Lawrence Berkeley National Laboratory
Recent Work

Title
Field Characterization of Reservoir Flow Paths Using Miscible and Immiscible Tracer Tests

Permalink
https://escholarship.org/uc/item/6r78830p

Authors
Trautz, Robert C.
Freifeld, Barry M.
Doughty, Christine
et al.

Publication Date
2005-09-08
Field Characterization of Reservoir Flow Paths Using Miscible and Immiscible Tracer Tests

Robert C. Trautz,1 Barry M. Freifeld,1 Christine Doughty,1 Sally M. Benson,1 Tommy J. Phelps2 and Scott D. McCallum2

1 Earth Science Division, Lawrence Berkeley National Laboratory
2 Environmental Sciences Division, Oak Ridge National Laboratory

Injection of supercritical CO2 into deep, brine-filled reservoirs may be used to slow the effect that greenhouse gas emissions have on global warming. During injection, the large contrast in fluid densities and viscosities causes immiscible displacement of the brine by CO2, resulting in a two-phase system. We performed a series of tracer tests during the Frio CO2 sequestration pilot program to study immiscible and miscible fluid displacement through the Frio sandstone, a deep saline reservoir located beneath the Gulf Coast Region of Texas. A two-well tracer test was initially performed to evaluate miscible fluid displacement in the single-phase, brine-filled reservoir. A dipole flow field was first established by pumping brine from a well penetrating the reservoir and then injecting it back into the same formation using a second well. A tracer, added to the injected water and monitored at the pumping well, allowed us to evaluate interwell travel times and tracer-breakthrough curves. These results are compared to CO2 travel times and gas-tracer-breakthrough curves obtained from immiscible displacement of brine by CO2, collected during a subsequent single-well CO2 flood (radial divergence test). CO2 breakthrough was faster than model predictions, and sweep efficiencies were relatively small, suggesting that gas movement occurred along preferential pathways. Estimates of formation dispersivity, porosity-thickness products and brine saturation provide further insight into the nature of these pathways.

Presenting author:
Robert Trautz
MS 90-1116
1 Cyclotron Rd.,
Berkeley, CA 94720
Phone (510) 486-7954 Fax (510) 486-5686
rctrautz@lbl.gov,
Barry Freifeld (510) 486-4381 bmfreifeld@lbl.gov,
Christine Doughty (510) 486-6453 cadoughty@lbl.gov
Sally Benson (510) 486-5875 smbenson@lbl.gov
Tommy J. Phelps (865) 574-7290 phelpstj@ornl.gov
Scott D. McCallum (865) 574-7428 mccallumsd@ornl.gov