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Optimized Merger of Ocean Chlorophyll Algorithms
of MODIS-Aqua and VIIRS

1

2

Mati Kahru, Raphael M. Kudela, Clarissa R. Anderson, and B. Greg Mitchell3

Abstract—Standard ocean chlorophyll-a (Chla) products from4
currently operational satellite sensors Moderate Resolution5
Imaging Spectroradiometer (MODIS) Aqua and Visible Infrared6
Imager Radiometer Suite (VIIRS) underestimate medium and7
high in situ Chla concentrations and have approximately 9%8
bias between each other in the California Current. By using the9
regional optimization approach of Kahru et al., we minimized the10
differences between satellite estimates and in situ match-ups as11
well as between estimates of the two satellite sensors and created12
improved empirical algorithms for both sensors. The regionally13
optimized Chla estimates from MODIS-Aqua and VIIRS have14
no bias between each other, have improved retrievals at medium15
to high in situ Chla, and can be merged to improve temporal16
frequency and spatial coverage and to extend the merged time17
series.18

Index Terms—Chlorophyll, Moderate Resolution Imaging Spec-19
troradiometer (MODIS), ocean color, phytoplankton, Visible20
Infrared Imager Radiometer Suite (VIIRS).21

I. INTRODUCTION22

COMBINING or merging data from multiple sensors is23

required to improve the temporal resolution and spatial24

coverage of ocean color imagery and to construct long time25

series or climate data records using data from multiple sen-26

sors [2]–[5]. Currently (i.e., in mid-2015), there are two well-27

calibrated global ocean color sensors in operation: Moderate28

Resolution Imaging Spectroradiometer on Aqua (MODISA)29

and Visible Infrared Imaging Radiometer Suite (VIIRS) on30

Suomi NPP. While improvements in on-orbit sensor calibra-31

tion [6] have greatly improved the compatibility between data32

from different sensors, significant differences remain [7], [8].33

Moreover, global algorithms may not be regionally optimal as34

significant differences exist in bio-optical properties of different35

oceanic provinces [9]. Standard NASA ocean chlorophyll-a36

(Chla) algorithms significantly underestimate in situ values in37

the California Current at high concentrations, often by a factor38
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of 5 [1]. This is highly relevant for detection and monitoring 39

of phytoplankton blooms, including harmful algal blooms [10]. 40

While differences between Chla estimates from MODIS-Aqua 41

and VIIRS have diminished after multiple reprocessings, they 42

still exist [8]. 43

Kahru et al. [1] created optimized empirical algorithms for 44

the California Current for a suite of four sensors (OCTS, 45

SeaWiFS, MERIS, and MODISA) and the time period of 46

1997–2011. An update to that work is currently needed as 47

1) MERIS stopped operating in April 2012; 2) new data from 48

VIIRS are available from the beginning of 2012; and 3) both 49

MODISA and VIIRS data have been reprocessed by NASA’s 50

Ocean Biology Processing Group. The purpose of this work is 51

to create empirical algorithms that are optimized for creating 52

a merged Chla time series in the California Current for the 53

period of 2012–2015 from the two currently available sensors 54

MODISA and VIIRS. 55

II. DATA AND METHODS 56

We used in situ Chla data collected by the California 57

Cooperative Oceanic Fisheries Investigations (CalCOFI) on 58

their quarterly cruises covering a regular grid of stations from 59

nearshore to as far as 600 km offshore for the entire coast of 60

California [11]. In total, 3388 near-surface Chla samples from 61

2002–2014 were used to validate MODISA data, and 744 Chla 62

samples from 2012–2014 were used to validate VIIRS data. 63

All satellite data were acquired at level 2 (i.e., processed 64

to surface quantities but unmapped) with approximately 1-km 65

ground resolution. MODISA (2002–2014, version 2013.1.1) 66

and VIIRS (2012–2014, version 2014.0.1) level-2 data were ob- 67

tained from NASA’s Ocean Color Web (http://oceancolor.gsfc. 68

nasa.gov/). The standard NASA Chla algorithm uses empirical 69

polynomial fits between satellite-derived maximum band ratio 70

(MBR) of remote sensing reflectance (Rrs) bands and near- 71

surface Chla [12] with the coefficient values for each sensor 72

given at http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a. 73

The validation of satellite products using quasi-simultaneous 74

and spatially collocated measurements (match-ups) of satellite 75

and in situ data followed the procedures of previous studies 76

[1], [8], [13], [14]. We assumed that the following level-2 77

flags made a pixel invalid: ATMFAIL, LAND, HISATZEN, 78

STRAYLIGHT, CLDICE, CHLFAIL, SEAICE, NAVFAIL, and 79

HIPOL (see http://oceancolor.gsfc.nasa.gov/VALIDATION/ 80

flags.html for an explanation of the flags). All variables in 81

the level-2 files were extracted from a 3 × 3-pixel window 82

centered at the pixel nearest to the in situ sample. For statistical 83

analysis, we accepted only those match-ups with at least five 84
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Fig. 1. Locations of the MODIS-Aqua Chla match-ups (black dots with white
circles) within 3-h time difference overlaid on the April 2012 Chla composite.

valid pixels (out of nine). The maximum temporal difference85

between satellite and in situ measurements was set at 3 h.86

Satellite match-ups with high variability within the 3 × 3-pixel87

window were excluded if (Max − Min)/Min > 0.6 for the88

standard Chla variable chlor_a. The arithmetic mean Chla value89

of all valid pixels within the 3 × 3-pixel window was used as the90

satellite retrieval. The spatial distribution of MODISA match-91

ups with in situ measurements of Chla is shown in Fig. 1.92

Satellite-derived Rrs values between different sensors are93

difficult to compare at level 2, i.e., without remapping to a com-94

mon map. Although both MODISA and VIIRS have equatorial95

crossing times at approximately 1:30 P.M., their pixel-to-pixel96

comparison at a spatial resolution of ∼1 km2 corresponding97

to their level-2 data shows high variability [8]. We therefore98

used spatially binned and averaged Rrs values over a grid of99

1◦ latitude × 1◦ longitude covering an approximately 1000-km-100

wide area along the coast extracted from daily NASA level-3101

datasets. Those daily mean Rrs values of MODISA and VIIRS102

were then matched with each other. In order to eliminate cloud103

edges and coastal zones, we kept only those matchingRrs pairs104

with at least 99% of the pixels within each 1◦ × 1◦ subarea105

having valid values. As a result, a total of 4060 matching Rrs106

vectors for MODISA and VIIRS were found for the period107

of 2012–2014. These MODISA to VIIRS match-ups were108

then used in the minimization of the differences in the Chla109

algorithm between MODISA and VIIRS.110

Several statistical measures were used to assess the per-111

formance of satellite products against in situ observations112

and between different satellite sensors. For satellite to in situ113

match-ups, we assume that Oi is the ith observation of an in situ114

variable and Pi is the corresponding predicted satellite variable.115

For sensor-to-sensor match-ups, the choice of the observed116

versus predicted variable is arbitrary, but we used MODISA117

estimates as Oi. As an estimate of the prediction scatter, we118

TABLE I
STATISTICS FOR MATCH-UPS OF THE NASA STANDARD chlor_a

PRODUCT WITH IN SITU CHLA WITH UP TO 3-h TIME DIFFERENCE
AND AT LEAST FIVE VALID PIXELS. N = NUMBER OF MATCH-UPS,

R2 = COEFFICIENT OF DETERMINATION, MDAPE = MEDIAN ABSOLUTE
PERCENT ERROR, MDRPE = MEDIAN RELATIVE PERCENT ERROR,
RMSE = ROOT MEAN SQUARE ERROR, AND RMASLOPE = SLOPE

OF THE RMA LINEAR REGRESSION

used the median absolute percentage error (MdAPE), which 119

was calculated as MdAPE = 100× median (|(Pi −Oi)/Oi|). 120

For comparing two sensors, we used the median unbiased 121

absolute percentage error (MdUAPE), which was calculated as 122

MdUAPE = 100× median (|(Pi −Oi)/[0.5∗(Pi +Oi)]|). As 123

an estimate of bias, we used the median relative percentage 124

error (MdRPE), which was calculated as MdRPE = 100× 125

median ((Pi −Oi)/Oi). These statistics were calculated for 126

Pi and Oi using untransformed values (i.e., not log10). We 127

also include the coefficient of determination (R2), the slope 128

of the reduced major axis (RMA) regression, and the root- 129

mean-square error (rmse), all calculated on log10-transformed 130

variables. 131

III. RESULTS 132

A. Match-Ups With Standard chlor_a Products 133

Satellite to in situ match-ups of Chla using the NASA stan- 134

dard chlor_a product over three orders of magnitude (Fig. 2 and 135

Table I) have relatively high coefficients of determination 136

(R2 = 0.87 for MODISA and 0.85 for VIIRS) but also show 137

bias. For example, all MODISA match-ups with in situ Chla > 138

2 mg m−3 underestimate in situ Chla. For VIIRS, the standard 139

chlor_a product suffers from overestimation at low in situ Chla 140

and underestimation at medium and high Chla, which causes 141

the slope of the RMA regression to be significantly less than 142

one (0.68; Table I). 143

B. Optimized MBR Algorithm 144

Standard empirical ocean color algorithms OC3 and OC4 145

[12] use polynomial fits between log10-transformed in situ 146

Chla (Cins) and log10-transformed MBR of Rrs measured 147

in situ. MBR is calculated as the maximum of Rrs at two or 148

more wavelengths (e.g., Rrs443 and Rrs488 for MODISA or 149

Rrs443 and Rrs486 for VIIRS) to the Rrs of the green band 150

(Rrs547 for MODISA and Rrs551 for VIIRS). In order to 151

remove the bias evident in Fig. 2, we created our own best 152

fits to the match-up points. The distribution of match-up points 153

is highly uneven as there are more points in the middle of the 154

range than at both ends of the distribution. To reduce the effect 155

of the uneven distribution, the match-up points were aggregated 156

into bins by using the median values of small brackets of 157

log10(Cins) and the corresponding medians of log10(MBR) 158

following [3] and binning interval of 0.04 in log10(MBR) units. 159
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Fig. 2. Chlorophyll-a match-ups with (a) MODISA and (b) VIIRS using standard NASA chlor_a products. The red line is the one-to-one line, and the blue line
is the RMA linear regression.

Fig. 3. Optimized Chla algorithm (red) compared to standard NASA OC3
(blue) and bracket points of in situ Chla match-ups (black diamonds) as a
function of the MBR of remote sensing reflectance for (a) MODISA and
(b) VIIRS.

The resulting “bracket” points (24 for MODISA and 20 for160

VIIRS) were then used in algorithm development (Fig. 3).161

Ideally, by “tuning” the algorithms of multiple sensors to the162

same set of in situ data, the resulting estimates by different163

sensors should be compatible between each other. In reality, as164

the Chla high end is poorly constrained due to few scattered165

match-ups, the resulting empirical algorithms do not improve166

the intersensor consistency and may even make it worse [1].167

Indeed, as the main difference of the empirical fits compared168

to the standard OC3 algorithms is their increased predicted169

Chla at high end (Fig. 3), the intersensor variability (MdAPE)170

between MODISA and VIIRS is slightly increased from 13.7%171

to 14.0% when using the coefficients fitted to in situ data172

(Table II). In order to improve the consistency between satellite173

sensors and at the same time keep them consistent with in situ174

datasets, we need an optimization that minimizes not only the175

differences between satellite and in situ match-ups but also the176

differences between the satellite estimates of different sensors177

[1]. The matching Rrs pairs of MODISA and VIIRS in 1◦ × 1◦178

subareas were further binned according to the corresponding179

log10(MBR) value, which resulted in 89 “bracket points” of180

MODISA and VIIRS log10(MBR) values. The differences in181

TABLE II
STATISTICS OF VIIRS VERSUS MODISA COMPATIBILITY WITH

DIFFERENT ALGORITHMS: STANDARD NASA OC3 chlor_a,
EMPIRICAL FIT TO IN SITU CHLA MATCH-UPS, AND THE OPTIMIZED

CHLA ALGORITHM. THE STATISTICS WITH SIGNIFICANT
IMPROVEMENT ARE SHOWN IN BOLD

TABLE III
POLYNOMIAL COEFFICIENTS OF THE OPTIMIZED CHLA ALGORITHM

(CALFIT2015) FOR MODISA AND VIIRS

the derived Chla estimates were then minimized for the in- 182

put vector consisting of 24 MODISA bracket points of MBR 183

and Cins, 20 VIIRS bracket points of MBR and Cins, and 184

89 bracket points of MBR from MODISA and VIIRS. For 185

this optimization, we used the trust-region method, a variant 186

of the Levenberg–Marquardt method as implemented in the 187

NMath numerical libraries (http://www.centerspace.net/). As a 188

result, we produced two sets of polynomial coefficients (for 189

both MODISA and VIIRS) of the MBR OC3 model called 190

CALFIT2015 (Table III). 191

The optimization reduced the bias (MdRPE) between Chla 192

derived with MODISA and VIIRS from −9.4% to practically 193

zero (Table II and Fig. 4). It also reduced somewhat the scat- 194

ter (MdUAPE) between MODISA and VIIRS from ∼14% to 195

10%. However, the other statistical indicators (R2, rmse, and 196

RmaSlope) were not improved. 197

IV. DISCUSSION 198

The resulting optimized Chla algorithm shows improved 199

performance compared to the standard OC3 algorithm and 200

http://www.centerspace.net/
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Fig. 4. Comparison of the differences between MODISA and VIIRS sensor-
to-sensor match-ups: standard NASA chlor_a (“Standard”), empirical fit to
the in situ Chla match-ups (“In situ fit”), and the optimized algorithm
(“Optimized”) showing the median unbiased percent error (MdUAPE) and the
median relative percent error (MdRPE).

Fig. 5. VIIRS Chla versus MODISA Chla for a set of 4060 matching values of
MBRs using the standard NASA chlor_a (a) and CALFIT2015 algorithm (b).

compared to the fit to in situ Chla match-ups. The observed201

underestimation of the standard OC3 algorithm at high in situ202

Chla was reduced, and the bias between Chla estimates by203

MODISA and VIIRS was eliminated (Table II and Fig. 4).204

The sensor-to-sensor scatter in Chla between MODISA and205

VIIRS was also somewhat reduced from 14% in the standard206

algorithm to 10% in the optimized algorithm. We also note207

that R2, rmse, and RmaSlope of the VIIRS versus MODISA208

compatibility were not improved (Table II). This is explained209

by the fact that the main effect of fitting to in situ data was210

the increase in Chla estimates at high Chla levels (Figs. 3 and211

5), but Rrs estimates corresponding to medium and high Chla212

are noisy [8]. Therefore, the scatter at high Chla was boosted,213

which inevitably made some of the statistics worse (e.g., rmse).214

As the median bias between MODISA and VIIRS has been215

eliminated, we can now merge Chla estimates from MODISA216

and VIIRS by simple arithmetic averaging of the gridded data217

and increase the frequency and spatial coverage and reduce218

uncertainty. However, we have to keep in mind that we have219

removed just the mean bias, and there may still exist bias220

between sensors related to factors such as sun zenith angle,221

sensor zenith angle, distance from the coast, etc. This has been222

discussed in [5] in the context of satellite-derived water clarity.223

V. CONCLUSION224

We have extended the optimization approach of [1] to current225

MODISA and VIIRS satellite data using a large database of226

in situ Chla and produced updated versions of the region- 227

ally optimized Chla algorithms. The new Chla estimates from 228

MODISA and VIIRS are similar to standard chlor_a estimates 229

at low Chla but have improved retrievals at medium to high 230

in situ Chla and have no bias between one another. The 231

improved algorithms (CALFIT2015) have been applied to 232

MODISA and VIIRS imagery from 2012 to the present (2015). 233

The merged satellite time series (available at http://spg.ucsd. 234

edu/Satellite_Data/CC4km/CC4km.htm) have improved spatial 235

and temporal coverage compared to a single sensor and im- 236

proved correspondence to in situ data. Improved detection of 237

high biomass events is crucial for running harmful algal bloom 238

predictive models in coastal California that require accurate 239

Rrs and chlorophyll values [10] and is also necessary to 240

enhance our understanding of coastal biology and provide long- 241

term continuity of ocean data records. 242
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Abstract—Standard ocean chlorophyll-a (Chla) products from4
currently operational satellite sensors Moderate Resolution5
Imaging Spectroradiometer (MODIS) Aqua and Visible Infrared6
Imager Radiometer Suite (VIIRS) underestimate medium and7
high in situ Chla concentrations and have approximately 9%8
bias between each other in the California Current. By using the9
regional optimization approach of Kahru et al., we minimized the10
differences between satellite estimates and in situ match-ups as11
well as between estimates of the two satellite sensors and created12
improved empirical algorithms for both sensors. The regionally13
optimized Chla estimates from MODIS-Aqua and VIIRS have14
no bias between each other, have improved retrievals at medium15
to high in situ Chla, and can be merged to improve temporal16
frequency and spatial coverage and to extend the merged time17
series.18

Index Terms—Chlorophyll, Moderate Resolution Imaging Spec-19
troradiometer (MODIS), ocean color, phytoplankton, Visible20
Infrared Imager Radiometer Suite (VIIRS).21

I. INTRODUCTION22

COMBINING or merging data from multiple sensors is23

required to improve the temporal resolution and spatial24

coverage of ocean color imagery and to construct long time25

series or climate data records using data from multiple sen-26

sors [2]–[5]. Currently (i.e., in mid-2015), there are two well-27

calibrated global ocean color sensors in operation: Moderate28

Resolution Imaging Spectroradiometer on Aqua (MODISA)29

and Visible Infrared Imaging Radiometer Suite (VIIRS) on30

Suomi NPP. While improvements in on-orbit sensor calibra-31

tion [6] have greatly improved the compatibility between data32

from different sensors, significant differences remain [7], [8].33

Moreover, global algorithms may not be regionally optimal as34

significant differences exist in bio-optical properties of different35

oceanic provinces [9]. Standard NASA ocean chlorophyll-a36

(Chla) algorithms significantly underestimate in situ values in37

the California Current at high concentrations, often by a factor38
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of 5 [1]. This is highly relevant for detection and monitoring 39

of phytoplankton blooms, including harmful algal blooms [10]. 40

While differences between Chla estimates from MODIS-Aqua 41

and VIIRS have diminished after multiple reprocessings, they 42

still exist [8]. 43

Kahru et al. [1] created optimized empirical algorithms for 44

the California Current for a suite of four sensors (OCTS, 45

SeaWiFS, MERIS, and MODISA) and the time period of 46

1997–2011. An update to that work is currently needed as 47

1) MERIS stopped operating in April 2012; 2) new data from 48

VIIRS are available from the beginning of 2012; and 3) both 49

MODISA and VIIRS data have been reprocessed by NASA’s 50

Ocean Biology Processing Group. The purpose of this work is 51

to create empirical algorithms that are optimized for creating 52

a merged Chla time series in the California Current for the 53

period of 2012–2015 from the two currently available sensors 54

MODISA and VIIRS. 55

II. DATA AND METHODS 56

We used in situ Chla data collected by the California 57

Cooperative Oceanic Fisheries Investigations (CalCOFI) on 58

their quarterly cruises covering a regular grid of stations from 59

nearshore to as far as 600 km offshore for the entire coast of 60

California [11]. In total, 3388 near-surface Chla samples from 61

2002–2014 were used to validate MODISA data, and 744 Chla 62

samples from 2012–2014 were used to validate VIIRS data. 63

All satellite data were acquired at level 2 (i.e., processed 64

to surface quantities but unmapped) with approximately 1-km 65

ground resolution. MODISA (2002–2014, version 2013.1.1) 66

and VIIRS (2012–2014, version 2014.0.1) level-2 data were ob- 67

tained from NASA’s Ocean Color Web (http://oceancolor.gsfc. 68

nasa.gov/). The standard NASA Chla algorithm uses empirical 69

polynomial fits between satellite-derived maximum band ratio 70

(MBR) of remote sensing reflectance (Rrs) bands and near- 71

surface Chla [12] with the coefficient values for each sensor 72

given at http://oceancolor.gsfc.nasa.gov/cms/atbd/chlor_a. 73

The validation of satellite products using quasi-simultaneous 74

and spatially collocated measurements (match-ups) of satellite 75

and in situ data followed the procedures of previous studies 76

[1], [8], [13], [14]. We assumed that the following level-2 77

flags made a pixel invalid: ATMFAIL, LAND, HISATZEN, 78

STRAYLIGHT, CLDICE, CHLFAIL, SEAICE, NAVFAIL, and 79

HIPOL (see http://oceancolor.gsfc.nasa.gov/VALIDATION/ 80

flags.html for an explanation of the flags). All variables in 81

the level-2 files were extracted from a 3 × 3-pixel window 82

centered at the pixel nearest to the in situ sample. For statistical 83

analysis, we accepted only those match-ups with at least five 84

1545-598X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Locations of the MODIS-Aqua Chla match-ups (black dots with white
circles) within 3-h time difference overlaid on the April 2012 Chla composite.

valid pixels (out of nine). The maximum temporal difference85

between satellite and in situ measurements was set at 3 h.86

Satellite match-ups with high variability within the 3 × 3-pixel87

window were excluded if (Max − Min)/Min > 0.6 for the88

standard Chla variable chlor_a. The arithmetic mean Chla value89

of all valid pixels within the 3 × 3-pixel window was used as the90

satellite retrieval. The spatial distribution of MODISA match-91

ups with in situ measurements of Chla is shown in Fig. 1.92

Satellite-derived Rrs values between different sensors are93

difficult to compare at level 2, i.e., without remapping to a com-94

mon map. Although both MODISA and VIIRS have equatorial95

crossing times at approximately 1:30 P.M., their pixel-to-pixel96

comparison at a spatial resolution of ∼1 km2 corresponding97

to their level-2 data shows high variability [8]. We therefore98

used spatially binned and averaged Rrs values over a grid of99

1◦ latitude × 1◦ longitude covering an approximately 1000-km-100

wide area along the coast extracted from daily NASA level-3101

datasets. Those daily mean Rrs values of MODISA and VIIRS102

were then matched with each other. In order to eliminate cloud103

edges and coastal zones, we kept only those matchingRrs pairs104

with at least 99% of the pixels within each 1◦ × 1◦ subarea105

having valid values. As a result, a total of 4060 matching Rrs106

vectors for MODISA and VIIRS were found for the period107

of 2012–2014. These MODISA to VIIRS match-ups were108

then used in the minimization of the differences in the Chla109

algorithm between MODISA and VIIRS.110

Several statistical measures were used to assess the per-111

formance of satellite products against in situ observations112

and between different satellite sensors. For satellite to in situ113

match-ups, we assume that Oi is the ith observation of an in situ114

variable and Pi is the corresponding predicted satellite variable.115

For sensor-to-sensor match-ups, the choice of the observed116

versus predicted variable is arbitrary, but we used MODISA117

estimates as Oi. As an estimate of the prediction scatter, we118

TABLE I
STATISTICS FOR MATCH-UPS OF THE NASA STANDARD chlor_a

PRODUCT WITH IN SITU CHLA WITH UP TO 3-h TIME DIFFERENCE
AND AT LEAST FIVE VALID PIXELS. N = NUMBER OF MATCH-UPS,

R2 = COEFFICIENT OF DETERMINATION, MDAPE = MEDIAN ABSOLUTE
PERCENT ERROR, MDRPE = MEDIAN RELATIVE PERCENT ERROR,
RMSE = ROOT MEAN SQUARE ERROR, AND RMASLOPE = SLOPE

OF THE RMA LINEAR REGRESSION

used the median absolute percentage error (MdAPE), which 119

was calculated as MdAPE = 100× median (|(Pi −Oi)/Oi|). 120

For comparing two sensors, we used the median unbiased 121

absolute percentage error (MdUAPE), which was calculated as 122

MdUAPE = 100× median (|(Pi −Oi)/[0.5∗(Pi +Oi)]|). As 123

an estimate of bias, we used the median relative percentage 124

error (MdRPE), which was calculated as MdRPE = 100× 125

median ((Pi −Oi)/Oi). These statistics were calculated for 126

Pi and Oi using untransformed values (i.e., not log10). We 127

also include the coefficient of determination (R2), the slope 128

of the reduced major axis (RMA) regression, and the root- 129

mean-square error (rmse), all calculated on log10-transformed 130

variables. 131

III. RESULTS 132

A. Match-Ups With Standard chlor_a Products 133

Satellite to in situ match-ups of Chla using the NASA stan- 134

dard chlor_a product over three orders of magnitude (Fig. 2 and 135

Table I) have relatively high coefficients of determination 136

(R2 = 0.87 for MODISA and 0.85 for VIIRS) but also show 137

bias. For example, all MODISA match-ups with in situ Chla > 138

2 mg m−3 underestimate in situ Chla. For VIIRS, the standard 139

chlor_a product suffers from overestimation at low in situ Chla 140

and underestimation at medium and high Chla, which causes 141

the slope of the RMA regression to be significantly less than 142

one (0.68; Table I). 143

B. Optimized MBR Algorithm 144

Standard empirical ocean color algorithms OC3 and OC4 145

[12] use polynomial fits between log10-transformed in situ 146

Chla (Cins) and log10-transformed MBR of Rrs measured 147

in situ. MBR is calculated as the maximum of Rrs at two or 148

more wavelengths (e.g., Rrs443 and Rrs488 for MODISA or 149

Rrs443 and Rrs486 for VIIRS) to the Rrs of the green band 150

(Rrs547 for MODISA and Rrs551 for VIIRS). In order to 151

remove the bias evident in Fig. 2, we created our own best 152

fits to the match-up points. The distribution of match-up points 153

is highly uneven as there are more points in the middle of the 154

range than at both ends of the distribution. To reduce the effect 155

of the uneven distribution, the match-up points were aggregated 156

into bins by using the median values of small brackets of 157

log10(Cins) and the corresponding medians of log10(MBR) 158

following [3] and binning interval of 0.04 in log10(MBR) units. 159
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Fig. 2. Chlorophyll-a match-ups with (a) MODISA and (b) VIIRS using standard NASA chlor_a products. The red line is the one-to-one line, and the blue line
is the RMA linear regression.

Fig. 3. Optimized Chla algorithm (red) compared to standard NASA OC3
(blue) and bracket points of in situ Chla match-ups (black diamonds) as a
function of the MBR of remote sensing reflectance for (a) MODISA and
(b) VIIRS.

The resulting “bracket” points (24 for MODISA and 20 for160

VIIRS) were then used in algorithm development (Fig. 3).161

Ideally, by “tuning” the algorithms of multiple sensors to the162

same set of in situ data, the resulting estimates by different163

sensors should be compatible between each other. In reality, as164

the Chla high end is poorly constrained due to few scattered165

match-ups, the resulting empirical algorithms do not improve166

the intersensor consistency and may even make it worse [1].167

Indeed, as the main difference of the empirical fits compared168

to the standard OC3 algorithms is their increased predicted169

Chla at high end (Fig. 3), the intersensor variability (MdAPE)170

between MODISA and VIIRS is slightly increased from 13.7%171

to 14.0% when using the coefficients fitted to in situ data172

(Table II). In order to improve the consistency between satellite173

sensors and at the same time keep them consistent with in situ174

datasets, we need an optimization that minimizes not only the175

differences between satellite and in situ match-ups but also the176

differences between the satellite estimates of different sensors177

[1]. The matching Rrs pairs of MODISA and VIIRS in 1◦ × 1◦178

subareas were further binned according to the corresponding179

log10(MBR) value, which resulted in 89 “bracket points” of180

MODISA and VIIRS log10(MBR) values. The differences in181

TABLE II
STATISTICS OF VIIRS VERSUS MODISA COMPATIBILITY WITH

DIFFERENT ALGORITHMS: STANDARD NASA OC3 chlor_a,
EMPIRICAL FIT TO IN SITU CHLA MATCH-UPS, AND THE OPTIMIZED

CHLA ALGORITHM. THE STATISTICS WITH SIGNIFICANT
IMPROVEMENT ARE SHOWN IN BOLD

TABLE III
POLYNOMIAL COEFFICIENTS OF THE OPTIMIZED CHLA ALGORITHM

(CALFIT2015) FOR MODISA AND VIIRS

the derived Chla estimates were then minimized for the in- 182

put vector consisting of 24 MODISA bracket points of MBR 183

and Cins, 20 VIIRS bracket points of MBR and Cins, and 184

89 bracket points of MBR from MODISA and VIIRS. For 185

this optimization, we used the trust-region method, a variant 186

of the Levenberg–Marquardt method as implemented in the 187

NMath numerical libraries (http://www.centerspace.net/). As a 188

result, we produced two sets of polynomial coefficients (for 189

both MODISA and VIIRS) of the MBR OC3 model called 190

CALFIT2015 (Table III). 191

The optimization reduced the bias (MdRPE) between Chla 192

derived with MODISA and VIIRS from −9.4% to practically 193

zero (Table II and Fig. 4). It also reduced somewhat the scat- 194

ter (MdUAPE) between MODISA and VIIRS from ∼14% to 195

10%. However, the other statistical indicators (R2, rmse, and 196

RmaSlope) were not improved. 197

IV. DISCUSSION 198

The resulting optimized Chla algorithm shows improved 199

performance compared to the standard OC3 algorithm and 200

http://www.centerspace.net/


IE
EE

Pr
oo
f

4 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Fig. 4. Comparison of the differences between MODISA and VIIRS sensor-
to-sensor match-ups: standard NASA chlor_a (“Standard”), empirical fit to
the in situ Chla match-ups (“In situ fit”), and the optimized algorithm
(“Optimized”) showing the median unbiased percent error (MdUAPE) and the
median relative percent error (MdRPE).

Fig. 5. VIIRS Chla versus MODISA Chla for a set of 4060 matching values of
MBRs using the standard NASA chlor_a (a) and CALFIT2015 algorithm (b).

compared to the fit to in situ Chla match-ups. The observed201

underestimation of the standard OC3 algorithm at high in situ202

Chla was reduced, and the bias between Chla estimates by203

MODISA and VIIRS was eliminated (Table II and Fig. 4).204

The sensor-to-sensor scatter in Chla between MODISA and205

VIIRS was also somewhat reduced from 14% in the standard206

algorithm to 10% in the optimized algorithm. We also note207

that R2, rmse, and RmaSlope of the VIIRS versus MODISA208

compatibility were not improved (Table II). This is explained209

by the fact that the main effect of fitting to in situ data was210

the increase in Chla estimates at high Chla levels (Figs. 3 and211

5), but Rrs estimates corresponding to medium and high Chla212

are noisy [8]. Therefore, the scatter at high Chla was boosted,213

which inevitably made some of the statistics worse (e.g., rmse).214

As the median bias between MODISA and VIIRS has been215

eliminated, we can now merge Chla estimates from MODISA216

and VIIRS by simple arithmetic averaging of the gridded data217

and increase the frequency and spatial coverage and reduce218

uncertainty. However, we have to keep in mind that we have219

removed just the mean bias, and there may still exist bias220

between sensors related to factors such as sun zenith angle,221

sensor zenith angle, distance from the coast, etc. This has been222

discussed in [5] in the context of satellite-derived water clarity.223

V. CONCLUSION224

We have extended the optimization approach of [1] to current225

MODISA and VIIRS satellite data using a large database of226

in situ Chla and produced updated versions of the region- 227

ally optimized Chla algorithms. The new Chla estimates from 228

MODISA and VIIRS are similar to standard chlor_a estimates 229

at low Chla but have improved retrievals at medium to high 230

in situ Chla and have no bias between one another. The 231

improved algorithms (CALFIT2015) have been applied to 232

MODISA and VIIRS imagery from 2012 to the present (2015). 233

The merged satellite time series (available at http://spg.ucsd. 234

edu/Satellite_Data/CC4km/CC4km.htm) have improved spatial 235

and temporal coverage compared to a single sensor and im- 236

proved correspondence to in situ data. Improved detection of 237

high biomass events is crucial for running harmful algal bloom 238

predictive models in coastal California that require accurate 239

Rrs and chlorophyll values [10] and is also necessary to 240

enhance our understanding of coastal biology and provide long- 241

term continuity of ocean data records. 242
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