Title
FLUORESCENCE SPECTRA OF URANIUM, NEPTUNIUM, AND CURIUM

Permalink
https://escholarship.org/uc/item/6rw520x5

Authors
Conway, John G.
Wallmann, James C.
Cunningham, B.B.
et al.

Publication Date
1957-09-23
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
FLUORESCENCE SPECTRA OF URANIUM, NEPTUNIUM, AND CURIUM

John G. Conway, James C. Wallmann, B.B. Cunningham, and George V. Shalimoff

September 23, 1957
FLUORESCENCE SPECTRA OF URANIUM, NEPTUNIUM, AND CURIUM

John G. Conway, James C. Wallmann, B.B. Cunningham, and George V. Shalimoff

Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California
September 23, 1957

Fluorescence of AmCl₃ and PuCl₃ in dilute solid solution in a matrix of crystalline anhydrous LaCl₃ has been reported previously.¹,² We have since observed the fluorescence of U⁺³, Np⁺³, and Cm⁺³ in a similar crystalline environment. Observed fluorescence lines and, for Cm⁺³, absorption lines in the region 3000 to 8000 Å are listed in Table I. The fluorescence spectra were obtained by ultraviolet irradiation, as described previously,¹,² although for curium (∼185 μg Cm²⁴⁴ in 183 mg LaCl₃) the radioluminescence is sufficiently intense to be photographed on our 21-foot Wadsworth spectrograph.³ The radioluminescence spectrum, aside from its lower intensity, is identical with that obtained by ultraviolet irradiation. The strong fluorescence group at 4000 Å continued to fluoresce in absorption experiments, and therefore has not been observed as an absorption line by us. It is now known, however, that this appears as a peak in the absorption spectrum of aqueous Cm⁺³.⁴

The fluorescence of NpCl₃ in LaCl₃ was observed at a concentration of ∼0.1 atom % Np²³⁷ similar to the CmCl₃ preparation.

Because of the ready availability of natural uranium, solutions of UC₃ in LaCl₃ up to 20 weight % were prepared.

 Attempts were made to incorporate UC₃ in NaCl, SrCl₂, BiCl₃, and MgCl₂. Although some uranium appeared to dissolve in some of the crystals, none of the products was fluorescent.

Some interpretation of the observed spectra is possible. The ground state of Cm⁺³ is ⁸S₇/₂ with insignificant splitting by the hexagonal crystalline field of LaCl₃, so far as optical spectra are concerned. Multiplet structure therefore arises from crystal-field splittings of excited states. The three-component group of lines at 4600 Å therefore arises from a J = 5/2 level, the four-component group at 4000 Å from a J = 7/2 level, and the two doublets at 3830 Å and 3780 Å from J = 3/2 levels. The group at 4600 Å
probably arises from the $^6P_{5/2}$ level, that at 4000 Å from the $^6P_{7/2}$ level (although it may be the $^6I_{7/2}$), and the two groups with $J = 3/2$ from 6P, 6D, 6F, or 6G, or possibly from quartet S, P, D, F, or doublet P or D, are entering.

The ground state of Np^{+3} is $^5I_{4}$. A preliminary analysis suggests levels at 60 and 110 cm$^{-1}$ above the ground state. The level of 19870 cm$^{-1}$ is not split and therefore has $J = 0$. The most reasonable assignment for this level is $^5D_{0}$, although $^3P_{0}$ and $^1S_{0}$ are possible.

The doublet at 16070 cm$^{-1}$ is split by 25 cm$^{-1}$. For this $J = 1$ level the possibilities are 5P, 5D, 5P, 3D, 3P, 3S, 1P.

The interpretation of the uranium fluorescence spectrum is more difficult than for Cm^{+3} or Np^{+3}. The splitting of the $^4I_{9/2}$ ground state appears to contain an interval of 180 cm$^{-1}$ followed by a 20 cm$^{-1}$ interval. Absorption-spectra observations suggest that there may be an additional level at about 25 cm$^{-1}$ above ground.

Table I. Spectra of U, Cm, and Np in LaCl$_3$ (wavelength in angstroms)

<table>
<thead>
<tr>
<th></th>
<th>CmCl$_3$ in LaCl$_3$: Fluorescence</th>
<th>UCl$_3$ in LaCl$_3$: Fluorescence</th>
<th>UCl$_3$ in LaCl$_3$: Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4606</td>
<td>6482a,b</td>
<td>3835</td>
</tr>
<tr>
<td></td>
<td>4603</td>
<td>6915b</td>
<td>3830</td>
</tr>
<tr>
<td></td>
<td>4588</td>
<td>6898b</td>
<td>3787</td>
</tr>
<tr>
<td></td>
<td>4001</td>
<td>6812b</td>
<td>3776</td>
</tr>
<tr>
<td></td>
<td>3990</td>
<td>6800b</td>
<td>6208</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aFluorescence line appears only at room temperature

bAlso appears in absorption
References

3. M. Fred and D.M. Gruen (Argonne National Laboratory) (private communication) have observed this radioluminescence on a fast spectrograph, and confirm our results.