Title
EFFECTS OF ADDITIVE NOISE ON A NONLINEAR OSCILLATOR EXHIBITING PERIOD DOUBLING AND CHAOTIC BEHAVIOR

Permalink
https://escholarship.org/uc/item/6rw049sj

Authors
Perez, J.
Jeffries, C.

Publication Date
1982-03-01
EFFECTS OF ADDITIVE NOISE ON A NONLINEAR OSCILLATOR EXHIBITING PERIOD DOUBLING AND CHAOTIC BEHAVIOR

José Pérez and Carson Jeffries

March 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EFFECTS OF ADDITIVE NOISE ON A NONLINEAR OSCILLATOR EXHIBITING PERIOD DOUBLING AND CHAOTIC BEHAVIOR*

José Pérez and Carson Jeffries

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of Physics, University of California, Berkeley, CA 94720

March 1982

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
Effects of Additive Noise on a Nonlinear Oscillator Exhibiting Period Doubling and Chaotic Behavior

José Pérez and Carson Jeffries

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of Physics, University of California, Berkeley, California 94720

(Received)

We report detailed effects of additive random noise on a driven nonlinear oscillator in the periodic, the chaotic, and the window regimes. We observe simultaneously the power spectral density, the probability density, and the bifurcation diagram at varying noise levels, finding semiquantitative agreement with the logistic model and universal predictions.

PACS numbers: 0.5.40.+j, 05.20.Dd, 47.25.-c

A previous paper,1 denoted by I, reported observation of universal chaotic behavior for a driven nonlinear semiconductor oscillator which shows successive period doubling bifurcations as a route to chaos, the so-called "Feigenbaum scenario".2 Semiquantitative agreement was observed for several universal numbers computed from simple nonlinear finite
difference equations of the Feigenbaum universality class, which includes the logistic equation

\[x_{n+1} = \lambda x_n(1-x_n) \]

(1)
The bifurcation diagram of Fig. 1 is a plot of the iterated values \(\{x_n\} \) vs the control parameter \(\lambda \), showing period doubling, onset of chaos at \(\lambda_c \), band merging, and periodic windows. The chaos is entirely a result of computations from Eq. (1) and is describable as deterministic chaos. Since real physical systems contain fluctuations of a stochastic nature, e.g. thermal and electrical noise, it is of considerable interest to study the effect of added random noise to Eq. (1). This has been reported by several authors\(^3\)-\(^7\) who compute the effect of noise on the stability and observability of period doubling; on windows; on single band chaos; and on the Lyapunov exponent. The purpose of this paper is to report the first detailed measurements of added noise to a chaotic physical system, finding for the oscillator of I close agreement with the logistic model and universal predictions.

The theoretical models\(^3\)-\(^7\) add to Eq. (1) a term \(p_n \) and iterate by computer the equation

\[x_{n+1} = \lambda x_n(1-x_n) + p_n \]

(2)
where \(p_n \) is either a Gaussian or a uniform pseudorandom distribution with standard deviation \(\sigma \) and mean value zero. In our experiments a random noise voltage is added parametrically to the driving voltage, for which the equation

\[x_{n+1} = (\lambda+q_n)x_n(1-x_n) \]

(3)
is more appropriate. Here \(q_n \) is a random variable with standard deviation
σq and mean value zero representing the added noise voltage. Crutchfield, Farmer and Huberman derive a relationship between σ and σq, our experimentally measured noise parameter. The computations are displayed for various values of σ as: plots of power spectral density S(f); plots of the probability density P(x), which is a vertical section through the bifurcation diagram at constant λ;7 and noisy bifurcation diagrams.6

We review the predicted behavior of P(x) for the three cases which we experimentally investigate: (i) For σ = 0 and λc > λ = value midway into period 2^k, P(x) consists of 2^k delta functions. As the noise is increased to value σ, the delta functions broaden and merge first to 2^{k-1} peaks, with P(x) = 0 between the peaks. The system has become semiperiodic.7,9 If the noise is then further increased to kσ, the 2^{k-1} peaks merge to 2^{k-2} peaks with P(x) = 0 between peaks, where k = 6.619... is a universal number, first computed by Crutchfield, Nauenberg and Rudnick.4 This process continues as σ is further increased until all peaks merge to one band and the system becomes aperiodic. (ii) For σ = 0 and λc < λ = value for a window of period q, P(x) consists of q delta functions. As σ is increased, the delta functions broaden very slightly before P(x) is filled in between all peaks, i.e. P(x) ≠ 0 throughout its domain, and the system is aperiodic. (iii) For σ = 0 and λc < λ = value for a one band attractor, P(x) consists of a high base line with structures and delta functions corresponding to mappings of the critical point x_c = 1/2. As σ is increased, the delta functions disappear but the gross features remain.

Our experimental arrangement, detailed in I, consists of a series LRC circuit, the capacitance C being a nonlinear varactor diode. This circuit is driven by the linear superposition of two voltage sources:
$V_0 \cos(2\pi ft)$ from a driving oscillator; and a wide-band random noise source of rms value V_n; V_0 and V_n are controlled by precision attenuators. In taking data, f is fixed at $f_{res} = 96$ kHz, and V_0 [corresponding to λ in Eq. (1)] is set to the desired point in the bifurcation diagram. The varactor diode voltage $V_c(t)$ (corresponding to $\{x_n\}$) is observed by a power spectrum analyzer, yielding $S(f)$; by a pulse height analyzer which measures the probability density $P(V_c)$, corresponding to $P(x)$; and by a bifurcation spectrometer, which plots $\{V_c\}$ vs V_0, analogous to Fig. 1. During the conducting half-cycle, V_c is clamped toward the zero line; on the reverse half-cycle, V_c has a set of values which correspond to the top half of the bifurcation diagram and to the top half of the probability density $P(x)$. Data are taken for various values of noise voltage V_n, and recorded as $\sigma_m = \sigma_q/8 = V_n/8V_{cm}$ which is comparable to the value of σ assumed in computed predictions. Here V_{cm} is the maximum varactor voltage at V_0 required to reach $\lambda \approx 3.8$, corresponding to a range of order unity for $\{x_n\}$ on the bifurcation diagram.

Figure 2 shows log $P(x)$ observed for the nonlinear oscillator driven into subharmonic bifurcation at $f/16$. As noise is added, the behavior is close to that predicted: Fig. 2(a), $\sigma_m = 0$; the system is essentially periodic with sharp peaks as expected; it has a small random noise from the driving oscillator and the diode current which limits the observable bifurcation to $f/32$ and prevents the peaks from being delta functions. Fig. 2(b), $\sigma_m = 1.4 \times 10^{-4}$; the system has semiperiodicity 8. Fig. 2(c), $\sigma_m = 8.7 \times 10^{-4}$; increasing the noise voltage by the factor 6.3 reduces the semiperiodicity to 4. Fig. 2(d), another increase in σ_m by a factor of 6.3 reduces the semiperiodicity to 2. These features are similar to
Fig. 20 of Ref. 8. Figures 3(a)-3(d) show the observed power spectral density $S(f)$ measured simultaneously under the same conditions as Figs. 2(a)-2(d). It is clear that successive factors of 6.3 in added noise voltage eliminate the sharp spectral components, reducing the period from $8 \rightarrow 4 \rightarrow 2$. A series of 15 measurements like those of Figs. 2 and 3 yield the average value $\lambda = 6.44 \pm 0.24$. Fig. 4(a) shows the observed bifurcation diagram with added noise to reduce it to semiperiodicity 8. In Fig. 4(b) the noise voltage is increased by a factor 6.3, reducing the semiperiodicity to 4. These data confirm the computed diagram, Fig. 7 of Ref. 6.

To test prediction (ii), Fig. 5(a) shows log $P(x)$ measured for $\sigma_m = 0$ and V_0 set just after the beginning of the period 5 window: sharp peaks are observed. In Fig. 5(b) the addition of small noise $\sigma_m = 1.1 \times 10^{-4}$ raises $P(x) \neq 0$ at all points in the domain of x: the system has become aperiodic. The data have a close resemblance to Figs. 8 and 9 of Meyer-Kress and Haken,7 computed for the period-3 window. To test prediction (iii), Fig. 5(c) shows log $P(x)$ observed at a one-band attractor at $\lambda = 3.7$ without added noise. Addition of noise, $\sigma_m = 1 \times 10^{-3}$, in Fig. 5(d) washes out the peaks but does not change the gross features. These results are quite similar to Figs. 11 and 12 of Ref. 7.

We have made preliminary observations of the effect of adding a sinusoidal rather than a random noise perturbation.7 If the system is at the period 3 window, it becomes chaotic through bifurcations as an additive voltage at $f/2$ is increased. For the system chaotic at a one-band attractor after the $f/3$ window, $\lambda = 3.9$, a small additive voltage at $f/3$
induces periodic behavior at f/12, f/6, f/3 as the additive voltage is increased. If the system is chaotic at a one-band attractor near $\lambda = 3.7$, adding a voltage at f/2 induces periodic behavior at f/16, f/8, f/4, and f/2 as the additive voltage is increased.

In conclusion we observe that increasing the additive noise voltage by the factor $K = 6.44 \pm 0.24$ to a driven nonlinear LRC oscillator produces a transition to half the semiperiodicity if the system is periodic. Additive noise produces sudden aperiodicity at windows, but has only a small effect on chaotic behavior outside the windows. Furthermore, if the system is chaotic, it is not stable against a sinusoidal perturbation at a subharmonic frequency, which induces periodic behavior. These experimental findings are in agreement with the computed predicted behavior and are further detailed evidence for universal chaotic behavior.

We thank B. A. Huberman, M. Nauenberg, and J. Testa for helpful discussions. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

8Ref. 6, Eq. (3-13); \(\sigma_q = 8\sigma \).

Figure Captions

FIG. 1 Computed bifurcation diagram \(\{x_n\} \) vs \(\lambda \) for Eq. (1), showing successive bifurcations, chaos at \(\lambda_c \), and periodic windows 5 and 3.

FIG. 2 Observed \(\log P(V_c) \) vs \(V_c \) for varactor voltage \(V_c \) of nonlinear oscillator, bifurcated to subharmonic \(f/16 \). (a) added noise voltage \(\sigma_m = 0 \). (b) \(\sigma_m = 1.4 \times 10^{-4} \). (c) \(\sigma_m = 8.7 \times 10^{-4} \). (d) \(\sigma_m = 5.5 \times 10^{-3} \).

FIG. 3 Observed power spectral density \(S(f) \) under same conditions as Fig. 2, with driving frequency \(f = 96 \) kHz. (a) no added noise, sharp subharmonics \(f/2 \) to \(f/16 \) displayed. (b) added noise \(\sigma_m = 1.4 \times 10^{-4} \), removes sharp \(f/16 \) components. (c) \(\sigma_m = 8.7 \times 10^{-4} \), removes sharp \(f/8 \) components. (d) \(\sigma_m = 5.5 \times 10^{-3} \), removes sharp \(f/4 \) component.

FIG. 4 Observed upper branch of bifurcation diagram, \(\{V_c\} \) vertical vs \(V_0 \) horizontal (cf., Fig. 1, \(3.44 \leq \lambda \leq 3.6 \)). (a) added noise \(\sigma_m = 1.4 \times 10^{-4} \). (b) \(\sigma_m = 8.7 \times 10^{-4} \).

FIG. 5 Observed \(\log P(V_c) \) vs \(V_c \). (a) at onset of period 5 window with no added noise. (b) added noise \(\sigma_m = 1.1 \times 10^{-4} \). (c) chaotic region \((\lambda \approx 3.7) \) with no added noise. (d) added noise \(\sigma_m = 1 \times 10^{-3} \).
Fig. 3
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.