sinusoid with period $2L$. Consequently, our transport studies have concentrated on the limiting case of $\alpha_n \equiv 0$ for $n \neq 1$, which we call a “one-term” magnet.

Although the magnetic fields corresponding to Eq. (5) are azimuthally pure quadrupoles, the resultant focusing has anharmonic terms due to the radial dependence of the I_2 function. To estimate the strength of these nonlinearities in a one-term magnet, we compute an average over the AG-flutter motion in one lattice period, resulting in

$$\sigma^2_n(r, \theta) = \sigma^2_n(0) \left(1 + 3 \left(\frac{\pi r}{L} \right)^2 - \frac{3}{8} \left(\frac{\pi r}{L} \right)^2 \cos 4\theta \right) \quad (6)$$

through terms second order in r/L. Here $\sigma_n(0)$ is the on-axis value of σ_n. One should remember that although the second and third terms on the RHS are small compared to the undepressed tune for $r \leq 0.2L$, they are relatively much larger components of the net focusing of space-charge dominated beams with $\sigma \ll \sigma_n$.

III. Simulation Code Studies

A. Code Descriptions

We employed two independently developed, electrostatic, 2D particle simulation codes for our transport studies. The first, SHIFTXY[3], solves fields on a uniform Cartesian $x-y$ grid and thus permits study of all azimuthal modes. The second, HIFI, uses an $r-\theta$ grid and presumes even symmetry about the x and y planes, thereby restricting azimuthal modes to $\cos 2m\theta$ dependences. Both codes include non-paraxial terms and $v_1 \times B_z$ forces in the equation of motion and determine $\Phi \equiv -\nabla \Phi_m$ from Eq. (5). The initial particle loads follow either a KV or semi-Gaussian distribution in phase space (i.e., uniform in configuration space). The simulation “walls” are fully absorbing with radii generally ≥ 2 twice the initial beam radius.

B. Emittance Growth

There are at least two related agents for emittance growth for beams transported by large aperture quadrupoles. The first arises from phase-mixed damping of macroscopic mismatch oscillations. Due to the growing relative strength of non-linearities such as the pseudo-octupole, it becomes harder and harder [cf. Eq. (6)] to match accurately the beam envelope parameters (z, z', y, y') as a_2/L increases. When $a_2/L \leq 0.25$, a surprisingly good match can be obtained by running an envelope code that evaluates the total focusing forces at the
envelope edge (as opposed, for example, to an algorithm that uses area-weighting). For larger values of a_b/L, this scheme becomes inaccurate and a full particle simulation must be done iteratively to obtain the predicted macroscopic match quantities.

Even when the macroscopic match is "correct", the microscopic deviation of the beam's internal profile from the nonlinear equilibrium value can lead to strong emittance growth. In agreement with expectations from Eq. (6), it appears that the equilibrium profile must have a space-charge density $\rho(r)$ increasing with r and a small, but non-zero octupole moment. Our simulations show both characteristics developing within a few plasma periods when $a_b/L \geq 0.2$. It then takes ≈ 30 lattice periods for the beam to settle down near its new equilibrium. This adjustment normally leads to the formation of a halo in velocity space.

When $a_b/L \leq 0.1$, the focusing nonlinearities are small and there is very little emittance growth for a well-matched beam. Fig. 2 plots the ratio of final to initial emittance versus beam radius for three values of σ_0. The initial beam brightness was kept constant (i.e. $\varepsilon \propto \lambda^{1/2}$) and the tune depression was $\sim 12 : 1$ for $\sigma_0 = 72^\circ$ and $a_b/L \approx 0.08$. We define the maximum dynamic aperture a_{max} as the radius beyond which significant numbers of beam particles will be lost. Plots of a_{max} versus σ_0 for both space-charge and emittance-dominated beams are shown in Fig. 3. For $\sigma_0 \approx 72^\circ$, the instability boundary appears to be associated with unstable fixed points whose (undepressed) phase advance is 90°. When σ_0 is relatively small, there is not such a clear association with fixed points. We find it intriguing that throughout this large range in σ_0, the instability boundary is barely perturbed by the presence of strong space-charge effects, at least for well-matched beams.

Fig. 3 also plots the (normalized) maximum line charge density that can be transported over 100 lattice periods with little or no loss. We stress that although one can transport greater λ at $\sigma_0 = 30^\circ$ than at 72°, the emittance growth is so severe for $\lambda \geq 0.25\lambda_{\text{max}}$ at 30° that few applications could use the resultant beam. Scans of emittance growth for well-matched beams with $\lambda = 0.8\lambda_{\text{max}}(\sigma_0 = 72^\circ)$ versus σ_0 show a minimum value in the 65° to 75° range. The growth is larger for either much lower σ_0 values or higher values (where particle loss, too, is a problem). Consequently, our present results support the present bias in HIF driver design to set $\sigma_0 \approx 72^\circ$.

This paper is dedicated with deep affection to the memory of our co-author, L. J. Laslett.

References

