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ABSTRACT
A synthesis technique for designing novel vehicle suspension

linkages based on the Watt I six-bar is presented. The goal is to
maintain near vertical alignment of the wheels to the road during
cornering. The complete suspension is analyzed as a symmetric
planar 12-bar linkage with ground pivots located at the contact
patches. The design procedure specifies the vehicle chassis ori-
entation and the tire camber angles of the vehicle when corner-
ing. As well, two task positions of the wheels with respect to the
chassis are specified for suspension movement in straightaways.
The result is 18 design equations with 18 unknowns that have a
total degree of 2,097,152, though only 336 roots. An example
design is presented.

INTRODUCTION
This paper presents the synthesis theory for novel automo-

tive suspension designs based on the Watt I six-bar. The motion
objectives of the synthesis are (i) to guide the chassis and wheels
of the vehicle into a specified pose when cornering, and (ii) to
guide the motion of the wheels through two task positions with
respect to the chassis suitable for straightaways. This motion
specification is equivalent to solving for four task positions of
the wheel with respect to the chassis. In order to specify our mo-
tion objective we adopt two planar linkage models. They are a
Watt I six-bar with base pivots b and c attached to a fixed chas-
sis (Fig. 1), and a symmetric 12-bar with base pivots NR and NL

∗Address all correspondence to this author.

assumed to exist in the middle of the tire contact patches (Fig.
2). The objective of the motion specification is for the wheels to
remain near vertical to road during cornering in order to main-
tain an optimal contact patch. An improved contact patch pro-
vides for even tire wear and uniform tire heating. As well, these
two performance enhancements can lead to further performance
gains including decreased rolling resistance and an increased co-
efficient of friction through proper heating.

LITERATURE REVIEW
The design of each side of the 12-bar suspension system is

based on the kinematic synthesis of a Watt I six-bar linkage for
motion generation. The loop equations of this linkage are formu-
lated following Wampler et al. (1992) [1]. Also see, McLarnan
(1963) [2] and Kim et al (1973) [3] for early work on six-bar link-
age synthesis for function generation and path generation. This
work is a generalization of the finite position synthesis problem
for four-bar linkages, see Hartenberg and Denavit (1964) [4]. In
contrast to Soh and McCarthy (2008) [5], we specify the loca-
tions of the ground pivots and the locations of the end-effector
pivots, and solve a four position problem.

We solve the synthesis equations using the polynomial ho-
motopy continuation software Bertini, Bates et. al. [6]. This
solution was then used in a parameter homotopy to solve the
synthesis equations of a Watt I six-bar that travels through four
task positions. Our procedure uses tolerance zones to find us-
able linkages among synthesis solutions that correspond to a ma-
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jority of defective linkages, Plecnik and McCarthy (2012) [7].
Balli and Chand (2002) [8] surveyed the literature on linkage
defects. An interesting result is that our formulation yields a re-
flection defect in which a ternary link of the six-bar needs to be
disassembled and reflected in order to move through the entire
specified motion. The maximum number of circuits of a Watt
mechanism is four, Primrose et al. (1967) [9], but considering
assemblies where the ternary link is reflected would increase it
to eight. Therefore, synthesis solutions that exhibit this defect
are considered to yield multiple linkages.

Dimensional synthesis plays an important role in vehicle
suspension design. Sancibrian et al. (2010) [10] applied opti-
mization to design the link lengths of a double-wishbone suspen-
sion. Habibi et al. (2008) [11] applied genetic algorithms to the
design of linkages based off the McPherson-strut. Simionescu
and Beale (2002) [12] and Eberharter (2007) [13] present kine-
matic synthesis procedures for five-link spatial suspension link-
ages. Our approach designs the left and right sides of a vehicle
suspension as a planar symmetric 12-bar, that is two symmet-
ric Watt I six-bars. Deo and Nam (2004) [14] also propose the
design of Watt I six-bar suspension linkages for the purpose of
minimizing changes in wheel alignment parameters due to sus-
pension travel.

WATT I SIX-BAR MODEL
The Watt I six-bar model is shown in Fig. 1. Reference

frame ΓA is located at point A attached to the chassis (link I).
The complex vectors b and c are measured from reference frame
ΓA and locate the fixed chassis pivots. The vector d locates pivot
D in a frame attached to link II which is rotated ρ from ΓA. The
vectors f and g locate pivots F and G in a frame attached to
link III which is rotated µ from ΓA. The task position frame
ΓM is fixed to the tire (link VI) with its origin in the middle of
the contact patch and its horizontal axis perpendicular to the side
wall of the tire. Its origin is located by M and it is rotated θ from
ΓA. The vectors h and k locate pivots H and K in frame ΓM .

We do not define vectors that span links IV and V. Instead,
we define lengths. The triangle defined by ternary link IV is
composed of lengths l1, l2, and l3. Link V is of length l4.

The motion objective of this six-bar is to move the task posi-
tion frame attached to the tire through two positions specified by
complex vectors M j and rotations θ j for j = 1,2. These positions
should be specified in order to ensure nearly vertical translation
of the tire with respect to the chassis. Along with the tire task
frame, we also completely specify the fixed pivots b and c and
the end effector pivots h and k.

Our goal is to find the real and imaginary components of
d, f , and g and the real numbers l1, l2, l3, and l4 for a total
of 10 design parameters. We shall not solve for the real and
imaginary components of complex numbers, but instead solve
for the complex numbers and their conjugates directly i.e. the
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Kj
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l3

l4

I
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III
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VI

(a) Link numbering and fixed lengths

ρj

μj ΓM
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b
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θjMj

(b) Vectors and angles

FIGURE 1. (a) LINKS ARE NUMBERED WITH ROMAN NU-
MERALS. LINKS IV AND V ARE REPRESENTED BY LENGTHS.
(b) LINKS I, II, III, VI ARE REPRESENTED BY LOCAL COORDI-
NATE VECTORS.

unknowns are d, d̄, f , f̄ , g, and ḡ. We treat complex numbers and
their conjugates as isotropic coordinates, Wampler et al. (1992)
[1].

Since we are using complex numbers to represent planar ge-
ometry, we will also be using complex exponential operators to
rotate complex numbers. The complex operators for angles ρ j,
µ j, and θ j are

R j = eiρ j , U j = eiµ j , Tj = eiθ j , (1)

respectively. In order to formulate the synthesis equations, we
first derive complex number expressions for points D, F , G, H,
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and K measured in frame ΓA,

D j = b+R jd

Fj = c+U j f

G j = c+U jg

H j = M j +Tjh

K j = M j +Tjk j = 1,2. (2)

Next, we write out four constraint equations per position based
on the constant lengths l1, l2, l3, and l4,

l2
1 = (D j−Fj)(D̄ j− F̄j)

l2
2 = (D j−H j)(D̄ j− H̄ j)

l2
3 = (Fj−H j)(F̄j− H̄ j)

l2
4 = (G j−K j)(Ḡ j− K̄ j) j = 1,2. (3)

Without loss of generality, we set R1 = R̄1 = U1 = Ū1 = 1 and
append normalization conditions for the remaining rotational op-
erators,

R jR̄ j = 1, U jŪ j = 1, j = 2. (4)

Eqns. (3) and (4) are 10 equations in the 14 unknowns d, d̄, f ,
f̄ , g, ḡ, l1, l2, l3, l4, R2, R̄2, U2, and Ū2. This is an underde-
termined system. The system becomes determined by consider-
ing additional synthesis equations from the 12-bar model (Fig.
2). However, at this point it is worth it to reconsider Eqns. (3)
and (4) with a maximum value of j = 4 positions. If this were
the case, (3) and (4) would represent 22 equations with eight
additional rotational unknowns added to those above for a total
of 22 unknowns. This determined system could be reduced by
subtracting the j = 1 equations of (3) from each corresponding
equation for all other j in order to eliminate l1, l2, l3, and l4.

(D j−Fj)(D̄ j− F̄j)− (D1−F1)(D̄1− F̄1) = 0
(D j−H j)(D̄ j− H̄ j)− (D1−H1)(D̄1− H̄1) = 0
(Fj−H j)(F̄j− H̄ j)− (F1−H1)(F̄1− H̄1) = 0

(G j−K j)(Ḡ j− K̄ j)− (G1−K1)(Ḡ1− K̄1) = 0
R jR̄ j = 1
U jŪ j = 1 j = 2,3,4 (5)

Eqns. (5) have the same structure as Eqns. (12) below and thus
the problem presented in this paper is equivalent to four position
synthesis of a Watt I six-bar.

THE SYMMETRIC 12-BAR MODEL

In order to specify our motion guidance objectives and ob-
tain additional synthesis equations that can appended to (3) and
(4) to create a determined system, we turn to the symmetric 12-
bar model as shown in Fig. 2.

The 12-bar model consists of 11 moving links (links I–XI).
The right and left tires are links VI and XI and are pinned to the
ground at the center of their contact patches. The chassis is link I.
The right suspension links are II-V and the left suspension links
are VII-X. The left suspension links are a reflection of the right
suspension links.

The two fixed pivots are located in reference frame ΓO by the
vectors N and −N̄. Note that the reflection of a complex number
over the imaginary axis is the negative of its conjugate. As well,
frames ΓNR and ΓNL are located at NR and NL and aligned with
each respective tire. The angular displacements of ΓNR and ΓNL
from ΓO are ψR and ψL, respectively. Note that ΓNR and ΓM from
Fig. 1 coincide. The vectors h and k locate pivots HR and KR in
ΓNR. The vectors −h̄ and −k̄ locate pivots HL and KL in ΓNL.

Unlike the six-bar model, the chassis link moves in the 12-
bar model. The reference frame ΓA is fixed to the chassis. It
is displaced from ΓO by translation vector A and angle φ . The
vectors b, −b̄, c, and −c̄ locate pivots BR, BL, CR, and CL in
frame ΓA, respectively. Vector d locates pivot DR in a link II
frame which is rotated by φ +ρR from ΓO. Vectors f and g locate
pivots FR and GR in a link III frame which is rotated by φ + µR
from ΓO. On the left hand side, vector −d̄ locates pivot DL in
a link VII frame which is rotated by φ + ρL from ΓO. Vectors
− f̄ and −ḡ locate pivots FL and GL in a link VIII frame which is
rotated by φ +µL from ΓO.

The 12-bar model allows us to specify a single configuration
of the wheels and chassis when the vehicle is cornering. The
motion parameters to specify are the camber angles ψR and ψL,
the roll of the chassis φ , and the location of chassis reference
point A. As well, N is specified to set the vehicle’s track, and b,
c, h, and k were all specified from the previous six-bar model.

In order to generate the synthesis equations, we first define
rotational operators for the new angles φ , ρR, ρL, µR, µL, ψR, ψL,
that is

Q = eiφ , SR = eiψR , RR = eiρR , UR = eiµR ,

SL = eiψL , RL = eiρL , UL = eiµL . (6)

Next we express points DR, DL, FR, FL, GR, GL, HR, HL, KR, and
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FIGURE 2. (a) LINKS IV, V, IX, AND X ARE REPRESENTED BY LENGTHS. (b) LINKS I, II, III, VI, VII, VIII, XI ARE REPRESENTED BY
LOCAL COORDINATE VECTORS.

KL as complex vectors

DR = A+Qb+QRRd DL = A−Qb̄−QRLd̄

FR = A+Qc+QUR f FL = A−Qc̄−QUL f̄

GR = A+Qc+QURg GL = A−Qc̄−QULḡ

HR = N +SRh HL =−N̄−SLh̄

KR = N +SRk KL =−N̄−SLk̄ (7)

and formulate eight constraint equations based of the lengths that
compose links III, IV, VIII, and IX,

l2
1 = (DR−FR)(D̄R− F̄R) l2

1 = (DL−FL)(D̄L− F̄L)

l2
2 = (DR−HR)(D̄R− H̄R) l2

2 = (DL−HL)(D̄L− H̄L)

l2
3 = (FR−HR)(F̄R− H̄R) l2

3 = (FL−HL)(F̄L− H̄L)

l2
4 = (GR−KR)(ḠR− K̄R) l2

4 = (GL−KL)(ḠL− K̄L). (8)

By appending normalization conditions for the unknown angle
variables

RRR̄R = 1, RLR̄L = 1, URŪR = 1, ULŪL = 1, (9)

we obtain 12 equations in 18 unknowns, an underdetermined sys-
tem. However, by combining Eqns. (3), (4), (8), (9), we form a
system of 22 equations in the 22 unknowns

{d, d̄, f , f̄ ,g, ḡ, l1, l2, l3, l4} and {R j, R̄ j,U j,Ū j}
j = 2,R,L. (10)
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Combining the constraint equations from (3) and (8), we obtain

l2
1 = (D j−Fj)(D̄ j− F̄j)

l2
2 = (D j−H j)(D̄ j− H̄ j)

l2
3 = (Fj−H j)(F̄j− H̄ j)

l2
4 = (G j−K j)(Ḡ j− K̄ j) j = 1,2,R,L. (11)

This system can be reduced by subtracting the j = 1 equations
from each corresponding equation j = 2,R,L in order to elimi-
nate l1, l2, l3, and l4. Completing this operation, we obtain our
18 final synthesis equations in 18 unknowns,

S1 j : (D j−Fj)(D̄ j− F̄j)− (D1−F1)(D̄1− F̄1) = 0
S2 j : (D j−H j)(D̄ j− H̄ j)− (D1−H1)(D̄1− H̄1) = 0
S3 j : (Fj−H j)(F̄j− H̄ j)− (F1−H1)(F̄1− H̄1) = 0
S4 j : (G j−K j)(Ḡ j− K̄ j)− (G1−K1)(Ḡ1− K̄1) = 0

N1 j : R jR̄ j = 1
N2 j : U jŪ j = 1 j = 2,R,L. (12)

REDUCTION OF SYNTHESIS EQUATIONS
An expansion of the polynomials of (12) reveals the mono-

mial structure,

S1 j :
〈
d, d̄,1

〉〈
f , f̄ ,1

〉〈
R j, R̄ j,1

〉〈
U j,Ū j,1

〉
S2 j :

〈
d, d̄,1

〉〈
R j, R̄ j,1

〉
S3 j :

〈
f , f̄ ,1

〉〈
U j,Ū j,1

〉
S4 j : 〈g, ḡ,1〉

〈
U j,Ū j,1

〉
N1 j :

〈
R j, R̄ j,1

〉2

N2 j :
〈
U j,Ū j,1

〉2 j = 2,R,L. (13)

from which we compute a total degree (4× 25)3 = 2,097,152.
However, from (13), we see that the variables of (12) are natu-
rally split into the nine groups

Gr 1:
〈
d, d̄

〉
Gr 4: 〈R2, R̄2〉 Gr 7: 〈UR,ŪR〉

Gr 2:
〈

f , f̄
〉

Gr 5: 〈U2,Ū2〉 Gr 8: 〈RL, R̄L〉
Gr 3: 〈g, ḡ〉 Gr 6: 〈RR, R̄R〉 Gr 9: 〈UL,ŪL〉 (14)

We compute the 9-homogeneous Bezout number (Morgan and
Sommese (1987) [15]) for this system as the coefficient of the

monomial α2
1 α2

2 α2
3 α2

4 α2
5 α2

6 α2
7 α2

8 α2
9 in the polynomial

(α1 +α2 +α4 +α5)(α1 +α4)(α2 +α5)(α3 +α5)2α42α5

(α1 +α2 +α6 +α7)(α1 +α6)(α2 +α7)(α3 +α7)2α62α7

(α1 +α2 +α8 +α9)(α1 +α8)(α2 +α9)(α3 +α9)2α82α9
(15)

which is 3840.
The number of roots can then be reduced even further by use

of parameter homotopy of which an implementation is available
in the Bertini software package. The idea behind the parame-
ter homotopy numerical reduction method is to solve a system
generally once by assigning random complex numbers to the pa-
rameters which comprise the coefficients of the polynomial sys-
tem (12). The number of nonsingular solutions from this general
continuation solve is taken to be the maximum number of non-
singular roots of the system. These nonsingular solutions can be
combined with the previously randomly generated parameters to
construct straight line homotopies which only need to track the
reduced number of paths associated with the nonsingular roots of
the system.

We completed the following numerical reduction on a Mac
Pro with 12×2.93 GHz processors running in parallel. The pa-
rameters are the 26 variables which contain information of the
specified pivots and motion of the mechanism. They are

{A, Ā,b, b̄,c, c̄,h, h̄,k, k̄,M1,M̄1,M2,M̄2,

N, N̄,Q, Q̄,SR, S̄R,SL, S̄L,T1, T̄1,T2, T̄2}. (16)

Eqns. (12) were 9-homogenized and solved generally by Bertini
to find 336 nonsingular solutions from 3840 paths. This compu-
tation took 13 minutes. Subsequent solutions tracked 336 paths
and only took 10-12 seconds on our parallelized system.

LINKAGE ANALYSIS
The above reduction shows a maximum of 336 linkage so-

lutions that can be found for a set of synthesis equations (12).
However, for a single set of specified chassis and wheel mount-
ing pivots, we can generate four sets of synthesis equations by
swapping the values of b and c, and h and k as illustrated in Fig.
3. Therefore, for a single specification of the pivots and motion,
we will not find more than 1344 linkage solutions. However, the
large majority of these solutions are either not physically realiz-
able or suffer from a variety of linkage defects including order,
branch, and circuit.

Our synthesis procedure also yields a reflection defect,
which occurs when a link of the mechanism needs to be disas-
sembled and flipped in order to reach all specified poses. The

5 Copyright © 2014 by ASME
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FIGURE 4. THIS LINKAGE SHOWS LINK IV RELFECTED BE-
TWEEN TASK POSITIONS. THIS IS AN ASSEMBLY DEFECT, WE
CALL A REFLECTION DEFECT.

presence of this defect stems from the fact that the shape of
ternary links IV and IX are represented by the three lengths l1,
l2, and l3. These three lengths can be assembled into two differ-
ent triangles which are reflected versions of each other. Note on
the other hand, links III and VIII cannot suffer from reflection
defects because their shapes are uniquely specified by vectors
measured from their local link frames.

We illustrate a reflection defect in Fig. 4. The dimensions of

-2
-1

0

r HradL

-2
0

2

m HradL

-2

0

2

q HradL

FIGURE 5. THE REFLECTION OF THE TERNARY LINK IV
YIELDS PAIRS OF ASSOCIATED CIRCUITS SHOWN AS RED
AND BLUE. THE FOUR TASK POSITIONS ARE SHOWN AS
POINTS ON THESE CIRCUITS.

this mechanism are

b = 12+13.25i, c = 12+0.75i,

d = 9.36337843789255−3.093764412396068i,

f = 4.992554906665183+0.05422889589565189i,

g = 3.367084128230273−2.219778384337775i,

h =−3.11+14.5i, k =−2.06+6i,

l1 = 10.322990240375162, l2 = 3.406229534641514,
l3 = 13.528194647225071, l4 = 11.134005416892984 (17)

and it was solved for using the untoleranced motion requirement
in Table 1. Link IV of this mechanism must have its orientation
reflected in order to reach the final specified pose.

Fig. 5 illustrates the circuits of this mechanism in the config-
uration space (ρ,µ,θ) where µ is seen to be fully rotatable. The
red and blue circuits correspond with the red and blue orienta-
tions of link IV in Fig. 4. The purple points mark configurations
that correspond to task positions and are split between red and
blue circuits.

The Watt I linkage has at most four circuits (Primrose et
al. [9]), therefore we conclude that the mechanism configurations
with a reflected coupler link corresponds to a different linkage.
From this point of view, a synthesis solution with a reflection de-
fect is yielding two linkage designs in order to complete a single
set of tasks. This linkage cannot reach all poses and is not usable.

FORWARD KINEMATICS
In order to filter out linkages that are kinematically defec-

tive, we simulate the geometric motion of all linkage solutions.
This is accomplished by formulating and solving the forward
kinematics equations of the six-bar (Fig. 1) and 12-bar (Fig. 2)
models.

6 Copyright © 2014 by ASME



In order to formulate and solve the forward kinematics
for the six-bar and 12-bar models of this suspension, we must
choose the input parameter that is representative of the forces
and torques on the system. In the case of the six-bar linkage, we
use the vertical movement of the tire. And for the 12-bar model,
we use the horizontal movement of the chassis. Kinematic anal-
ysis also provides the location of singularities, which can be used
to quickly filter defective linkages.

Watt I Forward Kinematics
The Watt I model is shown in Fig. 1. For this analysis we

chose the vertical component of vector M to be the input param-
eter. This assumes that the force of the road on the tire will dom-
inate the mechanism’s motion. The Watt I constraint equations
(3) are re-purposed in order to accommodate forward kinematics,

l2
1 = (D−F)(D̄− F̄)

l2
2 = (D−H)(D̄− H̄)

l2
3 = (F−H)(F̄− H̄)

l2
4 = (G−K)(Ḡ− K̄). (18)

Expanding these equations and appending normalization condi-
tions for the angular operator unknowns, we obtain

l2
1 = (b+Rd− c−U f )(b̄+ R̄d̄− c̄−Ū f̄ )

l2
2 = (b+Rd−M−T h)(b̄+ R̄d̄− M̄− T̄ h̄)

l2
3 = (c+U f −M−T h)(c̄+Ū f̄ − M̄− T̄ h̄)

l2
4 = (c+Ug−M−T k)(c̄+Ū ḡ− M̄− T̄ k̄)

RR̄ = 1
UŪ = 1
T T̄ = 1. (19)

That is seven equations in eight unknowns, a one DOF system.
The unknowns are the three angular variables, their conjugates,
and M, M̄. Next we define the imaginary component of M as My.
My shall be the specified input, we introduce it to the system by
appending the isotropic transformation,

My =
1
2i
(M− M̄) (20)

With My specified, Eqns. (19) and (20) are eight equations in
eight unknowns.

The forward kinematics equations are used to build mecha-
nism trajectories by solving these equations over a sequence of
heights My. The forward kinematics equations were solved using

the Newton-Raphson based FindRoot solver of the Mathematica
software package. Trajectories were established by first solving
for the configuration at j = 1, using R1, R̄1, U1, Ū1, T1, T̄1, M1,
M̄1 as specified during the synthesis as a starting point. Then, My
was incremented and the forward kinematics were solved again
using the previous configuration as a starting point. My was in-
cremented upwards until a singular configuration was encoun-
tered. At that point, we returned to the j = 1 configuration and
My was incremented downwards until a singular configuration
was encountered. Piecing these two trajectories together, we cre-
ate a mechanism branch that travels from one singular configura-
tion to another. Our algorithm detects singularities by checking
if the rotational operators have unit magnitude. If they do not
have unit magnitude, then the mechanism is not in a physically
realizable configuration and the trajectory has moved beyond a
singular point.

Each configuration of the resulting mechanism branch
is represented by a forward kinematics solution set
{R, R̄,U,Ū ,T, T̄ ,M,M̄}. However, by this point we have
ensured that unknowns and their barred counterparts are indeed
conjugates. So we represent each configuration by the set
{R,U,T,M}. Next, we check if the configurations associated
with the specified task positions of the synthesis portion are
present within the mechanism branch.

The two task positions are defined by the rotational op-
erators T1 and T2, and the translation vectors M1 and M2.
The corresponding task configurations are {R1,U1,T1,M1}′ and
{R2,U2,T2,M2}′. Note that the prime notation was added to
distinguish between configurations specified by the motion re-
quirement and configurations found from the forward kine-
matics equations. Because of the chosen Newton-Raphson
starting point, we are always analyzing the branch in which
{R1,U1,T1,M1}′ is present.

12-Bar Forward Kinematics
The symmetric 12-bar model is shown in Fig. 2. For this

analysis we chose the horizontal component of vector A to be the
input parameter. This assumes that the centripetal force gener-
ated by cornering will dominate the mechanism’s motion. The
12-bar constraint equations (8) are re-purposed in order to ac-
commodate the forward kinematics. Expanding Eqn. (8) and
appending normalization conditions for the rotational operator
unknowns, we obtain

l2
1 = (b+RRd− c−UR f )(b̄+ R̄Rd̄− c̄−ŪR f̄ )

l2
2 = (A+Qb+QRRd−N−SRh)(Ā+ Q̄b̄+ Q̄R̄Rd̄− N̄− S̄Rh̄)

l2
3 = (A+Qc+QUR f −N−SRh)(Ā+ Q̄c̄+ Q̄ŪR f̄ − N̄− S̄Rh̄)

l2
4 = (A+Qc+QURg−N−SRk)(Ā+ Q̄c̄+ Q̄ŪRḡ− N̄− S̄Rk̄)

(21)
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l2
1 = (−b̄−RLd̄ + c̄+UL f̄ )(−b− R̄Ld + c+ŪL f )

l2
2 = (A−Qb̄−QRLd̄ + N̄ +SLh̄)(Ā− Q̄b− Q̄R̄Ld +N + S̄Lh)

l2
3 = (A−Qc̄−QUL f̄ + N̄ +SLh̄)(Ā− Q̄c− Q̄ŪL f +N + S̄Lh)

l2
4 = (A−Qc̄−QULḡ+ N̄ +SLk̄)(Ā− Q̄c− Q̄ŪLg+N + S̄Lk)

(22)

QQ̄ = 1
RRR̄R = 1
URŪR = 1
SRS̄R = 1
RLR̄L = 1
ULŪL = 1
SLS̄L = 1. (23)

That is 15 equations in 16 unknowns, a one DOF system. The
unknowns are the seven angular variables, their conjugates, and
A, Ā. Next we define the real component of A as Ax. Ax shall be
the specified input. We introduce it to the system by appending
the isotropic transformation,

Ax =
1
2
(A+ Ā). (24)

With Ax specified, Eqns. (21) through (24) are 16 equations in
16 unknowns.

The forward kinematics equations are used to build
mechanism trajectories in the same manner as described
for the Watt I. Initially, the FindRoot solver was used to
solve these equations using the specified motion configuration
{A,Q,RR,UR,SR,RL,UL,SL}′ from the synthesis portion as a
starting point. Then, Ax was incremented and the forward kine-
matics were solved again using the previous configuration as a
starting point. Ax was incremented to the right until a singular
configuration was encountered. At that point, we returned to the
synthesis configuration {A,Q,RR,UR,SR,RL,UL,SL}′ and incre-
mented to the left until a singular configuration was encountered.

These two trajectories are pieced together to obtain a mech-
anism branch that travels from one singular configuration to an-
other. Our algorithm detects singularities by checking if the an-
gular operators have unit magnitude. If they do not have unit
magnitude, then the mechanism is not in a physically realizable
configuration and the trajectory has moved beyond a singular
point.

Each configuration of the resulting mechanism branch
is represented by a forward kinematics solution set
{A,Q,RR,UR,SR,RL,UL,SL}. We know that the con-
figuration specified by the motion requirement, that is

{A,Q,RR,UR,SR,RL,UL,SL}′, is present in the mechanism
branch because we used it as a starting point to establish
that branch. However, we must now ensure that the link-
age could move smoothly into the reflected version of the
configuration specified by the motion requirement, that is
{−Ā, Q̄, R̄L,ŪL, S̄L, R̄R,ŪR, S̄R}′. The presence of this configura-
tion in the mechanism branch ensures that the mechanism can
move into a neutral (Q = 1) position. In the neutral configura-
tion, the left suspension linkage will be a mirror image of the
right suspension linkage.

Corroborating Six-bar and 12-bar Designs
The final portion of the linkage analysis routine is to ensure

the right and left suspension linkages of the 12-bar model move
through configurations that correspond to the mechanism branch
found when analyzing the six-bar model. In other words, there is
no disassembly required to transition between vertical motion of
the tire with respect to the chassis, and the cornering motion of
the chassis and tires.

The motion specification on the 12-bar can be written as two
more task position specifications on the six-bar. The rotational
operators and translations of these two additional tasks can be
written

T3 = Q̄SR, M3 = Q̄(N−A),

T4 = QS̄L, M4 = Q(N + Ā). (25)

We can then check to see whether the configurations
{RR,UR,T3,M3}′ and {R̄L,ŪL,T4,M4}′ are present in the six-bar
mechanism branch computed from (19).

TOLERANCE ZONES
The procedure outlined above is based off a single specifi-

cation of pivots and task information. However, it is often the
case that no useful linkage designs will result from a single set
of specifications. Meanwhile, slightly tweaked sets of specifica-
tions may exist that do result in useful designs but finding these
specifications is a challenge. We confront this challenge with a
random search method inside tolerance zones as used in Plecnik
and McCarthy (2012) [7].

DESIGN OF THE SUSPENSION MECHANISM
The idea behind our novel mechanism design is to improve

the tire contact patch during cornering. A well distributed contact
patch promotes even wear and uniform heating from the inside
to the outside of the tire. Tire temperature is critical because it
effects the coefficient of friction between the tires and road. As
well, tires that have a well managed contact patch can be inflated
to higher pressures which helps reduce rolling resistance.
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TABLE 1. THE SPECIFIED MOTION REQUIREMENT AND
TOLERANCE ZONES. ALL COMPLEX COMPONENTS ARE AS-
SOCIATED WITH REAL LENGTHS IN INCHES.

Re Tolerance Im Tolerance

b† 12 −0,+4 13.25 −3,+3

c† 12 −0,+4 0.75 −0,+3

h‡ −3.11 −4,+0 14.5 −2,+0

k‡ −2.06 −4,+0 6 −0,+2

M1 27.25 ±0.25 −2 ±0.25

θ1 1◦ ±0.25◦ n/a n/a

M2 26.75 ±0.25 −3 ±0.25

θ2 1◦ ±0.25◦ n/a n/a

A −1 ±0.5 2.5 ±0.5

φ −4◦ ±1◦ n/a n/a

ψR −2◦ ±0.25◦ n/a n/a

ψL −2◦ ±0.25◦ n/a n/a

N 27 ±0 0 ±0
†Values of b and c are swapped to form different types.

‡Values of h and k are swapped to form different types.

A useful linkage found by our algorithm is pictured in Fig.
6 and is helpful to describe the motivation behind the motion
requirements. Figs. 6(a) and 6(b) show the specified config-
urations of the wheels and chassis when the vehicle is turning
right and left, respectively. The idea is that the camber of the
outside wheel will go slightly negative and the camber of the
inside wheel will go slightly positive in order to counter the fric-
tion forces of the road on the tires that create a moment in the
opposite direction. At the same time, since we assumed that the
horizontal centripetal force acting on the center of mass will play
a big role, we specify the chassis to move slightly to the outside
when cornering, in order to promote actuation of the mechanism
by centripetal loads. This made it natural to lean the chassis into
the turn as well since leaning the chassis into the turn influenced
a smoother set of equivalent four task positions as can be seen
Figs. 6(c)–6(f). These figures also reveals the trade-off we en-
countered. By specifying the 12-bar model in the manner above,
we require the wheel to move slightly away from the chassis in
its upward movement. This motion can create undesirable effects
with respect to straight line stability during bump response.

The motion requirements and tolerances were specified as

TABLE 2. RESULTS OVER 40 ITERATIONS.

(a) Average solutions over 40 iterations.

Nonsingular
Solutions Phys. Real Useful

Type 1 192.55 60.65 0.45

Type 2 190.98 57.93 0.18

Type 3 189.80 68.75 0.23

Type 4 191.05 71.30 0.15

All types 764.38 258.63 1.00

(b) Total number of solutions over 40 iterations.

Nonsingular
Solutions Phys. Real Useful

Type 1 7702 2426 18

Type 2 7639 2317 7

Type 3 7592 2750 9

Type 4 7642 2852 6

All types 30,575 10,345 40

shown in Table 1. Our algorithm was run for 40 iterations on
a Mac Pro with 12× 2.93 GHz processors running in parallel.
For each iteration, the synthesis portion tracked 336 paths four
times for each mechanism type (Fig. 3) in 10-12 seconds via the
parameter homotopy module built in to the Bertini software. The
analysis portion of each iteration took on average 62 seconds.
Therefore, each iteration took about 106 seconds. The results
summarized in Table 2 computed in under 70 minutes.

Our algorithm delivered 40 defect-free designs. It is then up
to the designer to review this list and cast out those with pivots in
inconvenient locations. As well, Table 2(a) shows that on average
about 1 in 760 solutions correlate to a usable design.

The methods described in this paper are kinematic and de-
scribe a procedure to find the link lengths of a six-bar suspen-
sion linkage that moves the chassis and wheels in a particular
way. The next step in the design procedure involves designing
the springs, dampers, and their mounting points. The challenge
of this is to ensure the suspension moves in the desired manner
when external loads are applied. That work is out of the scope of
this paper.
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(a) 12-bar Pose 1

(b) 12-bar Pose 2

(c) Six-bar Pose 1 (d) Six-bar Pose 2

(e) Six-bar Pose 3 (f) Six-bar Pose 4

FIGURE 6. THE SIX-BAR MODEL. NOTATION HAS BEEN
SPLIT INTO TWO FIGURES FOR LEGIBILITY.

CONCLUSION
We have presented a procedure for the kinematic synthesis

and analysis of a Watt I six-bar linkage for use as a vehicle sus-
pension. The motion specification and analysis routine utilized
in this paper made use of both Watt I six-bar and symmetric 12-
bar models. Our approach reduces to four task position synthesis
of a Watt I six-bar where both ground pivots and end effector
pivots are specified.

The synthesis equations (12) have a total degree of
2,097,152. A 9-homogeneous formulation of the system and
the implementation of parameter homotopy in Bertini results in
a system with 336 roots is solved in 10 seconds.

We embedded our six-bar linkage synthesis in a 12-bar
model in order to facilitate our analysis procedure. The 12-
bar model provided a means to filter solutions that do not move
smoothly through required symmetric configurations specified
for the suspension.

We are in the process building a scale model, defining spring
supports, and evaluating the dynamic performance of this six-bar
suspension.
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